首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
长武黄土塬区土地利用变化对潜水补给的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
通过长武黄土塬区不同土地利用方式下深剖面土壤水分的长期定位监测以及氢氧稳定同位素示踪技术的使用,分析了该区域土地利用变化对地下潜水补给的影响。结果表明:① 降水补给地下水过程中存在着活塞流和优先流两种机制,由活塞流补给的地下水量,以休闲地居高,低产农田次之,最后是高产农田;② 随着该区域农田生产力大幅提升以及大面积农田转换为果园,地下水活塞流补给量逐年减少,加之地下水开采量增加,导致地下水位逐年下降,年均降幅达0.3 m;③ 同位素证据表明,目前长武塬区地下水补给以优先流形式为主。为了实现黄土塬区潜水资源的有效补给与可持续利用,需要合理调控土地利用结构,保持适度生产力水平。  相似文献   

2.
This study investigates the characteristics of geothermal water in 10 geothermal fields in Beijing. The relationships between the deuterium excess parameter (d) and temperature, depth, age of geothermal groundwater, groundwater flow field, and Eh were investigated using geothermal groundwater samples. Results showed that (1) the average d value of geothermal water is 5.4, whereas that of the groundwater in normal temperature is 6.04. The differences are induced by the oxygen isotope exchange during the water–rock interaction, which may be more easily completed in geothermal water than in cold groundwater. (2) The d value increases remarkably with the age of the geothermal groundwater. The d value increases from 11.2 to 14.6 when the age of the geothermal water is 12,760 ± 130 a and 38,960 ± 630 a, respectively. Moreover, the isotope heat exchange for composition of the hydrogen and oxygen isotopes in the geothermal groundwater proceeds sufficiently with time. (3) The d value decreases from 5.72 to 3.03 when the depth increases from 125.13 to 3221 m. Generally, in the same area, the d value decreases with depth because the temperature is increasing. (4) The d value of the groundwater gradually reduces from the northern recharge area to the southern discharge area. The average d value is 7.31 in the northern recharge area and 5.68 in the middle Beijing Depression, whereas the d value in the southern area of Fengheying is ?9.20. The larger difference in d values between the recharge and discharge areas is due to the slower velocity of underwater flow, which induces longer time for oxygen exchange. (5) The relationship between the d and Eh is complex. When Eh is <200 mV, the d value of the geothermal water decreases with the decrease in Eh. When Eh is higher than 200 mV, the d value increases slightly with the decrease in Eh. The study of the characteristics of deuterium excess parameters for geothermal water could provide a scientific isotopic evidence for assessment and exploitation measures in geothermal groundwater systems.  相似文献   

3.
In coral islands, groundwater is a crucial freshwater resource for terrestrial life, including human water supply. Response of the freshwater lens to expected climate changes and subsequent vegetation alterations is quantified for Grande Glorieuse, a low-lying coral island in the Western Indian Ocean. Distributed models of recharge, evapotranspiration and saltwater phytotoxicity are integrated into a variable-density groundwater model to simulate the evolution of groundwater salinity. Model results are assessed against field observations including groundwater and geophysical measurements. Simulations show the major control currently exerted by the vegetation with regards to the lens morphology and the high sensitivity of the lens to climate alterations, impacting both quantity and salinity. Long-term changes in mean sea level and climatic conditions (rainfall and evapotranspiration) are predicted to be responsible for an average increase in salinity approaching 140 % (+8 kg m?3) when combined. In low-lying areas with high vegetation density, these changes top +300 % (+10 kg m?3). However, due to salinity increase and its phytotoxicity, it is shown that a corollary drop in vegetation activity can buffer the alteration of fresh groundwater. This illustrates the importance of accounting for vegetation dynamics to study groundwater in coral islands.  相似文献   

4.
Groundwater is the major source of water and a critical resource for socioeconomic development in semi-arid environments like the Johannesburg area. Environmental isotopes are employed in this study to characterise groundwater recharge and flow mechanisms in the bedrock aquifers of Johannesburg, which is known for polluted surface water. With the exception of boreholes near the Hartbeespoort Dam, groundwater in the study area was derived from meteoric water that has undergone some degree of evaporation before recharge, possibly via diffuse mechanisms. Boreholes that tap groundwater from the Transvaal Supergroup Formation show depletion in δ18O and δ2H values. This is attributed to diffuse recharge through weathering fractures at high elevation that are undergoing deep circulation or recharge from depleted rainfall from the high-latitude moisture sources. The influence of focused recharge from the Hartbeespoort Dam was observed in the boreholes north of the dam, possibly as a result of the north–south trending fault lines and the north-dipping fractures in the bedding planes of quartzites. This is also supported by a reservoir water budget method which indicated a mean annual net flux of 2,084,131 m3 from Hartbeespoort Dam recharging groundwater per annum. Using tritium in the dam and boreholes located at 750 m and 5400 m downstream, average groundwater flow velocity was estimated as 202 m/year. An open system was observed in shale, andesite and granitic-gneiss aquifers indicating soil CO2 as a dominant source of carbon (δ13C) in groundwater. A closed system was also observed in dolomitic aquifers indicating carbonate dissolution as the predominant source of carbon.  相似文献   

5.
Groundwater levels in hard-rock areas in India have shown very large declines in the recent past. The situation is becoming more critical due to a paucity of rainfall, limited surface water resources and an increasing pattern of groundwater extraction in these areas. Consequently, the Ground Water Department with the aid of World Bank has implemented the water structuring programme to mitigate groundwater scarcity and to develop a viable solution for sustainable development in the region. The present study has been undertaken to assess the impact of artificial groundwater recharge structures in the hard-rock area of Rajasthan, India. In this study groundwater level data (pre-monsoon and post-monsoon) of 85 dug-wells are used, spread over an area of 413.59 km2. The weathered and fractured gneissic basement rocks act as major aquifer in the area. Spatial maps for pre- and post-monsoon groundwater levels were prepared using the kriging interpolation technique with best fitted semi-variogram models (Spherical, Exponential and Gaussian). The groundwater recharge is calculated spatially using the water level fluctuation method. The entire study period (2004–2011) is divided into pre- (2004–2008) and post-intervention (2009–2011) periods. Based on the identical nature of total monsoon rainfall, two combinations of average (2007 and 2009) and more than average (2006 and 2010) rainfall years are selected from the pre- and post-intervention periods for further comparisons. All of the water harvesting structures are grouped into the following categories: as anicuts (masonry overflow structure); percolation tanks; subsurface barriers; and renovation of earthen ponds/nadis. A buffer of 100 m around the intervention site is taken for assessing the influence of these structures on groundwater recharge. The relationship between the monsoon rainfall and groundwater recharge is fitted by power and exponential functions for the periods of 2004–2008 and 2008–2011 with R 2 values of 0.95 and 0.98, respectively. The average groundwater recharge is found to be 18% of total monsoon rainfall prior to intervention and it became 28% during the post-intervention period. About 70.9% (293.43 km2) of the area during average rainfall and more than 95% (396.26 km2) of the area during above-average rainfalls show an increase in groundwater recharge after construction of water harvesting structures. The groundwater recharge pattern indicates a positive impact within the vicinity of intervention sites during both average and above-average rainfall. The anicuts are found to be the most effective recharge structures during periods of above-average rainfall, while subsurface barriers are responded well during average rainfall periods. In the hard-rock terrain, water harvesting structures produce significant increases in groundwater recharge. The geo-spatial techniques that are used are effective for evaluating the response of different artificial groundwater recharge techniques.  相似文献   

6.
Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55–71 mm yr?1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160–400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July–September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.  相似文献   

7.
Sustainable-yield estimation in semi-arid conditions is always challenging, especially for fractured rock aquifers. An approach to assess sustainability is discussed using a case study from rural semi-arid Namibia. The fractured-rock aquifers in the study area have complex configuration. Geology maps, hydrocensus data, geophysical surveys, and drilling and hydraulic testing data were used to produce a conceptual model. Aquifer parameters were estimated based on the hydraulic test data and numerical modelling. Due to lack of data, as is often the case in rural Namibia, the simulation results had to be verified against geological and hydrogeological constraints. It is concluded that the aquifer system is sustained by episodic recharge and the long-term gain in storage (about 3,285 m3/a) represents the maximum extractable volume. It is recommended that the continuous monitoring system for groundwater level, river flow and rainfall should be part of a long-term scheme. The magnitude and frequency of the recharge events and extraction should be monitored in order to sustainably manage the resource. Although the illustrated approach is based on limited data, it provides a basis for management of individual groundwater schemes in semi-arid conditions in sub-Saharan Africa.  相似文献   

8.
The groundwater table in the piedmont plain was only about 1–2 m in depth in the 1950s and 1960s, but it lowered dramatically afterwards to about 25–27 m in depth (currently 21–23 m above sea level) due to overpumping of groundwater and drought in the region. This change has adversely affected the sustainable development and food supply of this important agricultural area. The groundwater table at Luancheng Experimental Station of the Chinese Academy of Sciences, located in the piedmont, dropped from 39.36 m in 1975 to 21.47 m above sea level in 1999, at an average rate of 0.72 m/year. Water balance components, such as daily rainfall, pan-evaporation, and evapotranspiration (by lysimeter after 1995) have been recorded since the 1970s, and they were used as variants to simulate monthly water table change based on a physically based statistical model. Groundwater samples were collected during the period 1998–2001, and tritium was measured in the laboratory to trace the groundwater flow from the Taihang Mountains to the piedmont. A reasonable exploitation rate of 150 mm/year was obtained from the model by assuming the annual water table is constant. The recharge and groundwater flow from the Taihang Mountains plays an important role in the water balance of the piedmont area, and it was estimated to be about 112.5 mm/year by using the variation of tritium with the depth, which followed a good exponential function. The simple water balance calculation indicated that the water table could recede at a rate of 0.8 m/year, which is close to the actual situation.  相似文献   

9.
随着西北旱区生态恢复工程的实施,该区生态环境持续改善,植被盖度不断增加。但植被冠层截留与蒸腾耗水加剧了包气带水分的亏空程度,减小了降雨对地下水的补给。采用原位试验方法,分析了植被覆盖区和裸土区不同深度土壤水势的变化规律。结果表明,受蒸发和蒸腾的共同作用,植被覆盖区平均土壤水势(-74k Pa)远低于裸土区(-16k Pa),且变化剧烈,土壤水以向上运动为主。而裸土区土壤水势高,变化小,40cm以下土壤水向下运移,因此可以持续补给地下水。采用Hydrus-1D软件进行了长序列土壤水数值模拟,定量分析了植被盖度增加与地下水补给的关系。数值模拟结果表明,在裸土条件下,降雨对地下水的补给量介于82~333mm/a之间,平均值为197mm/a,平均降水入渗补给系数为0.53。而在植被覆盖的情况下,地下水的补给量几乎为0。最后,从植被蒸腾耗水和冠层降水截留2个方面讨论了旱区植被盖度增加对降雨入渗补给地下水的影响,提出了旱区水与生态和谐发展的建议。  相似文献   

10.
This paper aims at mapping the potential groundwater recharge zones in the southern part of Jordan Valley (JV). This area is considered as the most important part for agricultural production in Jordan. The methodology adopted in this study is based on utilizing the open ended SLUGGER-DQL score model, which was developed by Raymond et al (2009). Geographic information systems were used in this study to build up the different layers of this model and to create the potential groundwater recharge zones. Based on the generated SLUGGER-DQL potential map, it was found that about 70.8 % of the investigated area was categorized as high potential for groundwater recharge, 18.7 % as moderate, and 10.5 % as low potential for groundwater recharge. To validate the model results, sensitivity analysis was carried out to assess the influence of each model parameter on the obtained results. Based on this analysis, it was found that the slope parameter (S) is the most sensitive parameter among SLUGGER-DQL model parameters, followed by water level in summer (L), well density (D), water quality (Q), runoff availability (R), land use/land cover, geology (GE), whereas the lowest sensitive parameter is the geology parameter (GE). Moreover, the parameters R, D, and Q show the lowest effective weights. The effective weight for each parameter was found to differ from the assigned theoretical weight by SLUGGER-DQL index model.  相似文献   

11.

Background

High salinity and arsenic (As) concentrations in groundwater are widespread problems in the tidal deltaplain of southwest Bangladesh. To identify the sources of dissolved salts and As, groundwater samples from the regional shallow Holocene aquifer were collected from tubewells during the dry (May) and wet (October) seasons in 2012–2013. Thirteen drill cores were logged and 27 radiocarbon ages measured on wood fragments to characterize subsurface stratigraphy.

Results

Drill cuttings, exposures in pits and regional studies reveal a >5 m thick surface mud cap overlying a ~30 m thick upper unit of interbedded mud and fine sand layers, and a coarser lower unit up to 60 m thick dominated by clean sands, all with significant horizontal variation in bed continuity and thickness. This thick lower unit accreted at rates of ~2 cm/year through the early Holocene, with local subsidence or compaction rates of 1–3 mm/year. Most tubewells are screened at depths of 15–52 m in sediments deposited 8000–9000 YBP. Compositions of groundwater samples from tubewells show high spatial variability, suggesting limited mixing and low and spatially variable recharge rates and flow velocities. Groundwaters are Na–Cl type and predominantly sulfate-reducing, with specific conductivity (SpC) from 3 to 29 mS/cm, high dissolved organic carbon (DOC) 11–57 mg/L and As 2–258 ug/L, and low sulfur (S) 2–33 mg/L.

Conclusions

Groundwater compositions can be explained by burial of tidal channel water and subsequent reaction with dissolved organic matter, resulting in anoxia, hydrous ferric oxide (HFO) reduction, As mobilization, and sulfate (SO4) reduction and removal in the shallow aquifer. Introduction of labile organic carbon in the wet season as rice paddy fertilizer may also cause HFO reduction and As mobilization. Variable modern recharge occurred in areas where the clay cap pinches out or is breached by tidal channels, which would explain previously measured 14C groundwater ages being less than depositional ages. Of samples collected from the shallow aquifer, Bangladesh Government guidelines are exceeded in 46 % for As and 100 % for salinity.
  相似文献   

12.
Assessing factors that influence groundwater levels such as land use and pumping strategy, is essential to adequately manage groundwater resources. A transient numerical model for groundwater flow with infiltration was developed for the Tedori River alluvial fan (140 km2), Japan. The main water input into the groundwater body in this area is irrigation water, which is significantly influenced by land use, namely paddy and upland fields. The proposed model consists of two models, a one-dimensional (1-D) unsaturated-zone water flow model (HYDRUS-1D) for estimating groundwater recharge and a 3-D groundwater flow model (MODFLOW). Numerical simulation of groundwater flow from October 1975 to November 2009 was performed to validate the model. Simulation revealed seasonal groundwater level fluctuations, affected by paddy irrigation management. However, computational accuracy was limited by the spatiotemporal data resolution of the groundwater use. Both annual groundwater levels and recharge during the irrigation periods from 1975 to 2009 showed long-term decreasing trends. With the decline in rice-planted paddy field area, groundwater recharge cumulatively decreased to 61 % of the peak in 1977. A paddy-upland crop-rotation system could decrease groundwater recharge to 73–98 % relative to no crop rotation.  相似文献   

13.
Improvement in modern water resource management has become increasingly reliant on better characterizing of the spatial variability of groundwater recharge mechanisms. Due to the flexibility and reliability of GIS-based index models, they have become an alternative for mapping and interpreting recharge systems. For this reason, an index model by integrating water balance parameters (surface runoff, actual evapotranspiration, and percolation) calculated by Thornthwaite and Mather’s method, with maps of soil texture, land cover, and terrain slope, was developed for a sustainable use of the groundwater resources. The Serra de Santa Helena Environmental Protection Area, next to the urbanized area of Sete Lagoas (MG), Brazil, was selected as the study area. Rapid economic growth has led to the subsequent expansion of the nearby urban area. Large variability in soil type, land use, and slope in this region resulted in spatially complex relationships between recharge areas. Due to these conditions, the study area was divided into four zones, according to the amount of recharge: high (>?100 mm/year), moderate (50–100 mm/year), low (25–50 mm/year), and incipient (>?25 mm/year). The technique proved to be a viable method to estimate the spatial variability of recharge, especially in areas with little to no in situ data. The success of the tool indicates it can be used for a variety of groundwater resource management applications.  相似文献   

14.
Investigation of the evolution of the groundwater system and its mechanisms is critical to the sustainable management of water in river basins. Temporal and spatial distributions and characteristics of groundwater have undergone a tremendous change with the intensity of human activities in the middle reaches of the Heihe River Basin (HRB), the second largest arid inland river basin in northwestern China. Based on groundwater observation data, hydrogeological data, meteorological data and irrigation statistical data, combined with geostatistical analyses and groundwater storage estimation, the basin-scaled evolution of the groundwater levels and storage (from 1985 to 2013) were investigated. The results showed that the unbalanced allocation of water sources and expanded cropland by policy-based human activities resulted in the over-abstraction of groundwater, which induced a general decrease in the water table and groundwater storage. The groundwater level has generally fallen from 4.92 to 11.49 m from 1985 to 2013, especially in the upper and middle parts of the alluvial fan (zone I), and reached a maximum depth of 17.41 m. The total groundwater storage decreased by 177.52?×?108 m3; zone I accounted for about 94.7 % of the total decrease. The groundwater balance was disrupted and the groundwater system was in a severe negative balance; it was noted that the groundwater/surface-water interaction was also deeply affected. It is essential to develop a rational plan for integration and management of surface water and groundwater resources in the HRB.  相似文献   

15.
Long-term groundwater recharge from rainfall in the Nile Delta is needed as an input for integrated groundwater modelling in the Nile Delta aquifer for more accurate simulation. The main objective is to estimate the spatial and temporal variation of groundwater recharge from rainfall in the Nile Delta aquifer. Water and Energy Transfer between Soil, Plants and Atmosphere under quasi-Steady State (WetSpass) model parameters were identified for the Nile Delta based on the available meteorological data for the area collected in 1991 and 2000. The collected data were rainfall, temperature, wind speed and evapotranspiration. Geomorphological characteristics, such as soil type, topography, groundwater depth and slope, were also collected as input data for the WetSpass model. ENVI software was used to come up with land use classification based on available land cover images of the Nile Delta for 1972, 1984, 1990, 2000 and 2009. The WetSpass model was calibrated by comparing the simulated groundwater recharge with the calculated one by using the water balance equation model. The results indicated close agreement in groundwater recharge between the two model outputs with R 2 of 0.99 and 0.94, while the root-mean-square errors (RMSEs) were 4.86 and 9.39 mm for 1991 and 2000, respectively. The WetSpass model was then applied in respect of 1970, 1980, 1990 and 2010 for the purpose of validation. The overall RMSE and R 2 for the 6 years were 8.83 mm and 0.88, respectively. The results of the WetSpass calibrated model provide information to support integrated groundwater modelling. The results reveal that WetSpass works well in simulating the components of the hydrological balance in the Nile Delta.  相似文献   

16.
A numerical groundwater model of the weathered crystalline aquifer of Ursuya (a major water source for the north-western Pyrenees region, south-western France) has been computed based on monitoring of hydrological, hydrodynamic and meteorological parameters over 3 years. The equivalent porous media model was used to simulate groundwater flow in the different layers of the weathered profile: from surface to depth, the weathered layer (5?·?10?8?≤?K?≤?5?·? 10?7 m s?1), the transition layer (7?·?10?8?≤?K?≤?1?·? 10?5 m s?1, the highest values being along major discontinuities), two fissured layers (3.5?·?10?8?≤?K?≤?5?·?? 10?4 m s?1, depending on weathering profile conditions and on the existence of active fractures), and the hard-rock basement simulated with a negligible hydraulic conductivity (K = 1 10 ?9 ). Hydrodynamic properties of these five calculation layers demonstrate both the impact of the weathering degree and of the discontinuities on the groundwater flow. The great agreement between simulated and observed hydraulic conditions allowed for validation of the methodology and its proposed use for application on analogous aquifers. With the aim of long-term management of this strategic aquifer, the model was then used to evaluate the impact of climate change on the groundwater resource. The simulations performed according to the most pessimistic climatic scenario until 2050 show a low sensitivity of the aquifer. The decreasing trend of the natural discharge is estimated at about ?360 m3 y?1 for recharge decreasing at about ?5.6 mm y?1 (0.8 % of annual recharge).  相似文献   

17.
Shallow groundwater (>30 mbgl) is an essential source of drinking water to rural communities in the Ndop plain, northwest Cameroon. As a contribution to water management, the effect of seasonal variation on the groundwater chemistry, hydrochemical controls, drinking quality and recharge were investigated during the peaks of the dry (January) and rainy (September) seasons. Field measurements of physical parameters were preceded by sampling 58 groundwater samples during both seasons for major ions and stable isotope analyses. The groundwater, which was barely acidic (mean pH of 6) and less mineralised (TDS < 272 mg/l), showed no significant seasonal variation in temperature, pH and TDS during the two seasons. The order of cation abundance (meq/l) was Na+ > Ca2+ > Mg2+ > K+ and Na+ > Mg2+ > Ca2+ > K+ in the dry and rainy seasons, respectively, but that of anions ( \( {\text{HCO}}_{3}^{ - } \)  >  \( {\text{NO}}_{3}^{ - } \)  > Cl? >  \( {\text{SO}}_{4}^{2 - } \)  > F?) was similar in both seasons. This suggests a negligible effect of seasonal variations on groundwater chemistry. The groundwater, which was CaMgHCO3 and NaHCO3, is chemically evolved rainfall (CaMgSO4Cl) in the area. Silicate mineral dissolution and cation-exchange were the main controls on groundwater chemistry while there was little anthropogenic influence. The major ions and TDS concentrations classified the water as suitable for human consumption as per WHO guidelines. The narrow cluster of δ18O and δD of same groundwater from both seasons between the δ18O and δD values of May–June precipitation along the Ndop Meteoric Water Line indicates meteoric origin, rapid recharge (after precipitation) and timing of recharge between May and June rainfall. Diffuse groundwater recharge mainly occurs at low altitudes (<1,400 m asl) within the plain. Besides major ions and TDS, the similar δ18O and δD of groundwater from both seasons indicate a consistent groundwater recharge and flow pattern throughout the year and resilience to present day short-term seasonal climatic variations. However, controlled groundwater abstraction is recommended given the increasing demand.  相似文献   

18.
Potassium chloride (KCl) and potassium bromide (KBr) tracers were used to explore the role of geologic structure on groundwater recharge and flow at the Fractured Rock Research Site in Floyd County, Virginia, USA. Tracer migration was monitored through soil, saprolite, and fractured crystalline bedrock for a period of 3 months with chemical, physical, and geophysical techniques. The tracers were applied at specific locations on the ground surface to directly test flow pathways in a shallow saprolite and deep fractured-rock aquifer. Tracer monitoring was accomplished with differential electrical resistivity, chemical sampling, and physical monitoring of water levels and spring discharge. KCl, applied at a concentration of 10,000 mg/L, traveled 160 m downgradient through the thrust fault aquifer to a spring outlet in 24 days. KBr, applied at a concentration of 5,000 mg/L, traveled 90 m downgradient through the saprolite aquifer in 19 days. Tracer breakthrough curves indicate diffuse flow through the saprolite aquifer and fracture flow through the crystalline thrust fault aquifer. Monitoring saline tracer migration through soil, saprolite, and fractured rock provided data on groundwater recharge that would not have been available using other traditional hydrologic methods. Travel times and flowpaths observed during this study support preferential groundwater recharge controlled by geologic structure.  相似文献   

19.
Characterization of land displacement induced by long-term overexploitation of groundwater is necessary to ensure sustainable water supply in Beijing, China. The northern part of the Beijing Plain is an important water source area and is also designed for groundwater recharge from South-to-North Water Diversion Project. We aim to depict the process of characterizing land displacement under complex hydrogeological and geological context in the region using remote sensing and geographic information system. Interferometric synthetic aperture radar time-series analysis was used to detect land displacement from 2003 to 2010. Statistic linear regression equations between groundwater level and land displacement were built based on linear consolidation principle. The spatial difference of Pearson correlation coefficient (R) and slope (k) were discriminated to quantify the response of land displacement to groundwater level change. The results show that there are two major displacement cones with annual rates up to ?40 and ?24 mm year?1. R and k had a negative and positive correlation with increasing land displacement, respectively. A larger R reflects that the groundwater level has a closer relation with the occurrence of land displacement. The weak correlation is due to the delay in the propagation of the pressure drawdown in the fine-sediment layers or lens from the pumped aquifers where the pressure is measured. Thick compressible layer has more potential for land displacement. Results of this study are necessary to clarify the land displacement characteristics, to make full use of abundant spatial–temporal dataset, and ultimately to support hazard prevention and mitigation decisions.  相似文献   

20.
This paper focuses on artificial groundwater recharge study in Ayyar basin, Tamil Nadu, India. The basin is covered by hard crystalline rock and overall has poor groundwater conditions. Hence, an artificial recharge study was carried out in this region through a project sponsored by Tamil Nadu State Council for Science and Technology. The Indian Remote Sensing satellite 1A Linear Imaging Self Scanning Sensor II (IRS 1A LISS II) satellite imagery, aerial photographs and geophysical resistivity data were used to prioritize suitable sites for artificial recharge and to estimate the volume of aquifer dimension available to recharge. The runoff water available for artificial recharge in the basin is estimated through Soil Conservation Service curve number method. The land use/land cover, hydrological soil group and storm rainfall data in different watershed areas were used to calculate the runoff in the watersheds. The weighted curve number for each watershed is obtained through spatial intersection of land use/land cover and hydrological soil group through GeoMedia 3.0 Professional GIS software. Artificial recharge planning was derived on the basis of availability of runoff, aquifer dimension, priority areas and water table conditions in different watersheds in the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号