首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The distribution of phytoplankton composition, cell abundance and biomass from an area along the Western Antarctic Peninsula was studied during three summers, with the aim of understanding its dynamics over spatial and interannual scales. The studied area is characterized by seasonal sea-ice retreat and advance. Algae composition and concentration were found to be highly variable through the area as well as from year to year. Small unidentified phytoflagellates, diatoms and cryptophytes were the main phytoplankton groups, contributing the major proportion of total phytoplankton cell abundance and biomass concentration. Three annually recurrent phytoplankton assemblages were recognized in the area according to the algae composition and abundance: a diatom bloom associated with the sea-ice edge, an assemblage dominated by small unidentified phytoflagellates and cryptophytes, and a diatom-enriched assemblage in open waters. The distribution of these assemblages varied from year-to-year. During the summers preceded by early sea-ice retreat, the diatom bloom was spatially restricted and the other two assemblages occupied extended regions, whereas during the late sea-ice retreat year, the diatom bloom extended over a larger region and the other assemblages occupied smaller regions or were just absent. It was detected that these assemblages resemble different stages of the phytoplankton seasonal cycle, and that their distribution through the area can be related to a latitudinal and longitudinal gradient in the phytoplankton growth onset timing, associated with the progressive sea-ice retreat during spring. The local environmental conditions associated with each assemblage were also analyzed, but further study is needed for understanding the causes of the replacement of one assemblage by another through the area. On the other hand, the interannual variability in the distribution of the assemblages can be related to year-to-year differences in the timing of phytoplankton growth onset, associated with variations in the timing of the sea-ice retreat.  相似文献   

2.
The Taiwan Strait is a transition zone between the East China Sea and the South China Sea with unique hydrology and a geographical environment that creates special marine community features.To analyze the spatial structure and seasonal changes of the nekton assemblages in the Taiwan Strait,seasonal experimental trawl surveys were conducted during 2006–2007.The results showed that there were two assemblages in the area with different sets of species,and the average similarity within each group varies between 39.38% and 74.20%.By using multivariate statistical analysis and analyzing the distribution of dominant species,we found that the structures of the assemblages had obvious seasonal variation.The middle region from the Putian transect to the Xiamen transect could be considered a mixing area for the two assemblages.The analysis of the relationship between species assemblages and environmental factors indicated that temperature was the most important factor affecting the community structure in cold seasons,and 22.5°C and 17°C could be considered dividing lines for spring and winter,respectively.In warm seasons,the most important factor was water depth,but the relationship with depth was not as significant,with a correlation between 0.264 and 0.399.The seasonal changes of nekton assemblages basically reflected the dynamic currents in the Taiwan Strait.The south coastal assemblage extended to nearly the entire area of the Taiwan Strait along with a strong and intense warm current that shrinks in spring and winter when the southward intrusion of the cold Zhejiang-Fujian coastal current becomes stronger.The impact of shortterm and long-term environmental changes,such as extreme weather,global warming and human activity on nekton assemblages,had been recognized but need further research.Our study on nekton assemblages could be used as a baseline for measuring future changes.  相似文献   

3.
Analysis of sediment traps located either side of the Subtropical Front east of New Zealand reveals a strong association between water masses and foraminiferal assemblages. The composition and timing of foraminiferal productivity is distinct between waters north and south of the front, and these differences are also reflected in the assemblages of nearby core-tops. The sediment trap data indicate highly seasonal flux patterns in this region, so sedimentary records may represent flux during a particular season, rather than throughout the annual cycle. This pronounced seasonality has implications for our estimates of the annual temperature range based on faunal assemblages. This study shows that despite strong flux seasonality the annual sea-surface temperature (SST) range is reliably estimated from the sediment trap foraminiferal assemblages by the modern analog technique. The successful estimation of the annual SST range also indicates that the annual flux obtained from these sediment traps is representative of the longer term flux preserved in surface sediments. Core-top assemblages from this region can therefore be directly related to modern sea-surface conditions, providing an analogue for interpreting past environmental change from fossil assemblages.  相似文献   

4.
The Gambia River is one of the last aquatic ecosystems in West Africa that has not yet been affected by strong environmental changes and human disturbances. In contrast to the neighbouring Casamance and Sine Saloum estuaries, the Gambia estuary is free of major climatic perturbation and remains a “normal” estuary, with a salinity range from freshwater to 39. The present paper aims to study the spatial and seasonal variability of fish assemblages in this estuary in terms of bio-ecological categories and of their relation with some environmental variables. Four surveys were conducted, from June 2001 to April 2002, in order to cover the major hydroclimatic events, at 44 sampling sites along the lower, intermediate and upper zones of the Gambia estuary (up to 220 km). Fish assemblages were sampled using a purse seine net, fish were identified to species level and environmental variables such as water depth, transparency, salinity, temperature and percentage oxygen saturation were measured. The main spatial structure of the fish assemblages and its seasonal changes were first studied using the STATIS-CoA multitable method. The combination of fish assemblages and environmental variables was then analysed using the STATICO method, designed for the simultaneous analysis of paired ecological tables. A total of 67 species were observed, belonging to all bio-ecological categories characterizing West African estuaries. The marine component of the community was largely dominant throughout the estuary, while the freshwater component was permanently observed only in the upstream zone. The main spatial structure was a longitudinal gradient contrasting marine and freshwater affinity assemblages, with strong seasonal variations. The most complete gradient was observed in December, at the beginning of the dry and cool season, while in June, at the end of the dry and warm season, there was the least structured gradient. The role of salinity, always correlated with temperature, was emphasized, while turbidity appeared to be another important factor. Oxygen and depth did not play a major role at the estuary scale. The relative importance of the bio-ecological categories varied according to the season and the distance to sea. Stable fish assemblages were observed in the lower zone at the end of the dry season, in the upper zone during the flood and in the middle zone throughout the year. In some situations, a relative inadequacy between fish assemblages and their environment was noticed. The present study contributes to the definition of the functioning of a “normal” West African estuary, the Gambia estuary, with balanced effects of marine and freshwater influences and the presence of all bio-ecological categories. The Gambia estuary can therefore be considered to be a reference ecosystem for further comparisons with other tropical estuarine ecosystems, subjected to natural or artificial perturbations.  相似文献   

5.
The effect of environmental variables on the vertical structure of larval fish assemblages in a tropical coastal lagoon was analyzed. Ichthyoplankton samples were collected from the near-bottom and surface strata near the mouth of a subtropical lagoon during contrasting seasonal conditions of temperature, photoperiod, light intensity, and tidal heights. During summer, larval fish assemblages had high species richness (R) and were dominated by tropical species. During winter, assemblages had lower R values and were dominated by subtropical and temperate species. Vertical distribution patterns of the taxa were determined by the interaction of environmental variables and behavior of each species to maintain their position in a stratum in the water column, or to achieve vertical migrations induced by environmental stimuli that, in this case, were thermal gradient, column water stratification, and intensity of light. Depth position and vertical migration of fish larvae, coupled with the flood and ebb tide conditions, played an important role in their retention and displacement toward the lagoon. Fish larvae with distribution restricted to the inner part of the inlet, such as Achirus mazatlanus, Etropus sp., and several gobies, were more abundant in the near-bottom stratum during the ebb tide, allowing them to avoid exportation, whereas those that could spawn outside, but depended on the inlet as a nursery area, were more abundant near the surface during flood tide, such as Abudefduf troschelii and Stegastes rectifraenum.  相似文献   

6.
Although benthic macrophytes must be considered in monitoring programs to establish the ecological status of transitional and coastal waters in the European Union, the patterns of variability in species composition of macrophyte assemblages in Mediterranean coastal lagoons has scarcely been studied. In this work the spatial (both vertical and horizontal) and seasonal dynamics of macrophyte assemblages in a coastal lagoon (Mar Menor) are compared with those of open coastal assemblages in the SW Mediterranean to analyze any biological variability in lagoon assemblages and the factors that determine such variability. Different assemblages, characterized by well defined groups of species, can be described according to their isolation from the open sea and the type of substratum; at the same time, a vertical zonation pattern, similar to that found in all marine communities but more compressed, exists. This implies that when applying the EU Water Framework Directive or assessing environmental impact, a lagoon should not be considered spatially uniform and unique unit but as a mosaic of assemblages.  相似文献   

7.
We collected fishes and environmental variables in three zones (upper, middle and lower) of a small open tropical estuary during flood tide. The aim was to test for differences in fish assemblages along a gradient from freshwater to marine waters and to detect any seasonal variation in fishes and environmental variables across these zones. A total of 111 species (18 in the upper, 50 in the middle and 66 in the lower estuary) were recorded, forming three distinct fish assemblages, with the family Eleotridae dominating in the upper, Gerreidae in the middle, and Sciaenidae in the lower estuary. Only two species (Geophagus brasiliensis in the upper and the middle zones, and Eucinostomus argenteus in the middle and the lower zones) composed more than 1% of the total number of individuals in more than a single zone. Short‐term (tidal) changes in salinity in the middle estuary were associated with different assemblages in the three estuarine zones, even in winter, when the differences in salinity are lowest between the middle and the lower zones. Seasonal variation in salinity was irrelevant, except in a protected sidewater lagoon in the middle estuary. Low salinity seasonal change may be related to the lack of seasonal variation in the structure of fish assemblages in all estuarine zones.  相似文献   

8.
The fish assemblages of the Ebrié lagoon (Ivory Coast) were sampled by experimental fishing over the entire lagoon using a purse seine net. The sampling was conducted in the two main hydroclimatic seasons for this ecosystem, i.e. in the dry season (March–April) and in the wet season (August–September). The results obtained showed a fish assemblage organized around a consistently occurring group of twenty species. When analysed in terms of ecological categories, the seasonal influence led to a cycle in the assemblages from freshwater to marine around this permanent species pool, with a seasonal renewal of the assemblage. At the scale of the lagoon, there were variations in the composition of the assemblages that clearly distinguished the western part from the eastern one. The limit was situated at the Vridi canal, a wide artificial channel permanently connecting the lagoon to the sea. To the west, the assemblage was characterised by a strong spatial uniformity and low seasonal variability. To the east, the assemblage formed two different entities; one assemblage with pronounced freshwater affinities occurring in a side arm and the other assemblage with great seasonal variability under the alternating influence of seawater in the dry season and freshwater in the wet season. This part of the lagoon functioned somewhat like a typical estuary.  相似文献   

9.
The Southern Ocean south of Australia is oceanographically complex, being characterized by double branches of the Sub-Antarctic Front (SAF), Polar Front (PF) and Southern Antarctic Circumpolar Current (SACCF), in addition to the Southern Boundary (SB) of the ACC. From 25 February to 3 March 2002 a 2150-km Continuous Plankton Recorder (CPR) transect was conducted along 140 °E, between 47.02 °S and 66.36 °S, crossing each of these frontal zones. Surface temperature, salinity, and fluorescence were measured at 1-min intervals in conjunction with CPR samples. Additional physical data for the region south of 61oS was provided by nine CTD stations. Multivariate and Indicator Species analysis of the high resolution (∼9.2 km) zooplankton samples identified six distinct assemblages which were strongly correlated with frontal/oceanographic zones. These assemblages appeared to be structured by a combination of zonal differences in water mass structure, phytoplankton regimes, and small scale intra-zonal features (e.g. eddies). The northern branch of the SAF was the strongest biogeographic boundary, separating a high proportion of sub-tropical and temperate species from the waters to its south. The study area differed from other sectors of the Southern Ocean in that the northern PF, equivalent to the PF in other sectors, was not a zone of distinct ecological transition. Two of the identified assemblages were located with the seasonal ice zone, south of the northern SACCF. Although Euphausia superba larvae were a component of both of these assemblages, this species, together with appendicularia, was most abundant south of the SB. The seasonal ice zone north of the SB was dominated by small copepods (Oithona similis and Ctenocalanus citer), appendicularia and foraminifera. Although the physical characteristics of the frontal zones can be subtle, the demarcation between zooplankton assemblages was clear. Cross-frontal changes in zooplankton assemblages highlight their role in long-term monitoring programs as indicators of environmental change.  相似文献   

10.
The present study analyzed the effects of seasonal variation on the stability of fish-based metrics and their capability to detect changes in fish assemblages, which is yet poorly understood despite the general idea that guilds are more resilient to natural variability than species abundances. Three zones subject to different levels of fishing pressure inside the Arrábida Marine Protected Area (MPA) were sampled seasonally. The results showed differences between warm (summer and autumn) and cold (winter and spring) seasons, with the autumn clearly standing out. In general, the values of the metrics density of juveniles, density of invertebrate feeders and density of omnivores increased in warm seasons, which can be attributed to differences in recruitment patterns, spawning migrations and feeding activity among seasons. The density of generalist/opportunistic individuals was sensitive to the effect of fishing, with higher values at zones with the lowest level of protection, while the density of individuals with high commercial value only responded to fishing in the autumn, due to a cumulative result of both juveniles and adults abundances during this season. Overall, this study showed that seasonal variability affects structural and functional features of the fish assemblage and that might influence the detection of changes as a result of anthropogenic pressures. The choice of a specific season, during warm sea conditions after the spawning period (July–October), seems to be more adequate to assess changes on rocky-reef fish assemblages.  相似文献   

11.
Macroalgae are useful organisms to monitor the environmental quality and to detect impacts due to anthropogenic activities. However, it is very important to identify the scales of variation in natural assemblages, particularly for the detection of environmental impacts. Otherwise, changes due to anthropogenic impacts may be confused with differences due to natural temporal variability. Another important task is to determine the appropriate level of taxonomical effort needed to detect changes in the assemblage structure. Many taxonomical surrogates, at higher taxonomic levels than that of species, have been proposed but, the consistence in space and time of the results produced by surrogates with those obtained at specific level should be tested. The objectives of this study are to identify the seasonal patterns of tidepool macroalgal communities using objective procedures and to test the consistence between the patterns obtained considering data at the species level and functional groups. Results showed that the seasonal pattern obtained using functional groups and species was consistent. Tidepool macroalgal assemblages showed a seasonal pattern with significant differences between spring–summer and autumn–winter. This pattern can be explained by changes in environmental variables and the seasonal development of the dominating species. Ulva spp. and the non-indigenous species Grateloupia turuturu were the species responsible for this pattern due to their high seasonality in terms of biomass. Finally, the abundance and species diversity within the corticated functional group was proposed as indicator of environmental impacts due to its relatively constant abundance and its sensitivity to environmental impacts.  相似文献   

12.
Fish assemblages from two beaches, one in the inner and the other in the outer Sepetiba Bay (latitude: 22°54′–23°04′S; longitude: 43°34′–44°10′W), Southeast Brazil, were sampled by beach seine net, simultaneously, on both seasonal and diel scales, between August 1998 and June 1999. Sites were selected to encompass different environmental conditions which reflect the two bay zones, thus providing a comprehensive assessment of the factors influencing surf zone fish assemblages, and their spatial, seasonal and diel variations. A total of 55 fish species was recorded, mostly young-of-the-year. Anchoa tricolor, Micropogonias furnieri, Gerres aprion, Diapterus rhombeus, Harengula clupeola, Atherinella brasiliensis and Mugil liza were numerically dominant and contributed to 95.2% of the total fish catches. Strong differences in fish assemblages were observed between the two areas, with higher number of species in the outer bay. Increases in fish numbers occurred in winter, while the highest biomass occurred in winter and summer. Transparency, followed by salinity, was responsible for most of the spatial variability and played an important role in structuring fish assemblages. Overall, diel patterns did not reveal any significant trends; however, if we consider each season separately, an increase in fish numbers during the day with peak at sunset was observed in winter, and a higher biomass occurred at night in winter and summer. Species preferences for various combinations of environmental variables are responsible for shifts in the structure and overall abundance of assemblages and dictated some patterns. The sciaenid M. furnieri, the second most abundant species, occurred only in the inner zone, being more abundant in winter. The species of Engraulidae were more abundant in the outer zone in winter/spring during the day. The gerreids G. aprion and D. rhombeus occurred mainly in summer. Overall, temporal fluctuations act more at a specific level than at a structural one, and may be linked to some particular stages of the fish life cycle, but do not significantly influence the spatial organization.  相似文献   

