首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We estimate the lateral variations of the elastic thickness of the Maracaibo block with a 3D numerical approach by using centered finite differences. The calculation is based on solving the fourth-order partial differential equation that governs the bending of a thin plate fixed on its boundaries (zero displacement) with variable thickness (or elastic thickness for this particular case). An initial plate-load model is built and is iteratively modified to fit the general basement configuration and gravity data. The final result is an elastic thickness map that covers the Maracaibo block and the surrounding sections of the South American plate. It shows that the elastic thickness ranges from 30 km to 18 km with a mean value of 23.6 km and a mode of 26 km. The largest elastic thickness values are associated with the location of the Santa Marta Mountains and the Barinas Apure Basin, while the smallest ones with the Mérida Andes-Maracaibo Basin flexural system. The current basement configuration within the Maracaibo basin, formed as a result of its geodynamic evolution, has affected the mechanical properties of the Maracaibo block near the current Mérida Andes position. The load of the Perijá Range is compensated by a complex stress tensor, and that of the Santa Marta Mountains does not have an isostatic root as it is held by a relatively strong lithosphere.  相似文献   

2.
For over 50 years, several models based on diverse geologic concepts and variable quality of data have been proposed to explain the major structure and history of the Mérida Andes (MA), in western Venezuela. Lately, this chain growth and associated flexural basins deepening have been related to incipient type-A subductions of either polarity, accounting for the across-chain asymmetry. However, these recent models have not well integrated the present tectonically active setting driven by neighboring major plate interactions. At present, this chain exhibits ongoing strain partitioning where cumulative right-lateral slip along chain axis is as much as half of, or about the same, as the transverse shortening since late Miocene, thus implying that the NNE-directed Maracaibo block extrusion with respect to the South America (SA) plate is not a secondary feature. Consequently, this paper discusses some limitations exhibited by the SE-directed continental subduction models—Maracaibo crust underthrusting the Mérida Andes—in the light of available geological and geophysical data. Besides, it is herein proposed that the Mérida Andes structuration is related to a NW-directed, gently dipping, incipient type-A subduction, where chain growth and evolution are similar to those of a sedimentary accretionary wedge (i.e., Barbados), but at crustal scale and with ongoing strain partitioning. This continental subduction is the SE portion of a major orogenic float that also comprises the Perijá range and the Santa Marta block.  相似文献   

3.
By compiling wide-angle seismic velocity profiles along the 400-km-long Lofoten–Vesterålen continental margin off Norway, and integrating them with an extensive seismic reflection data set and crustal-scale two-dimensional gravity modelling, we outline the crustal margin structure. The structure is illustrated by across-margin regional transects and by contour maps of depth to Moho, thickness of the crystalline crust, and thickness of the 7+ km/s lower crustal body. The data reveal a normal thickness oceanic crust seaward of anomaly 23 and an increase in thickness towards the continent–ocean boundary associated with breakup magmatism. The southern boundary of the Lofoten–Vesterålen margin, the Bivrost Fracture Zone and its landward prolongation, appears as a major across-margin magmatic and structural crustal feature that governed the evolution of the margin. In particular, a steeply dipping and relatively narrow, 10–40-km-wide, Moho-gradient zone exists within a continent–ocean transition, which decreases in width northward along the Lofoten–Vesterålen margin. To the south, the zone continues along the Vøring margin, however it is offset 70–80 km to the northwest along the Bivrost Fracture Zone/Lineament. Here, the Moho-gradient zone corresponds to a distinct, 25-km-wide, zone of rapid landward increase in crustal thickness that defines the transition between the Lofoten platform and the Vøring Basin. The continental crust on the Lofoten–Vesterålen margin reaches a thickness of 26 km and appears to have experienced only moderate extension, contrasting with the greatly extended crust in the Vøring Basin farther south. There are also distinct differences between the Lofoten and Vesterålen margin segments as revealed by changes in structural style and crustal thickness as well as in the extent of elongate potential-field anomalies. These changes may be related to transfer zones. Gravity modelling shows that the prominent belt of shelf-edge gravity anomalies results from a shallow basement structural relief, while the elongate Lofoten Islands belt requires increased lower crustal densities along the entire area of crustal thinning beneath the islands. Furthermore, gravity modelling offers a robust diagnostic tool for the existence of the lower crustal body. From modelling results and previous studies on- and off-shore mid-Norway, we postulate that the development of a core complex in the middle to lower crust in the Lofoten Islands region, which has been exhumed along detachments during large-scale extension, brought high-grade, lower crustal rocks, possibly including accreted decompressional melts, to shallower levels.  相似文献   

4.
This work considers the tectonics of the southeastern portion of the South American Platform based on new geological and geophysical grounds. For the last decade, only three (Amazonic, São Francisco and La Plata) of the many other cratonic blocks have been attributed/remarked to the South America portion for most of the usual Rodinia reconstitutions. The possibility of the existence of other blocks has rarely been mentioned. The postulation of the presence of a considerable Paleoproterozoic (pre-Brasiliano) fragment as part of Paraná Basin basement is highly probable. In order to infer the basement structure of Paraná Basin, previous to the sedimentation process, an isostatic modeling was applied to a large-scale gravity survey looking to correlate topographic and gravity anomalies caused by sub-surface loads. The Bouguer anomaly obtained from the gravity survey represents the crustal contribution of crystalline basement, in addition to the sedimentary and volcanic layers of the basin. Following the isostatic modeling and the basin load stripping, the residual anomaly allows observing similarities between the basement gravity signature and outcropping units. Besides, the stress pattern of the two earlier events obtained through the back stripping analysis presents a geographically coincident maximum, and a new E-SE high emerging for the second event, suggesting continuous change of the stress field as a precursor for South American plate rotation. The evident correlation between gravity highs and main attenuation suggests the presence of some pre-existing suture zones. The weakened lithosphere during Ordovician and Carboniferous provided the magma conduits to form in Early Cretaceous tectonic stress field pattern. The resultant mosaic of gravity blocks and the main faults site give support to the presence of this cratonic Proterozoic unit, here on referred to as the Paranapanema Block, which had been neglected in most of the models reported for the reconstruction of Gondwana (and Rodinia).  相似文献   

5.
Subsidence mechanisms that may have controlled the evolution of the eastern Black Sea have been studied and simulated using a numerical model that integrates structural, thermal, isostatic and surface processes in both two- (2-D) and three-dimensions (3-D). The model enables the forward modelling of extensional basin evolution followed by deformation due to subsequent extensional and compressional events. Seismic data show that the eastern Black Sea has evolved via a sequence of interrelated tectonic events that began with early Tertiary rifting followed by several phases of compression, mainly confined to the edges of the basin. A large magnitude (approximately 12 km) of regional subsidence also occurred in the central basin throughout the Tertiary. Models that simulate the magnitude of observed fault controlled extension (β=1.13) do not reproduce the total depth of the basin. Similarly, the modelling of compressional deformation around the edges of the basin does little to enhance subsidence in the central basin. A modelling approach that quantifies lithosphere extension according to the amount of observed crustal thinning and thickening across the basin provides the closest match to overall subsidence. The modelling also shows that deep crustal and mantle–lithosphere processes can significantly influence the rate and magnitude of syn- to post-rift subsidence and shows that such mechanisms may have played an important role in forming the anomalously thin syn-rift and thick Miocene–Quaternary sequences observed in the basin. It is also suggested that extension of a 40–45 km thick pre-rift crust is required to generate the observed magnitude of total subsidence when considering a realistic bathymetry.  相似文献   

6.
Ewald Lüschen 《Tectonophysics》1986,130(1-4):141-146
Crustal studies in western Colombia, by deep seismic, gravity and geomagnetic surveys, during the last two decades have revealed an extremely anomalous crustal structure as compared to the South American Andes further south. Strong gravity gradients and differences in seismic velocities showed a transition from oceanic to continental character between the Western and Central Andes.

Measured gravity and height variations of opposite sign and lengths of 50 to 100 km on three east-west running profiles correlate surprisingly well with the typical positive Bouguer anomaly of the Western Andes which represents an isostatic instability. A gravity decrease of 0.5–1.0 mGal on two profiles and an increase on an intermediate one and corresponding ratios of gravity to apparent height variations of nearly −20 mGal/m are interpreted as consequences of deep-seated density variations. They may be related to collision tectonics and recent obduction processes between aseismic ridges riding on the Pacific Nazca plate and the continent.  相似文献   


