首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
大气科学   1篇
地球物理   6篇
地质学   1篇
海洋学   8篇
天文学   1篇
综合类   1篇
自然地理   1篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1995年   1篇
  1991年   1篇
  1990年   3篇
  1986年   1篇
  1985年   3篇
排序方式: 共有19条查询结果,搜索用时 93 毫秒
1.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
2.
Debris flows include a great diversity of grain sizes with inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidity of debris flows, although the behavior and influence of fine sediment in debris flows have not been examined sufficiently. This study used flume tests to detect the effect of fine sediment on the fluidity of laboratory debris flows consisting of particles with various diameters. From the experiments, the greatest sediment concentration and flow depth were observed in the debris flows mixed with fine sediment indicating increased flow resistance. The experimental friction coefficient was then compared with the theoretical friction coefficient derived by substituting the experimental values into the constitutive equations for debris flow. The theoretical friction coefficient was obtained from two models with different fine-sediment treatments: assuming that all of the fine sediments were solid particles or that the particles consisted of a fluid phase involving pore water liquefaction. From the comparison of the friction coefficients, a fully liquefaction state was detected for the fine particle mixture. When the mixing ratio and particle size of the fine sediment were different, some other cases were considered to be in a partially liquefied transition state. These results imply that the liquefaction of fine sediment in debris flows was induced not only by the geometric conditions such as particle sizes, but also by the flow conditions.  相似文献   
3.
We have done extensive Monte Carlo simulations using the new simulation codes of CORSIKA and COSMOS to compare with the gamma-family data obtained at Mts. Fuji (3750 m above sea level) and Kanbala (5500 m above sea level). Then, we estimated the primary proton and helium spectra around the knee energy region using a multiple-layered feed-forward neural network as a classifier of primary particle kind. The selection efficiency of proton-induced family events is estimated to be 82%. The flux value of protons at 2×1015 eV is (5.5±1.5)×10−14 (m−2 s−1 sr−1 GeV−1). The result suggests heavy-enriched primary composition around the knee region.  相似文献   
4.
5.
Microbes are ubiquitous in groundwater systems, and they play an important role in the redox state of groundwater and especially on the fate of organic contaminants. In this context, numerical simulations that couple microbial processes to reactive transport models are becoming more popular. In the present work, we revisit the mathematical ground of microbial redox reactions and perform a benchmark analysis of the simulation of aerobic benzene degradation in a shallow and oxidizing aquifer. Numerical results indicate that the two codes tested (one using the finite elements approach and the other using the finite differences approach) lead to very similar results. In addition, the coupling of heterogeneous geochemical reactions to the benchmarked example problem provides a solid basis for the understanding of the redox reactions and the changes on the carbon system triggered by the aerobic degradation of benzene.  相似文献   
6.
Roles of horizontal processes in the formation of the density stratification in Hiuchi-Nada are investigated by means of a two-dimensional numerical model. In Hiuchi-Nada, vertically mixed and stratified regions are formed due to the regional difference of the tidal currents, and a tidal front is formed between the two regions. The horizontal mixing across the tidal front suppresses the development of the stratification, which is developed too much in the absence of the horizontal mixing. The moderate, realistic stratification cannot be realized in the model without the horizontal mixing. Density currents are formed due to the density distribution associated with the mixed and stratified states. These currents contribute to the horizontal mixing through the shear effect. Horizontal heat transfer from the outside water generates the vertical circulation and causes the stratification. This effect dominantly appears at the early and late stages of the stratified season. The stratification is initiated before the beginning of the surface heating and persists beyond the end, due to the horizontal heat transfer.  相似文献   
7.
8.
Wind speed profiles above a forest canopy relate to scalar exchange between the forest canopy and the atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can be classified by a stability index developed assuming wind flow above a flat plane. However, can such a stability index be used to classify vertical wind speed profiles observed above a sloping forest at nighttime, where drainage flow often occurs? This paper examines the use of the bulk Richardson number to classify wind speed profiles observed above a sloping forest at nighttime. Wind speed profiles above a sloping forest were classified by the bulk Richardson number Ri B . Use of Ri B distinguished between drainage flow, shear flow, and transitional flow from drainage flow to shear flow. These results suggest that Ri B is useful to interpret nighttime CO2 and energy fluxes above a sloping forest. Through clear observational evidence, we also show that the reference height should be high enough to avoid drainage-flow effects when calculating Ri B .  相似文献   
9.
Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50–700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven alvin heat flow measurements at 30°48.5′N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine arc calderas such as Sumisu and South Sumisu volcanoes.  相似文献   
10.
This paper introduces a new geostatistical model for counting data under a space-time approach using nonhomogeneous Poisson processes, where the random intensity process has an additive formulation with two components: a Gaussian spatial component and a component accounting for the temporal effect. Inferences of interest for the proposed model are obtained under the Bayesian paradigm. To illustrate the usefulness of the proposed model, we first develop a simulation study to test the efficacy of the Markov Chain Monte Carlo (MCMC) method to generate samples for the joint posterior distribution of the model’s parameters. This study shows that the convergence of the MCMC algorithm used to simulate samples for the joint posterior distribution of interest is easily obtained for different scenarios. As a second illustration, the proposed model is applied to a real data set related to ozone air pollution collected in 22 monitoring stations in Mexico City in the 2010 year. The proposed geostatistical model has good performance in the data analysis, in terms of fit to the data and in the identification of the regions with the highest pollution levels, that is, the southwest, the central and the northwest regions of Mexico City.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号