13.
Abstract. In the Cyclades plateau (Aegean Sea), a qualitative and quantitative analysis of macro-benthic fauna was carried out in 1986. Standard multivariate analysis techniques were applied to both ecological (living benthic fauna) and paleoecological data sets in order to distinguish distribution patterns.
Results showed that caution must prevail in drawing conclusions from a limited data set. The clearest classification was obtained using total living fauna, while the dead molluscan fauna gave a similar pattern; this indicates similar response to the environmental conditions of the area. In the analysis of the living molluscan fauna, the groups failed to show any clusters, probably as an effect of some impoverished sites.
In the two groups delineated, depth seems to be the major factor in the distribution of species.
The fact that two distinct data sets (subfossil assemblages and living communities), when treated separately, produce similar grouping indicates that the subfossil assemblages could be reliably used as a first approach for determination of the living communities' distribution patterns.  相似文献   

14.
The objective of this study was to investigate whether there was distinctive seasonal and zonal variation in the species diversity, biomass, and element accumulation capacities of macroalgae in two major intertidal mangrove stand types (Avicennia marina assemblage andSonneratia apetala assemblage) in the Zhanjiang region of southern China. Over a year, 31 species in 15 genera were identified in both mangrove assem-blages, of which the dominant species wereCladophoropsis zollingeriand Enteromorpha clathrat.Macroal-gal species were significantly most abundant in spring (p〈0.05), followed by summer, winter, and autumn. Variation in the zonal distribution of macroalgal species was conspicuous in both intertidal mangrove as-semblages, with the greatest abundance in the middle zone, and the least in the front zone. Patterns in the seasonal and zonal variation in macroalgal biomass in theS. apetalaassemblage were similar to those of macroalgal species diversity in both mangrove assemblages. The seasonal patterns in tissue concentrations of 15 analyzed elements were not uniform among the macroalgaeC. zollingeri,E. clathrata, andGracilaria salicornia in theA. marina assemblage. All three species exhibited variation in their responses to ambient concentrations of different elements, implying their differential ability to absorb and selectively accumulate certain elements.  相似文献   

15.

Siliceous unicellular microalgae — diatoms and silicoflagellates from sediments in Amur Bay were analyzed with high temporal resolution to examine changes over the last 150 years. The age of sediments was estimated from unsupported 210Pb controlled by 137Cs. Siliceous microalgae examined in each cm of two sediment cores demonstrated significant changes in the ecological structure of the assemblages that reflected changes in sedimentation conditions. During the years 1860–1910 the sediments accumulated under the great influence of river runoff. For about the next 50 years the number of freshwater species and marine benthic diatoms in sediments sharply declined, which is probably connected with the weakening of the effects of river runoff due to deforestation. Since the early 1960s the sedimentation conditions in the Amur Bay changed significantly. Marine planktonic diatoms and silicoflagellates began to prevail in sediments and this reflects increasing microphytoplankton productivity. One consequence of this was the formation of seasonal bottom hypoxia in Amur Bay. The ecological structure of diatom and silicoflagellate assemblages indicates that the sea level began to rise since the early 1960s and this corresponds to the water and air temperature increase in the area for that period. The obtained data suggest that the environmental changes over the last 150 years in Armur Bay are associated with the weakening of river runoff due to deforestation, sea level rise caused by global warming, and the increase of siliceous microplankton productivity that resulted in the formation of seasonal bottom hypoxia.