7.
J. Ebbing  O. Olesen 《Tectonophysics》2005,411(1-4):73-87
We investigate the Scandes mountain range by analysing the gravity field, the geoid heights and the degree of isostatic compensation of the lithosphere. Topographically, the Scandes mountain range can be divided in the Northern and Southern Scandes. Comparisons between the present topographic expression and the gravity field and the geoid show that the axis of highest elevation in the Northern Scandes is shifted eastwards compared to the minimum of the Bouguer anomaly, while the two coincide perfectly in the Southern Scandes. Geoid heights reduced by the effect of topographic masses show a large-scale minimum in the Northern Scandes, but no anomaly in the Southern Scandes.Regional, flexural isostatic calculations yield a flexural rigidity of D = 1023 Nm for the lithosphere of the Southern Scandes and the isostatic gravity and geoid residuals point to additional isostatic support by low-density rocks below the Moho. On the other side, for the lithosphere in the Northern Scandes no significant flexural rigidity can be resolved. Here, the Bouguer anomaly is best modelled with a small flexural rigidity, indicating nearly Airy isostatic behaviour. Local subsurface loading and horizontal tectonic forces overprint the isostatic compensations and increase the tectonic complexity of the Northern Scandes. These distinctive features of the Scandes cannot be explained by currently existing models of the present and Neogene uplift and the isostatic mechanism of the Scandes.  相似文献   

8.
The Chaco foreland basin was initiated during the late Oligocene as a result of thrusting in the Eastern Cordillera in response to Nazca–South America plate convergence. Foreland basins are the result of the flexural isostatic response of an elastic plate to orogenic and/or thrust sheet loading. We carried out flexural modelling along a W–E profile (21.4°S) to investigate Chaco foreland basin development using new information on ages of foreland basin strata, elastic and sedimentary thicknesses and structural histories. It was possible to reproduce present-day elevation, gravity anomaly, Moho depth, elastic thicknesses, foreland sedimentary thicknesses and the basin geometry. Our model predicted the basin geometry and sedimentary thicknesses for different evolutionary stages. Measured thicknesses and previously proposed depozones were compared with our predictions. Our results shed more light on the Chaco foreland basin evolution and suggest that an apparent decrease in elastic thickness beneath the Eastern Cordillera and the Interandean Zone could have occurred between 14 and 6 Ma.  相似文献   

9.
At Pedregal, more than 40 m of sediments are exposed within a ‘fan complex’ formed between lateral moraines of the adjacent Mucuchache and El Caballo valleys. Early and late Mérida (Wisconsinan) glaciations are represented by till and till plus proglacial sediments, respectively. A middle Wisconsinan interstadial event, here termed the Pedregal interstade, began at the end of the Early Mérida glaciation at approximately 60 ka BP. Following the retreat of ice from the small Pedregal Basin, a lake formed when the local drainage was blocked due to movement of the Mesa de Caballo along the Boconó Fault. Shallow lake or no-lake phases lasted approximately a few hundred to, at most, 2000 years, and each lake phase was marked by peat accumulation. Four of seven peats identified formed during sufficiently long intervals for soil profiles (incipient to mature Spodosols) also to develop. The Spodosol with the strongest development (Eb/Bsb/Coxb/Cub horizons) is found adjacent to the lowest peat and reflects ongoing early Mérida stadial (MIS 3) conditions; the youngest peats, associated with weak podzolic soils (Eb/Bsb horizons), formed under slightly warmer interstadial conditions, presumably with less soil water. Cyclic lacustrine deposition is related to lake level and relative depth fluctuations, due in part to variable shoreline/delta progradation and shallowing as the lake deepened in general. Whereas final drainage of the lake is related to movement of the Boconó Fault and breach of the moraines that form the Mesa de Caballo, earlier lake level fluctuations appear related to climate change. Radiocarbon dating of the peats suggests they are related to warmer periods and may tentatively correlate with small ‘interstadials’ or ‘D-O events’ detected in the oxygen-isotope record of Greenland ice cores and North Atlantic marine sediments.  相似文献   

