首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
某矿区土壤重金属分布特征及来源解析   总被引:1,自引:0,他引:1  
为探究赣南某矿区土壤重金属污染状况及来源,以该矿区内40个土壤样品为研究对象,分析了土壤中Cu、Pb、Zn、Cr、Ni、Cd、As和Hg等8种重金属元素的含量,并采用频率直方图、相关性分析、主成分分析等多种统计方法探究了土壤重金属含量的分布特征及来源。研究结果表明:(1)研究区8种重金属中有7种不同程度地超过了江西省土壤重金属元素背景值;(2)Pb、Zn、As和Hg的含量接近正态分布,而Cu、Cr、Ni和Cd的含量则呈现出右偏分布的趋势,这可能与研究区矿山开采活动及土地利用类型等因素有关;(3)矿区土壤重金属相关性分析表明,Cu、Cr、Ni的同源性较高,可能具有相同的污染源,而Pb、Zn、Cd等元素与Cu、Cr、Ni相比,其来源可能存在一定的差异;(4)主成分分析结果显示,矿区内土壤中8种重金属元素含量可以由2个主成分来解释,所代表的实际意义按贡献率排序分别是成土母质和人为采矿活动;(5)矿区内土壤重金属污染物主要为Pb、Zn、Cd,人为采矿活动是这三种重金属污染的主要来源。  相似文献   

2.
邬光海  王晨昇  陈鸿汉 《中国地质》2020,47(6):1838-1852
为研究内蒙古赤峰市废弃钨钼矿区周围土壤重金属污染特征、潜在生态风险及成因分析,共采集83份表层土壤样品和6个土壤钻孔。采用ArcGIS空间插值分析方法研究As、Cd、Cr、Cu、Ni、Pb、Mo和Zn的空间分布,构建重金属扰动指数函数研究重金属受人类活动的污染程度,利用地累积指数法验证矿区周围土壤重金属污染程度,通过相关性分析判断重金属来源并讨论污染成因。结果表明:矿区周围土壤As、Cd、Cu、Pb、Zn和Mo平均含量明显高于矿区周边背景值,高含量主要分布尾矿库周围,主要来源为矿山采选活动;Cr和Ni基本无污染,主要来源为母岩风化。通过重金属扰动指数函数计算发现:采用区域背景值对矿区周围进行重金属污染评价夸大了矿山采选活动对矿区周围土壤重金属的污染,矿区周围土壤重金属污染是由于天然重金属富集和采矿活动共同作用下的“双驱动模式”导致,尾矿库周围土壤重金属污染程度随着与尾矿库水平距离的增加和深度的加大而逐渐降低。降水量丰富程度是影响重金属迁移能力的关键因素,该矿处于降水量匮乏地区,尾矿库对周围土壤重金属污染范围有限,对生态环境影响轻微。  相似文献   

3.
An eco-environmental geochemical investigation was carried out in and around the Dexing mining area to determine the concentrations of heavy metals in the surface water, sediments, soils and plants. The main objective of this study is to assess the environmental situation and evaluate the transferring of heavy metals from mining activities into the food chain. Some samples of water, sediment, topsoil and plant were collected along the Lean River in the Dexing mining area. The total concentrations of Cu, Pb, Zn, Cd, and As were determined by AAS, and Hg was analyzed by cold-vapor AAS. Some indices such as ