首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
We are proposing a hypothesis that earthquake swarms in the West Bohemia/Vogtland seismoactive region are generated by magmatic activity currently transported to the upper crustal layers. We assume that the injection of magma and/or related fluids and gases causes hydraulic fracturing which is manifested as an earthquake swarm at the surface. Our statements are supported by three spheres of evidence coming from the western part of the Bohemian Massif: characteristic manifestations of recent geodynamic activity, the information from the neighbouring KTB deep drilling project and from the 9HR seismic reflection profile, and the detailed analysis of local seismological data. (1) Recent manifestations of geodynamic activity include Quaternary volcanism, rich CO 2 emissions, anomalies of mantle-derived 3 He, mineral springs, moffets, etc. (2) The fluid injection experiment in the neighbouring KTB deep borehole at a depth of 9 km induced hundreds of micro-earthquakes. This indicates that the Earth's crust is near frictional failure in the western part of the Bohemian Massif and an addition of a small amount of energy to the tectonic stress is enough to induce an earthquake. Some pronounced reflections in the closely passing 9HR seismic reflection profile are interpreted as being caused by recent magmatic sills in the crust. (3) The local broadband seismological network WEBNET provides high quality data that enable precise localization of seismic events. The events of the January 1997 earthquake swarm are confined to an extremely narrow volume at depths of about 9 km. Their seismograms display pronounced reflections of P- and S-waves in the upper crust. The analysis of the process of faulting has disclosed a considerable variability of the source mechanism during the swarm. We conclude that the mechanism of intraplate earthquake swarms generated by magma intrusions is similar to that of induced seismicity. As the recent tectonic processes and manifestations of geodynamic activity are similar in European areas with repeated earthquake swarm occurrence (Bohemian Massif, French Massif Central, Rhine Graben), we assume that magma intrusions and related fluid and gas release at depths of about 10 km are the universal cause of intraplate earthquake swarm generation  相似文献   

2.
The Vogtland/Western Bohemia region is part of the Saxothuringian Earthquake Province. It is an isolated area of active intraplate seismicity. Observations of the seismicity between 1962 and 1998 are summarized. More than 17000 earthquakes have been detected microseismically with M L reaching from about –1.5 to 4.6. In the considered time interval, the catalogue of Vogtland events can be regarded as complete for magnitudes larger than 1.8. The region is well known for the occurrence of earthquakes clustered contemporarily in time and space. In this study, altogether 82 clusters are defined. Among them, clusters with swarm properties are distinguished from clusters with main shock accompanied by fore- and aftershocks, and from single events. 48 swarms are detected.The magnitude-frequency distribution of the maximum magnitudes of the clusters is studied. In the magnitude range 1.8  M L  3.1, a bimodal character of the magnitude-frequency distribution is detected for both swarms and nonswarm-like events. The slope is greater for larger magnitudes than in the small-magnitude range. A gap in the magnitude-frequency distribution of clusters is observed for maximum magnitudes between 3.1 and 4.3. Furthermore, clusters themselves are characterized by the b-values of their magnitude-frequency distributions. Swarms show b-values greater than 0.7. Epicenters of swarms are confined to a few subregions. Epicenters of nonswarm-like events are distributed over a larger region than epicenters of swarms but hypocenters of swarms and nonswarm-like clusters may be located close to each other.The envelope of the distribution of magnitudes as a function of time is investigated. In the considered time interval, a statistically significant recurrence of strong events of about 72 months is discovered by a frequency analysis. Comparing the seismicity between 1897 and 1908 with the seismicity between 1962 and 1998 temporal variations in the recurrence become obvious. The Nový Kostel zone is discussed in more detail. The average hypocenters of swarms are located on a SW-dipping fault segment that intersects the Eger Rift in NNW-SSE direction.Discussing properties of the seismicity in the Vogtland/Western Bohemia region it is concluded that the increased seismicity may be explained by the presence of fluids on deep reaching faults. The occurrence of swarms, their variability as well as the small distances between hypocenters of swarms and nonswarm-like events point to strong lateral and possibly temporal changes of the properties of the fault system.  相似文献   

3.
We summarise the results of seismological studies related to triggering mechanisms, driving forces and source processes of the West Bohemia/Vogtland earthquake swarms with the aim to disclose the role of crustal fluids in the preparation, triggering and governing of the swarms. We present basic characteristics distinguishing earthquake swarms from tectonic mainshock-aftershock sequences and introduce existing earthquakes swarm models. From the statistical characteristics and time-space distribution of the foci we infer that self-organization is a peculiarity of West Bohemia/Vogtland swarms. We discuss possible causes of the foci migration in these swarms from the viewpoint of co-seismic and/or post-seismic stress changes and diffusion of the pressurized fluids, and we summarize hitherto published models of triggering the 2000-swarm. Attention is paid to the source mechanisms, particularly to their non-shear components. We consider possible causes of different source mechanisms of the 1997-and 2000-swarms and infer that pure shear processes controlled solely by the regional tectonic stress prevail in them, and that additional tensile forces may appear only at unfavourably oriented faults. On data from the fluid injection experiment at the HDR site Soultz (Alsace), we also show that earthquakes triggered by fluids can represent purely shear processes. Thus we conclude that increased pore pressure of crustal fluids in the region plays a key role in bringing the faults from the subcritical to critical state. The swarm activities are mainly driven by stress changes due to co-seismic and post-seismic slips, which considerably depend on the frictional conditions at the fault; crustal fluids keep the fault in a critical state. An open question still remains the cause of the repeatedly observed almost simultaneous occurrence of seismic activity in different focal zones in a wider area of West Bohemia/Vogtland. The analysis of the space-time relations of seismicity in the area between 1991 and 2007 revealed that during a significant part of this time span the seismicity was switching among distant focal zones. This indicates a common triggering force which might be the effect of an increase of crustal-fluid pore-pressure affecting a wider epicentral region.  相似文献   

4.
华北地区近年来小震群活动频繁, 在有数字波形记录的中强地震相对缺乏的背景下, 小震群发震构造精细研究可为华北地区地震危险性分析和地震趋势判断提供重要依据. 本文利用匹配滤波技术对2013年8月22—25日河北蔚县小震群遗漏地震事件进行检测, 并通过地震精定位和震源机制求解分析此次震群的发震构造. 计算结果显示, 通过互相关扫描检测到18次被地震台网常规分析遗漏的地震, 约为地震目录给出的13次地震事件的1.38倍. 该震群发震构造有北东向和北西向两组断裂, 震群活动前期以北东向构造活动为主, 后期地震主要发生在北西向构造, 北西向构造在此次震群活动中地震频度和强度均高于北东向构造. 震源机制计算结果显示北西向构造发震机制以正断拉张为主.   相似文献   

5.
For more than 20 years, seismohydrological investigations have been undertaken at the mineral aquifer system of Bad Brambach (Vogtland, Germany). Two strong swarm earthquake series in 2000–2001 and 2008–2009 at the Nový Kostel epicentre (Czech Republic, 10 km E of BB) have enabled for the first time a comparison of seismological and groundwater hydraulic features in a semi-quantitative way. In spite of their similar spatial distribution in 2001 and 2008, the earthquake foci of each swarm migrated differently through time, horizontally as well as in depth. The seismic energy of the 2008–2009 events was released predominantly within 1 month, in contrast to 2000–2001 when it occurred over 3 months. The main distinctive features of each are seen in the hydraulic pressure anomalies which accompanied the earthquake swarms: number, shape, and progression (duration) of the anomalies. The comprehensive hydraulic data, with high temporal resolution, suggest that fluid triggering dominated not only the earthquake initiating phases. In particular, the long-lasting seismicity of the 2008–2009 swarm can be attributed to a continued triggering of weak earthquakes by over-pressured deep fluids. Here, the remaining static strain was obviously not sufficient to generate strong earthquakes as at the beginning of the earthquake swarm periods. Furthermore, the enduring high fluid pressure in 2009 could also indicate a continuation of the long-term gas flow increase observed at several gas outlets in the Vogtland/NW Bohemia region between 1998 and 2008. However, it is not possible at present to derive a systematic relationship between anomaly occurrence and seismic activity, as generally proposed in the context of earthquake prediction discussion.  相似文献   

6.
The microseismicity of the Vogtland/NW-Bohemian region has been continually recorded since 1962. Earthquakes mostly occur in single clusters as swarms. The long-term data set has been analysed by statistical methods dividing the whole seismic region into significant clusters. The b-value and fractal dimension D of epicentre distribution, as well as the distribution of times between events for particular swarms has been determined for each cluster to find the parameters characteristic for swarm-like occurrence. The correlation between b and D is discussed with a view to the changing data quality of location and magnitude calculation.  相似文献   

7.
《Journal of Geodynamics》2003,35(1-2):157-172
The temporal clustering of swarm activity differs significantly from characteristics of aftershock sequences accompanying mainshocks. This is often assumed to be caused by crustal structure complexities and fluid migration. However, the underlying mechanism is not yet fully understood, especially, the processes and conditions which lead to the apparent differences between the swarm patterns and typical mainshock–aftershock sequences. In previous works, we have shown that the most conspicuous characteristics of tectonic earthquakes can be reproduced by stick-slip block models incorporating visco-elastic interactions. Now, the same model is shown to reproduce an almost periodical occurrence of earthquake swarms in the case of an enlarged postseismic response. The simulated swarms respect not only the Gutenberg-Richter law for the event sizes, they also reproduce several observations regarding their spatio-temporal patterns. In particular, the comparison with the January 1997 and the year 2000 swarm in Vogtland/NW-Bohemia shows a good agreement in the interevent-time distributions and the spatio-temporal spreading of the swarm activity. The simulated seismicity patterns result from self-organization within the swarm due to local stress transfers and viscous coupling. Consequently, the agreement with the Vogtland swarm activity do not allow any decision about the preparatory process of the swarms; in particular, the question whether the swarms are initially triggered by fluid intrusion or tectonic motion cannot be answered. However, the model investigations suggest that the process of self-organization is very important for understanding the activity patterns of earthquake swarms.  相似文献   

8.
《Journal of Geodynamics》2003,35(1-2):145-156
The seismicity in the Vogtland/NW-Bohemia region is mainly characterized by the occurrence of earthquake swarms. A key to a better understanding of the reasons of earthquake swarms can be provided by focal mechanism investigations. Here we present focal mechanisms for 12 of the strongest events (ML⩾3.0) for the new swarm of 2000. With more than 10,000 events and magnitudes up to 3.7 the new swarm is the most prominent one since the big swarm in 1985/1986. The focal mechanisms of the swarm 2000 show different styles of faulting, namely strike-slip, normal and reverse faulting. There are indications for systematic temporal variations in the dislocation type. A comparison with the mechanisms of the preceding swarms of 1985/1986, 1994 and 1997 which all took place at the same location shows similarities in the faulting types and orientations of the nodal planes for the swarms of 1985/1986, 1994 and 2000. However, the focal mechanisms of 1997 do not fit into the scheme of the others. The focal mechanisms have also been used to determine the regional stress field. It turned out that the stress field in the Vogtland/NW-Bohemia region does not substantially differ from the known stress field in West and Central Europe. It is a strike slip regime with a SE–NW directed σ1-axis and a NE–SW directed σ3-axis.  相似文献   

9.
The western part of the Bohemian Massif (West-Bohemia/Vogtland region at the Czech-German border) is characterized by relatively frequent intraplate earthquake swarms and by other manifestations of present-day geodynamic activity. During the strong earthquake swarm at the turn of the years 1985 and 1986, significant changes in mineral spring parameters were observed at the spa of Františkovy Lázně. In this study, we present all available data on the mineral springs parameters, and we discuss them in terms of relations to seismic activity. Some changes in discharge were very distinct, amounting up to 40%, and had a co-seismic character. The changes in temperature were less noticeable, but preceded the beginning of the swarm by several months. Some hydrological changes persisted for nearly two years after the earthquake swarm. The character of the observed changes seems to support the hypothesis on an injection of mantle fluids, in particular of CO2, as the main triggering mechanism of the earthquake swarm and the main cause of discharge anomalies.  相似文献   

10.
We present analyses of two swarms of long-period (LP) earthquakes at > 30 km depth that accompanied the geodetically observed 2002–2005 Mauna Loa intrusion. The first LP earthquake swarm in 2002 consisted of 31 events that were precursory and preceded the start of Mauna Loa inflation; the second LP swarm of two thousand events occurred from 2004–2005. The rate of LP earthquakes slowed significantly coincident with the occurrence of the December 26, 2004 Mw 9.3 Sumatra earthquake, suggesting that the seismic waves from this great earthquake may have had a dynamic triggering effect on the behavior of Mauna Loa's deep magma system. Using waveform cross correlation and double difference relocation, we find that a large number of earthquakes in each swarm are weakly similar and can be classified into two families. The relocated hypocenters for each family collapse to compact point source regions almost directly beneath the Mauna Loa intrusion. We suggest that the observed waveform characteristics are compatible with each family being associated with the resonance of a single fluid filled vertical crack of fixed geometry, with differences in waveforms between events being produced by slight variations in the trigger mechanism. If these LP earthquakes are part of the primary magma system that fed the 2002–2005 intrusion, as indicated by the spatial and temporal associations between mantle seismicity and surface deformation, then our results raise the possibility that this magma system may be quite focused at these depths as opposed to being a diffuse network. It is likely that only a few locations of Mauna Loa's deep magma system met the geometric and fluid dynamic conditions for generating LP earthquakes that were large enough to be recorded at the surface, and that much of the deep magma transfer associated with the 2002–2005 intrusion occurred aseismically.  相似文献   

11.
A seismicity and stress field analysis of a region in NE Bavaria reveals a complex picture of seismic dislocation. The magnitudes are generally low, the strongest event recorded had a magnitude of 2.3. In the southern part of the area investigated, earthquakes occur very rarely. During the observation period of approximately four years, only four events, two of them forming a doublet, were recorded. Hypocentral depths in the southern part are considerably great (15 to 17 km) and indicate a mafic lower crust. The seismicity of the Marktredwitz area, located in the western extension of the Eger rift, is dominated by earthquake swarms that are strongly clustered in space and time. The swarms occurred at depths between 10 and 14 km. Precise relative relocations show clear planar arrangements of the hypocentres and enable to identify the orientation of active fault planes. A comparison of the structural and geomorphological settings reveals major similarities in the occurrence of earthquake swarms compared to the situation in the bordering Vogtland/NW-Bohemia swarm area.Focal mechanisms cover a wide range of faulting styles. Normal fault, strike slip and reverse fault mechanisms as well as movements along sub-horizontal planes were found. The focal mechanisms were used to invert for the stress field. The inversion results reveal an ambiguity for the state of stress in the area of investigation and allow two different interpretations: A clockwise rotation of the stress field from North to South as well as a predominance of two slightly different stress regimes are possibilities.  相似文献   

12.
The West Bohemia and adjacent Vogtland are well known for quasi-periodical earthquake swarms persisting for centuries. The seismogenic area near Nový Kostel involved about 90 % of overall earthquake activity clustered here in space and time. The latest major earthquake swarm took place in August–September 2011. In 1994 and 1997, two minor earthquake swarms appeared in another location, near Lazy. Recently, the depth-recursive tomography yielded a velocity image with an improved resolution along the CEL09 refraction profile passing between these swarm areas. The resolution, achieved in the velocity image and its agreement with the inverse gravity modeling along the collateral 9HR reflection profile, enabled us to reveal the key structural background of these West Bohemia earthquake swarms. The CEL09 velocity image detected two deeply rooted high-velocity bodies adjacent to the Nový Kostel and Lazy focal zones. They correspond to two Variscan mafic intrusions influenced by the SE inclined slab of Saxothuringian crust that subducted beneath the Teplá-Barrandian terrane in the Devonian era. In their uppermost SE inclined parts, they roof both focal zones. The high P-wave velocities of 6,100–6,200 m/s, detected in both roofing caps, indicate their relative compactness and impermeability. The focal domains themselves are located in the almost gradient-free zones with the swarm foci spread near the axial planes of profound velocity depressions. The lower velocities of 5,950–6,050 m/s, observed in the upper parts of focal zones, are indicative of less compact rock complexes corrugated and tectonically disturbed by the SE bordering magma ascents. The high-velocity/high-density caps obviously seal the swarm focal domains because almost no magmatic fluids of mantle origin occur in the Nový Kostel and Lazy seismogenic areas of the West Bohemia/Vogtland territory, otherwise rich in the mantle-derived fluids. This supports the hypothesis of the fluid triggering of earthquake swarms. The sealed focal domains retain ascending magmatic fluids until their critical pressure and volumes accumulated cause rock micro-fractures perceived as single earthquake bursts. During a swarm period, the focal depths of these sequential events become shallower while their magnitudes grow. We assume that coalescence of the induced micro-fractures forms temporary permeability zones in the final swarm phase and the accumulated fluids release into the overburden via the adjacent fault systems. The fluid release usually occurs after the shallowest events with the strongest magnitudes ML > 3. The seasonal summer declines of hydrostatic pressure in the Cheb Basin aquifer system seem to facilitate and trigger the fluid escape as happened for the 2000, 2008, and 2011 earthquake swarms. The temporary fluid release, known as the valve-fault action, influences the surface aquifer systems in various manners. In particular, we found three quantities, the strain, mantle-derived 3He content in CO2 surface sources and ground water levels, which display a 3–5 months decline before and then a similar restoration after each peak earthquake during the swarm activities. The revealed structure features are particularly important since the main Nový Kostel earthquake swarm area is proposed as a site for the ICDP project, ‘Eger Rift Drilling’.  相似文献   

13.
台湾地区地震的空间关联维特征与构造环境研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用关联维方法对台湾地区地震活动的空间特征进行了研究。先利用 10 0a来台湾的地震目录计算各个地震区、带的关联维数 ,将地震空间分布的分形特征定量表达出来 ,然后综合分析地震空间分布的关联维数和孕震构造环境之间的关系 ,得出了以下结论 :1)台湾东、西部地震区由于地震属于不同的大地构造单元 ,因此关联维数有较大的差异 ;2 )在各地震区内部的各个地震带由于板块构造、地壳结构、活断层分布上的差异 ,而具有与其构造特征相对应的关联维数 ;3)各地震带内部的各个不同的部位又由于不同的构造应力场 ,而导致地震分布上出现不同的丛集性 ,表现为不同的关联维数。这些结论充分说明通过关联维分析所得到的地震活动的空间图像与地震活动所代表的不同地质构造背景有着良好的对应关系  相似文献   

14.
In 2007, intense swarms of deep, tectonic earthquakes, amounting to at least 5 300 epicentres, were detected near to Mount Upptyppingar, which forms part of the Kverkfjöll volcano system in Iceland’s Northern Volcanic Zone. Although micro-seismicity is common within such volcanic regions, the Upptyppingar swarms have been more intensive and persistent than any other deep-seated seismicity observed in Iceland. Here we outline the spatial and temporal changes in ongoing seismicity that began in February 2007; in addition, we document enhanced levels of GPS-derived crustal deformation, recorded within 25 km of the area of swarming. Besides displaying spatial clustering, the Upptyppingar micro-earthquakes are noteworthy because: (i) they concentrate at focal depths of 14–22 km; (ii) the swarms comprise brittle-type earthquakes < 2 in magnitude, yielding a b-value of 2.1; and (iii) several of the swarms originate at focal depths exceeding 18 km. Additionally, different parts of the affected region have exhibited seismicity at different times, with swarm sites alternating between distinct areas. The activity moved with time towards east-north-east and to shallower depths. Linear regression approximates the seismicity on a southward-dipping, ~41° plane. Alongside sustained earthquake activity, significant horizontal displacement was registered at two permanent GPS stations in the region. High strain rates are required to explain brittle fracturing under visco-elastic conditions within the Earth’s crust; similarly, intense, localised deformation at considerable depth is necessary to reconcile the measured surface deformation. Such remarkable seismicity and localised deformation suggests that magma is ascending into the base of the crust.  相似文献   

15.
The western part of the Bohemian Massif (West Bohemia/Vogtland region) is characteristic in the relatively frequent recurrence of intraplate earthquake swarms and in other manifestations of past-to-recent geodynamic activity. In this study we derived 1D anisotropic qP-wave model of the upper crust in the seismogenic West Bohemia/Vogtland region by means of joint inversion of two independent data sets - travel times from controlled shots and arrival times from local earthquakes extracted from the WEBNET seismograms. We derived also simple 1-D P-wave and S-wave isotropic models. Reasons for deriving these models were: (a) only simplified crustal velocity models, homogeneous half-space or 1D isotropic layered models of this region, have been derived up to now and (b) a significant effective anisotropy of the upper crust in the region which was indicated recently by S-wave splitting. Both our anisotropic qP-wave and isotropic P-and S-wave velocity models are constrained by four layers with the constant velocity gradient. Weak anisotropy for P-waves is assumed. The isotropic model is represented by 9 parameters and the anisotropic one is represented by 24 parameters. A new robust and effective optimization algorithm - isometric algorithm - was used for the joint inversion. A two-step inversion algorithm was used. During the first step the isotropic P- and S-wave velocity model was derived. In the second step, it was used as a background model and the parameters of anisotropy were sought. Our 1D models are adequate for the upper crust in the West Bohemia/Vogtland swarm region up to a depth of 15 km. The qP-wave velocity model shows 5% anisotropy, the minimum velocity in the horizontal direction corresponds to an azimuth of 170°. The isotropic model indicates the VP/VS ratio variation with depth. The difference between the hypocentre locations based on the derived isotropic and anisotropic models was found to be several hundreds of meters.  相似文献   

16.
系统梳理了2000年以来山西地区6次MS≥4.5地震前地震活动异常,结果表明,地震空区/平静、地震条带、显著地震/震群、大同地震窗“开窗”活动等异常在地震发生前具有一定普遍性,且异常基本围绕在震中及附近地区分布,特别是在地震平静/空区、地震条带等异常发展后期出现的显著地震/震群活动,对未来地震发生的地点和时间具有较好的预测意义。异常持续时间与发震间隔统计表明:异常多出现在主震发生前6个月以内,显著地震/震群、大同地震窗“开窗”对未来主震的发生具有短临预测意义。此外,随着区域应力水平的不断增强,在特定敏感地区会发生成组极微震密集活动,监视跟踪这些有别于正常活动背景的极微震活动,对地震短临预测具有一定意义。  相似文献   

17.
The characteristics of spatio-temporal seismicity evolution before the Wenchuan earthquake are studied. The results mainly involve in the trend abnormal features and its relation to the Wenchuan earthquake. The western Chinese mainland and its adjacent area has been in the seismically active period since 2001, while the seismic activity shows the obvious quiescence of M≥?7.0, M≥?6.0 and M?≥5.0 earthquakes in Chinese mainland. A quiescence area with M?≥7.0 has been formed in the middle of the North-South seismic zone since 1988, and the Wenchuan earthquake occurred just within this area. There are a background seismicity gap of M?≥5.0 earthquakes and a seismogenic gap of ML?≥4.0 earthquakes in the area of Longmenshan fault zone and its vicinity prior to the Wenchuan earthquake. The seismic activity obviously strengthened and a doughnut-shape pattern of M?≥4.6 earthquakes is formed in the middle and southern part of the North-South seismic zone after the 2003 Dayao, Yunnan, earthquake. Sichuan and its vicinity in the middle of the doughnut-shape pattern show abnormal quiescence. At the same time, the seismicity of earthquake swarms is significant and shows heterogeneity in the temporal and spatial process. A swarm gap appears in the M4.6 seismically quiet area, and the Wenchuan earthquake occurred just on the margin of the gap. In addition, in the short term before the Wenchuan earthquake, the quiescence of earthquake with ML≥?4.0 appears in Qinghai-Tibet block and a seismic belt of ML?≥3.0 earthquakes, with NW striking and oblique with Longmenshan fault zone, is formed.  相似文献   