10.
The Borborema Province, in the NE of Brazil, is a rather complex piece in the Brazil–Africa puzzle as it represents the junction of the Dahomeyide/Pharusian, Central African, Araçuai and Brasilia fold belts located between the West-African/São Luis, Congo/São Francisco and Amazonas craton. The correlation between the Dahomeyides from W-Africa (Ghana, Benin, Togo, and Mali) and the Borborema Province involves the Médio Coreaú and Central Ceará domains. The inferred continuation of the main oceanic suture zone exposed in the Dahomeyides of W Africa is buried beneath the Phanerozoic Parnaíba Basin in Brazil (northwest of the Médio Coreaú domain) where some high density gravity anomalies may represent hidden remnants of an oceanic suture. In addition to this major suture a narrow, nearly continuous strip composed of mainly mafic pods containing relics of eclogite-facies assemblages associated with partially migmatized granulite-facies metapelitic gneisses has been found further east in the NW Borborema Province. These high pressure mafic rocks, interpreted as retrograded eclogites, are located between the Transbrasiliano Lineament and the Santa Quitéria continental arc and comprise primitive to evolved arc-related rocks with either arc- or MORB-type imprints that can indicate either deep subduction of oceanic lithosphere or roots of continental and oceanic magmatic arcs. Average peak PT conditions under eclogite-facies metamorphism (T = 770 °C and P = 17.3 kbar) were estimated using garnet–clinopyroxene thermometry and Jd content in clinopyroxene. Transition to granulite-facies conditions, as well as later widespread re-equilibration under amphibolite facies, were registered both in the basic and the metapelitic rocks and suggest a clockwise PT path characterized by an increase in temperature followed by strong decompression. A phenomenon possibly related to the exhumation of a highly thickened crust associated with the suturing of the Médio Coreaú and Central Ceará domains, two distinct crustal blocks separated by the Transbrasiliano Lineament.  相似文献   

11.
The Late Cretaceous–Cenozoic evolution of the eastern North Sea region is investigated by 3D thermo-mechanical modelling. The model quantifies the integrated effects on basin evolution of large-scale lithospheric processes, rheology, strength heterogeneities, tectonics, eustasy, sedimentation and erosion.

The evolution of the area is influenced by a number of factors: (1) thermal subsidence centred in the central North Sea providing accommodation space for thick sediment deposits; (2) 250-m eustatic fall from the Late Cretaceous to present, which causes exhumation of the North Sea Basin margins; (3) varying sediment supply; (4) isostatic adjustments following erosion and sedimentation; (5) Late Cretaceous–early Cenozoic Alpine compressional phases causing tectonic inversion of the Sorgenfrei–Tornquist Zone (STZ) and other weak zones.

The stress field and the lateral variations in lithospheric strength control lithospheric deformation under compression. The lithosphere is relatively weak in areas where Moho is deep and the upper mantle warm and weak. In these areas the lithosphere is thickened during compression producing surface uplift and erosion (e.g., at the Ringkøbing–Fyn High and in the southern part of Sweden). Observed late Cretaceous–early Cenozoic shallow water depths at the Ringkøbing–Fyn High as well as Cenozoic surface uplift in southern Sweden (the South Swedish Dome (SSD)) are explained by this mechanism.

The STZ is a prominent crustal structural weakness zone. Under compression, this zone is inverted and its surface uplifted and eroded. Contemporaneously, marginal depositional troughs develop. Post-compressional relaxation causes a regional uplift of this zone.

The model predicts sediment distributions and paleo-water depths in accordance with observations. Sediment truncation and exhumation at the North Sea Basin margins are explained by fall in global sea level, isostatic adjustments to exhumation, and uplift of the inverted STZ. This underlines the importance of the mechanisms dealt with in this paper for the evolution of intra-cratonic sedimentary basins.  相似文献   


12.
The mid-Norwegian margin has a complex history and has experienced several phases of changing horizontal and vertical stresses on regional and local scale during the Cenozoic time. In addition to regional stresses related to the opening of the North Atlantic (i.e. ridge push), local variations in stress history may be important for development, distribution and reactivation of structures in the Vøring area in Cenozoic time. Presence and stability of flexural hinge zones between areas of relative uplift and subsidence have played an important role for focusing shallow horizontal stresses within the basins. Emplacement of lower crustal bodies during break-up will, whatever the nature of these bodies, have substantial isostatic effects, and modelling show that this could cause many hundred meters of temporal uplift above the lower crustal bodies, locally exceeding 1300 m of surface uplift. Effects of intra plate stress (IPS) are modelled along three 2D transects across the Vøring Basin. Modelling shows that IPS may have given substantial vertical motions in certain areas of the mid-Norwegian shelf, both with extensional IPS at the time of break-up, and later with compressive IPS during Tertiary time. The modelling assumes a strongly reduced effective elastic thickness (EET) due to lithospheric heating at break-up and later increasing EET as the lithosphere cooled towards present time. Our modelling takes into account the tectonic and isostatic effects of loading faulting and lithospheric thinning throughout the geological history, including several phases of extension prior to the Cenozoic compression. This approach emphasizes the importance of the deformation history of the lithosphere compared to other studies that only take into account the effects of Cenozoic processes of compression and loading on the sedimentary units. We do not state that isostatic uplift or intra plate stress are the most important causes for Cenozoic uplift and compressional deformation in this area, but point to the fact that these factors locally may have played an important role in focusing deformation caused by an interplay of different mechanisms.  相似文献   