  相似文献   

16.
The relative effects of hydrocarbon pollutants, salinity and tidal height on the invertebrates and fish that inhabit oyster reefs were studied along the Louisiana Gulf of Mexico coastline. Dried oyster shell (cultch) was first exposed to crude oil in the laboratory. In a series of experiments, plastic trays filled with control and oil-exposed cultch were then deployed at two locations differing in salinity, in two seasons and at two tidal levels. In experiments on hydrocarbon, salinity, and seasonal effects, trays were colonized for one month. To examine the effects of colonization time, half of the trays were retrieved after two and the rest after five weeks. Salinity dramatically affected oyster reef assemblages, with species richness and total abundance halved at the estuarine site. Hydrocarbon effects were less prominent, whether cultch was dosed with light or heavy crude oil. The sub-tidal site had higher colonization rates, but colonization interval did not affect colonization, and seasonal differences occurred only at the higher-diversity, sub-tidal site. To determine effects of cleaners, Corexit 9580 was applied alone and with oil on cultch, and trays were colonized for one month. At high concentrations, the cleaner ameliorated hydrocarbon effects. In general, hydrocarbon effects were less prominent than salinity and aerial exposure in explaining colonization of oyster reef assemblages. Gas chromatography/mass spectrometry analysis of oyster shells after one month immersion revealed considerable losses of oil, especially with higher flow at the inter-tidal site. Sediment on shell also diluted oil. We argue that oyster reef assemblages should recover from small-scale spills, unless they occur during periods of reproduction and dispersal.  相似文献   

17.
In the highly productive region off central Chile, the structure and temporal and spatial variability of planktonic assemblages, and the factors that determine changes in this structure are poorly understood. In the region, wind-driven upwelling, heating by solar radiation and freshwater inputs are highly seasonal processes, which, together with higher frequency events, can promote changes in the planktonic communities, especially in the upper layer. This study focuses on the structure of nano- through to micro-planktonic assemblages (2-200 μm) of unicellular organisms (protists) in surface waters (0-30 m) during different hydrographic conditions. Samples were taken from a fixed shelf station off Concepción (COPAS time series Station 18) on eight occasions between September 2003 and August 2004. The nano-plankton flagellate-dominated fraction was numerically important during the whole period. Maxima in flagellate abundance and biomass occurred during the upwelling period (November-April samplings) but these maxima appear to be unrelated to the degree of water column stratification. The micro-plankton diatom-dominated fraction was usually the largest component in terms of biomass during the study period and the diatoms made important numerical contributions during the upwelling period, with maxima in abundance and biomass when water column stability was lowest. The dominant genera and morphotypes in each functional group were found throughout the study period, with maxima in abundance and biomass co-occurring under similar environmental upwelling conditions. The mean macro-nutrient concentrations (nitrate and silicate) were relatively high in the top 30 m during both upwelling and non-upwelling periods, and did not explain the maxima in plankton or functional group replacements. The persistence of the dominant taxa in the planktonic assemblages suggests a high degree of flexibility, though probably not at the specific level, to withstand the highly variable environmental conditions in this upwelling area.  相似文献   