18.
《Journal of Geodynamics》2003,35(1-2):125-144
The NW Bohemia/Vogtland region situated at the western part of the Bohemian Massif is characteristic in a frequent reoccurrence of earthquake and micro-earthquake swarms. We present a comprehensive, integrated pattern of the space and time distribution of seismic energy release in the principal NK (Nový Kostel) focal zone for the period 1991–2001 and for the intensive 1985/1986 swarm. More than 3000 earthquakes, recorded by the WEBNET, the KRASLICE net and by temporary stations VAC, TIS and OLV operating during the 1985/1986 swarm, were located or re-located using the master event technique. Swarm-like sequences were identified and discriminated from solitary events by detecting local minima of the inter-event time using a standard short-time/long-time average (STA/LTA) detection algorithm. Most of the seismic energy in the NK zone was released during the two intensive 1985/1986 and 2000 swarms and in the course of the weaker January 1997 swarm. Further 27 swarm-like sequences (micro-swarms) and many solitary micro-earthquakes (background activity) were identified in the NK zone for the period 1991–2001 by the inter-event time analysis. Relative location revealed a pronounced planar character of the NK focal zone. Most of the events, including those of the intensive 1985/1986 and 2000 swarms, were located at the main focal plane (MFP) striking 169° N and dipping 80° westward at depths between 6 and 11 km. A singularity was the January 1997 swarm together with a micro-swarm that were both located across the MFP. The position and geometry of the MFP match quite well the Nový Kostel-Počátky-Zwota tectonic line. The space distribution patterns of larger events and of micro-swarms at the MFP differ: larger events predominantly grouped in planar clusters while the micro-swarms lined up along two parallel seismogenic lines. The temporal behaviour was examined from two aspects: (a) migration and (b) recurrence of the seismic activity. It was found that (a) the seismic activity in the time span 1991–2001 migrated in an area of about 12×4 km and (b) several segments of the MFP were liable to reactivation. The activity before, during and after the 2000 swarm took place in different parts of the MFP.  相似文献   

19.
梅世蓉  薛艳  宋治平 《地震》2009,29(1):1-14
两次特大地震前在不同时段、 不同范围出现了多项相似的地震活动性异常, 它们对预测特大地震具有一定意义: ① 两次大震前10余年, 青藏块体同期出现了两个规模巨大的中强以上地震增强区, 两次大地震发生在增强区内的空区里; ② 两次巨大地震前数年, 形成规模巨大的中强地震活动带, 地震发生在两个条带间的平静区里; 同期形成中等以上地震活动环, 其内部的地震频度、 加卸载响应比及非均匀度等参数甚高, 且随时间而变化, 这可作为孕震进入中期的信号; ③ 两次大震前的震群、 震丛均很显著, 昆仑山口西地震前四个显著震丛环绕震中四周分布, 汶川地震前震群在震中周围形成包围圈, 它们应视为大震孕育进入后期的显示; ④ 大震前数月, 靠近发震断裂带发生少量中小地震或少见的震群。 汶川地震前10个月, 龙门山断裂带北部发生两次青川4级多地震和松潘4.3级地震, 南部康定附近发生3次4级以上地震。 紫坪铺水库区小震群于震前3个月活动十分强烈。 昆仑山口西地震前约1年青海兴海发生6.6级地震, 昆仑山口西发生5.1级地震, 该地震距离8.1级地震约30 km。这些特征给我们的重要启示是: ① 特大地震前出现的前兆时空特征与常见的中强地震差异很大, 现行的监测预报体制(分省分片负责)与特大地震前兆不相适应; ② 特大地震的预测预报不能单纯依靠地震前兆, 必须与地质构造及深部探测紧密结合起来; ③ 特大地震的预测预报应有新的预报战略、 观测系统与组织机构相适应。  相似文献   

20.
长白山天池火山地震类型及火山活动性的初步研究   总被引:3,自引:0,他引:3  
2002年以来,长白山天池火山区出现了地震活动增强、地形变加剧和多种地球化学异常等现象,火山口附近发生的多次有感地震在社会上产生了较大影响。本文利用2002年以来的流动地震观测资料,采用频谱分析、时频分析和多台站资料对比的方法,对火山区地震事件的类型进行了分析;对火山活动的危险性进行了初步研究。结果表明,目前天池火山区出现的大量地震活动仍然属于火山构造地震,少量台站地震记录中表现出的低频特征主要是由于局部介质影响造成的,排除了长周期地震引起的可能。尽管长白山天池火山地震活动明最增强,震群活动较为频繁,但仍属于岩浆活动的早期阶段,短期内发生火山喷发的危险性较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号