13.
The Late Cretaceous–Cenozoic evolution of the North German Basin has been investigated by 3-D thermomechanical finite element modelling. The model solves the equations of motion of an elasto-visco-plastic continuum representing the continental lithosphere. It includes the variations of stress in time and space, the thermal evolution, surface processes and variations in global sea level.The North German Basin became inverted in the Late Cretaceous–Early Cenozoic. The inversion was most intense in the southern part of the basin, i.e. in the Lower Saxony Basin, the Flechtingen High and the Harz. The lower crustal properties vary across the North German Basin. North of the Elbe Line, the lower crust is dense and has high seismic velocity compared to the lower crust south of the Elbe Line. The lower crust with high density and high velocity is assumed to be strong. Lateral variations in lithospheric strength also arise from lateral variations in Moho depth. In areas where the Moho is deep, the upper mantle is warm and the lithosphere is thereby relatively weak.Compression of the lithosphere causes shortening, thickening and surface uplift of relatively weak areas. Tectonic inversion occurs as zones of preexisting weakness are shortened and thickened in compression. Contemporaneously, the margins of the weak zone subside. Cenozoic subsidence of the northern part of the North German Basin is explained as a combination of thermal subsidence and a small amount of deformation and surface uplift during compression of the stronger crust in the north.The modelled deformation patterns and resulting sediment isopachs correlate with observations from the area. This verifies the usefulness and importance of thermomechanical models in the investigation of intraplate sedimentary basin formation.  相似文献   

14.
Spectral harmonic analysis and synthesis of Earth’s crust gravity field   总被引:5,自引:0,他引:5  
We developed and applied a novel numerical scheme for a gravimetric forward modelling of the Earth’s crustal density structures based entirely on methods for a spherical analysis and synthesis of the gravitational field. This numerical scheme utilises expressions for the gravitational potentials and their radial derivatives generated by the homogeneous or laterally varying mass density layers with a variable height/depth and thickness given in terms of spherical harmonics. We used these expressions to compute globally the complete crust-corrected Earth’s gravity field and its contribution generated by the Earth’s crust. The gravimetric forward modelling of large known mass density structures within the Earth’s crust is realised by using global models of the Earth’s gravity field (EGM2008), topography/bathymetry (DTM2006.0), continental ice-thickness (ICE-5G), and crustal density structures (CRUST2.0). The crust-corrected gravity field is obtained after modelling and subtracting the gravitational contribution of the Earth’s crust from the EGM2008 gravity data. These refined gravity data mainly comprise information on the Moho interface and mantle lithosphere. Numerical results also reveal that the gravitational contribution of the Earth’s crust varies globally from 1,843 to 12,010 mGal. This gravitational signal is strongly correlated with the crustal thickness with its maxima in mountainous regions (Himalayas, Tibetan Plateau and Andes) with the presence of large isostatic compensation. The corresponding minima over the open oceans are due to the thin and heavier oceanic crust.  相似文献   

