首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86165篇
  免费   1457篇
  国内免费   915篇
测绘学   2288篇
大气科学   6407篇
地球物理   16440篇
地质学   33201篇
海洋学   7074篇
天文学   18323篇
综合类   431篇
自然地理   4373篇
  2021年   672篇
  2020年   736篇
  2019年   731篇
  2018年   4102篇
  2017年   3826篇
  2016年   3153篇
  2015年   1202篇
  2014年   1864篇
  2013年   3530篇
  2012年   2961篇
  2011年   4936篇
  2010年   4422篇
  2009年   5280篇
  2008年   4366篇
  2007年   4903篇
  2006年   2720篇
  2005年   2354篇
  2004年   2253篇
  2003年   2213篇
  2002年   1985篇
  2001年   1631篇
  2000年   1546篇
  1999年   1285篇
  1998年   1276篇
  1997年   1301篇
  1996年   1055篇
  1995年   1127篇
  1994年   1045篇
  1993年   882篇
  1992年   841篇
  1991年   817篇
  1990年   887篇
  1989年   766篇
  1988年   751篇
  1987年   868篇
  1986年   754篇
  1985年   965篇
  1984年   1028篇
  1983年   1006篇
  1982年   916篇
  1981年   904篇
  1980年   848篇
  1979年   750篇
  1978年   715篇
  1977年   671篇
  1976年   633篇
  1975年   623篇
  1974年   620篇
  1973年   639篇
  1971年   402篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
2.
Astronomy Letters - The emission from the Crab nebula exhibits a significant gamma-ray variability. In this paper we have analyzed this variability in terms of periodicity. Using the pulsar...  相似文献   
3.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
4.
Abstract

Large debris flows in steep-sloped ravines debouching to the Rimac River, in metropolitan Lima (Peruvian capital), have resulted in considerable loss of life and property adversely impacting communities in the region. Temporal, spatial and volumetric features of debris flows are difficult to predict, and it is of utmost importance that achievable management solutions are found to reduce the impact of these catastrophic events. The emotional and economic toll of these debris flows on this increasingly densely populated capital city in South America is devastating where communities must live in such inadequate and dangerous conditions. To address this problem, the application of advanced Japanese technology, Sustainable Actions Basin Orientation (SABO), has been investigated using a geomorphological modelling to develop an implementation plan. Rayos de Sol stream basin in Chosica, was selected as a pilot to develop the proposal, as it is considered high risk due to the presence of ancient debris flows and recent flows in 2012, 2015 and 2017. The recurrence of debris flows in this location has resulted in numerous deaths and catastrophic property losses. This study combines geologic and geomorphic mapping and hydraulic and landform evolution numerical modelling. The implementation of a SABO Master Plan based on the multidisciplinary assessment hazard scenarios, will allow the implementation of feasible mitigation actions. The SABO technology has been applied successfully in Japan and other countries in areas with steep short slopes, similar to the conditions surrounding the Peruvian capital. Results from this study will be presented to the Peruvian Government as part of an action plan to manage debris-flow impact.
  1. KEY POINTS
  2. High-risk mass slope failure is linked to poor urban planning in urban developing regions of Lima the capital of Peru.

  3. A multidisciplinary study including geotechnical and hydrological analysis, engineering design, and socio-economic research is required to implement a SABO Master Plan, and this basin is pilot study basin.

  4. At the present time, a maintenance programme for existing hydraulic structures should be implemented, and a flood risk management plan developed may propose the relocation of some communities and infrastructure.

  相似文献   
5.
Natural Resource Management (NRM) is often conducted as a partnership between government and citizens. In Australia, government agencies formulate policy and fund implementation that may be delivered on-ground by community groups (such as Landcare). Since the late 1980s, over AUS$8b of Commonwealth investment has been made in NRM. However, quantitative evidence of environmental improvements is lacking. The NRM Planning Portal has been developed to (1) provide an online spatial information system for sharing Landcare and agency data; and (2) to facilitate NRM priority setting at local and regional planning scales. While the project successfully federates Landcare NRM activity data, challenges included (1) unstructured, non-standardized data, meaning that quantitative reporting against strategic objectives is not currently possible, and (2) a lack of common understanding about the value proposition for adopting the portal approach. Demonstrating the benefit of technology adoption is a key lesson for digital NRM planning.  相似文献   
6.
Doklady Earth Sciences - The results of an analysis of changes in the atmospheric air quality in Moscow during the lockdown period and the decline in business activity caused by the COVID-19...  相似文献   
7.
River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels while others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (>200 m) water. Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained bedload delivered by steep mountainous rivers produces small Gilbert-type fan deltas, whose steep gradient (11°–25°) approaches the sediment's angle of repose. Bigger fjord-head deltas are associated with much larger and finer-grained rivers. These deltas have much lower gradients (1.5°–10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta-top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers. © 2018 John Wiley & Sons, Ltd.  相似文献   
8.
Geomagnetism and Aeronomy - Winter thunderstorms in Kamchatka are a rare meteorological phenomenon. Temporal variations of the quasi-static electric field and meteorological values at the Paratunka...  相似文献   
9.
Ledneva  G. V.  Bazylev  B. A.  Layer  P.  Kuzmin  D. V.  Kononkova  N. N. 《Geotectonics》2020,54(4):455-476
Geotectonics - The dunite–wehrlite–clinopyroxenite–gabbro massif in Eastern Chukotka, a key object for geodynamic reconstructions of the Vel’may terrane, which represents...  相似文献   
10.
Glacial tills are highly compressible soils composed of loosely cemented sandy silt particles. Their role, for instance, as initial filler materials in geo-technical projects along temperate glacier regions warrant a systematic evaluation of their compressive characteristics. As such, we carry out a series of onedimensional compression tests on re-compacted glacial till samples obtained from Tianmo Gully, Tibet, with the aims of evaluating their compressive behavior under controlled initial stress conditions. The yield stress was determined from the void ratio versus consolidation pressure(e-log) planes. Its compression and swelling behaviors were observed during the primary and secondary compressions of the consolidation tests. From the compression curves, a correlation can be found between the consolidation stress and the void index. In addition, we find that the compression curves of glacial tills collapse into a single curve when normalized by the compression index. The experimental results in this study provide a basic understanding of the compression characteristics of the glacial tills in Tibet, China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号