18.
The coastal regions of the northeast Pacific support large, economically valuable fishery resources and provide nursery areas for many fish species. Over the last few decades, there have been dramatic shifts in species abundance and composition in this area. In this paper, we examine the springtime spatial patterns in the ichthyoplankton of three oceanographically different regions, the Southeast Bering Sea, the Gulf of Alaska and the U.S. West Coast. The data examined are a subset of a larger database (comprising data from cruises conducted from 1972 to 1997) that is being used to investigate spatial, seasonal and interannual patterns in ichthyoplankton of the northeast Pacific in relation to environmental conditions. Ichthyoplankton were collected during seven cruises using 60-cm bongo nets. Spatial patterns of ichthyoplankton were examined using both classification and ordination techniques. Relative Bray-Curtis dissimilarity coefficients calculated from the log10 (n+1) of abundance data were used as input to the numerical classification of species and stations. Nonmetric multidimensional scaling was also applied to the abundance data to examine geometric patterns in the data. The numerical analyses of the species abundance data sets for each cruise revealed spatial patterns in the ichthyoplankton that suggest the occurrence of geographically distinct assemblages of fish larvae in each region. For all three sampling regions, the assemblage structure is primarily related to bathymetry, and Shelf, Slope, and Deep-Water assemblages are described. This shallow to deep-water gradient in species occurrence and abundance reflects the habitat preference and spawning location of the adult fish. Another degree of complexity is superimposed on this primary assemblage structure in each region and seems to be related to local topography and the prevailing current patterns. The patterns in ichthyoplankton assemblages of the three regions in the northeast Pacific Ocean described here form the basis for future investigations of spatial and temporal patterns in the ichthyoplankton of the subarctic Pacific.Regional Index Terms: Northeast Pacific Ocean, Southeast Bering Sea, Gulf of Alaska, U.S. West Coast.  相似文献   

19.
The phytoplankton community was studied in Bering Strait and over the shelf, continental slope, and deep-water zones of the Chukchi and Beaufort seas in the middle of the vegetative season (July–August 2003). Its structure was analyzed in relation to ice conditions and the seasonal patterns of water warming, stratification, and nutrient concentrations. The overall ranges of variation in phytoplankton abundance and biomass were estimated at 2.0 × 102 to 6.0 × 106 cells/l and 0.1 to 444.1 mg C/m3. The bulk of phytoplankton cells concentrated in the seasonal picnocline, at depths of 10–25 m. The highest values of cell density and biomass were recorded in regions influenced by the inflow of Bering Sea waters or characterized by intense hydrodynamics, such as the Bering Strait, Barrow Canyon, and the outer shelf and slope of the Chukchi Sea. In the middle of the vegetative season, the phytoplankton in the study region of the Western Arctic proved to comprise three successional (seasonal) assemblages, namely, the early spring, late spring, and summer assemblages. Their spatial distribution was dependent mainly on local features of hydrological and nutrient regimes rather than on general latitudinal trends of seasonal succession characteristic of arctic ecosystems.  相似文献   

20.
Phytoplankton standing stocks and carbon assimilation were measured during four cruises to the southern Ross Sea, Antarctica during 1996 and 1997 in order to assess the details of the seasonal cycle of biomass and productivity. The seasonal composite showed that phytoplankton biomass increased rapidly during the austral spring, and integrated chlorophyll reached a maximum during the summer (January 15) and decreased thereafter. Particulate matter ratios (carbon:nitrogen, carbon:chlorophyll) also showed distinct seasonal trends with summer minima. Carbon assimilation increased rapidly in the spring, and reached a maximum of 231 mmol C m−2 d−1, ca. four weeks earlier than the maximum observed biomass (during early December). It decreased rapidly thereafter, and in austral autumn when ice formed, it approached zero. The time of maximum growth rate coincided with the maximum in C-assimilation, and at 0.66 d−1 equaled predictions based on laboratory cultures. Growth rates over the entire growing season, however, were generally much less. Deck-board incubations suggested that photoinhibition occurred at the greatest photon flux densities, but in situ incubations revealed no such surface inhibition. We suggest that due to the nature of the irradiance field in the Antarctic, assemblages maintained in on-deck incubators received more light than those in situ, which resulted in photoinhibition. This in turn resulted in a 17% underestimate in on-deck productivity relative to in situ determinations. The phytoplankton bloom appeared to be initiated when vertical stability was imparted in austral spring, coincident with greater daily photon flux densities. Conversely, decreased productivity likely resulted from trace metal limitation, whereas biomass declines likely resulted from enhanced loss rates, such as aggregate formation and enhanced vertical flux of larger particles. The seasonal progression of productivity and biomass in the southern Ross Sea was similar to other areas in the ocean that experience blooms, and the cycling of carbon in this region is extensive, despite the fact that the growing season extends no more than five months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号