15.
The results of a two-dimensional flexural analysis applied to the Andean margin, which is based on the correlation between topography and Bouguer anomaly, are here reviewed in order to characterize rigidity variations across and along the forearc–arc transition of the Central Andes and to understand the role of the forearc in the formation of the Altiplano Plateau. The forearc has maximum rigidities between 15° and 23°S. Forearc rigidity decreases gradually southward and sharply toward the plateau. The main orogen (elevations higher than 3000 m) is very weak along the entire Central Andes. A semi-quantitative interpretation of these trends, based on the relationship between flexural rigidity and the thermo-mechanically- and compositionally-controlled strength of the lithosphere, allows the following conclusions to be made: (1) across-strike rigidity variations are dominated by the thermal structure derived from the subduction process; (2) the forearc constitutes a strong, cold and rigid geotectonic element; (3) southward weakening of the forearc is directly related to the decreasing thermal age of the subducted slab; (4) very low rigidities along the main orogen are caused by the existence of a thick, quartz-rich crust with a low strain rate-to-heat flow ratio; (5) the strength of the plateau lithosphere is localized in an upper-crustal layer whose base at 15 km could be correlated with a P-to-S seismic wave converter (TRAC1 of Yuan et al., 2000 [Yuan, X., Sobolev, S., Kind, R., Oncken, O. et al. 2000. Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature, V 408, 21/28 Diciembre, p. 958–961]); (6) the forearc–plateau rigidity boundary corresponds to a zone of changing thermal conditions, eastward-increasing crustal thickness and felsic component in the crust, and low strain-rate deformation, which correlates with a west-verging structural system at the surface. These conclusions suggest that the rigid forearc acts as a pseudo-indenter against the weak plateau and allows the accumulation of ductile crustal material that moves westward from the eastern foreland. This pseudo-indenter is geometrically represented by a crustal-scale triangular zone rooted at TRAC1. This model allows the integration of existing contradictory ideas on the dynamics of forearc–plateau interaction that are related to the relative importance of upper-crustal compressive structures and lower crustal accumulation below the forearc.  相似文献   

16.
The Mérida Glaciation (cf. Wisconsinan, Weichselian) as proposed by Schubert (1974b) culminated at about 18 ka during the last glacial maximum (LGM) and ended at about 13 ka as indicated by 14C dating and correlation with the Cordillera Oriental of Colombia. Moraines of an early stade of Mérida Glaciation reached to 2800 m a.s.l. and were largely overrun or eradicated by the maximum Wisconsinan advance (LGM); where they outcrop, the older moraines are characterized by eroded, weathered glacial diamictons and outwash fans.At Pueblo Llano in the central Mérida Andes (Cordillera de Trujillo), older to younger beds of contorted glacitectonized diamict, overlying beds of bouldery till and indurated outwash, all belong to the early Mérida stade. Overlying the early Mérida stade, deposits of rhythmically bedded glaciolacustrine sediments are in turn overlain with contorted sand and silt beds capped with outwash. Above the outwash terrace a loop moraine of LGM age completely encircles the margins of the basin. A stream cut exposed by catastrophic (tectonic or surge?) release of meltwater displays a lithostratigraphic succession that is bereft of organic material for radiocarbon dating. Five optically-stimulated luminescence (OSL) dates place the maximum age of the lowest till at 81 ka.Particle size distributions allow clear distinctions between major lithic units. Heavy mineral analysis of the middle and lower coarse units in the section provide information on sediment sourcing and on major lithostratigraphic divisions. Trace element concentrations provide information on the relative homogeneity of the deposits. The HREE (heavy rare earth element) concentrations allow discrimination of the lower till from the rest of the section; the LREE (light rare earth element) concentrations highlight differences between the lower till, LGM till, and the rest of the section.  相似文献   

17.
The Tocantins Province in Central Brazil is composed of a series of SSW–NNE trending terranes of mainly Proterozoic ages, which stabilized in the Neoproterozoic in the final collision between the Amazon and São Francisco cratons. No previous information on crustal seismic properties was available for this region. Several broadband stations were used to study the regional patterns of crustal and upper mantle structure, extending the results of a recent E–W seismic refraction profile. Receiver functions and surface wave dispersion showed a thin crust (33–37 km) in the Neoproterozoic Magmatic Arc terrane. High average crustal Vp/Vs ratios (1.74–1.76) were consistently observed in this unit. The foreland domain of the Brasília foldbelt, on the other hand, is characterized by thicker crust (42–43 km). Low Vp/Vs ratios (1.70–1.72) were observed in the low-grade foreland fold and thrust zone of the Brasília belt adjacent to the São Francisco craton. Teleseismic P-wave tomography shows that the lithospheric upper mantle has lower velocities beneath the Magmatic Arc and Goiás Massif compared with the foreland zone of the belt and São Francisco craton. The variations in crustal thickness and upper mantle velocities observed with the broadband stations correlate well with the measurements along the seismic refraction profile. The integration of all seismic observations and gravity data indicates a strong lithospheric contrast between the Goiás Massif and the foreland domain of the Brasília belt, whereas little variation was found across the foldbelt/craton surface boundary. These results support the hypothesis that the Brasília foreland domain and the São Francisco craton were part of a larger São Francisco-Congo continental plate in the final collision with the Amazon plate.  相似文献   

18.
Seismic wide angle and receiver function results together with geological data have been used as constraints to build a gravity-based crustal model of the central High Atlas of Morocco. Integration of a newly acquired set of gravity values with public data allowed us to undertake 2–2.5D gravity modelling along two profiles that cross the entire mountain chain. Modelling suggests moderate crustal thickening, and a general state of Airy isostatic undercompensation. Localized thickening appears restricted to the vicinity of a north-dipping crustal-scale thrust fault, that offsets the Moho discontinuity and defines a small crustal root which accounts for the minimum Bouguer gravity anomaly values. Gravity modelling indicates that this root has a northeasterly strike, slightly oblique to the ENE general orientation of the High Atlas belt. A consequence of the obliquity between the High Atlas borders and its internal and deep structure is the lack of correlation between Bouguer gravity anomaly values and topography. Active buckling affecting the crust, a highly elevated asthenosphere, or a combination of both are addressed as side mechanisms that help to maintain the high elevations of the Atlas mountains.  相似文献   

19.
This paper combines geological knowledge and geophysical imagery at the crustal scale to model the 3D geometry of a segment of the Hercynian suture zone of western Europe in the Champtoceaux area (Brittany, France). The Champtoceaux complex consists of a stack of metamorphic nappes of gneisses and micaschists, with eclogite-bearing units. The exhumation of the complex, during early Carboniferous times, was accompanied by deformation during regional dextral strike–slip associated with a major Hercynian shear zone (the South Armorican Shear Zone, SASZ). Dextral shearing produced a km-scale antiformal structure with a steeply dipping axial plane and a steeply eastward plunging axis. Armor 2 deep seismic profile shows that the regional structure was cut by a set of faults with northward thrusting components. Based on the seismic constraint, direct 2D crustal-scale modelling was performed throughout the Champtoceaux fold on seven radial gravity profiles, also using geological data, and density measurements from field and drill-hole samples. The 3D integration of the cross-sections, the digitised geological map, and the structural information (foliation dips) insure the geometrical and topological consistency of all sources of data. The 2D information is interpolated to the whole 3D space using a geostatistical analysis. Finally, the 3D gravity contribution of the resulting model is computed taking into account densities for each modelled geological body and compared to the Bouguer anomaly. The final 3D model is thus compatible with the seismic and gravity data, as well as with geological data. Main geological results derived from the modelling are (i) the overall 3D geometry of the south dipping thrust system interpreted on the seismic profile emphasises northward thrusting and folding of the Champtoceaux complex which was coeval with strike–slip along the South Armorican Shear Zone; (ii) the gravity modelling suggests the presence of a relatively dense body below the Champtoceaux complex that could be interpreted as a result of relative uplift of midcrustal material during thrusting along the E–W trending wrench–thrust system; (iii) the northern limb of the Champtoceaux anticline is a relatively shallow feature; and (iv) Vigneux synkinematic granitic body is a laccolith sheared and rooted along the southern branch of the SASZ and spreads away from the strike–slip zone within weak country-rocks.  相似文献   

20.
A three-dimensional (3D) density model, approximated by two regional layers—the sedimentary cover and the crystalline crust (offshore, a sea-water layer was added), has been constructed in 1° averaging for the whole European continent. The crustal model is based on simplified velocity model represented by structure maps for main seismic horizons—the “seismic” basement and the Moho boundary. Laterally varying average density is assumed inside the model layers. Residual gravity anomalies, obtained by subtraction of the crustal gravity effect from the observed field, characterize the density heterogeneities in the upper mantle. Mantle anomalies are shown to correlate with the upper mantle velocity inhomogeneities revealed from seismic tomography data and geothermal data. Considering the type of mantle anomaly, specific features of the evolution and type of isostatic compensation, the sedimentary basins in Europe may be related into some groups: deep sedimentary basins located in the East European Platform and its northern and eastern margins (Peri-Caspian, Dnieper–Donets, Barents Sea Basins, Fore–Ural Trough) with no significant mantle anomalies; basins located on the activated thin crust of Variscan Western Europe and Mediterranean area with negative mantle anomalies of −150 to −200×10−5 ms−2 amplitude and the basins associated with suture zones at the western and southern margins of the East European Platform (Polish Trough, South Caspian Basin) characterized by positive mantle anomalies of 50–150×10−5 ms−2 magnitude. An analysis of the main features of the lithosphere structure of the basins in Europe and type of the compensation has been carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号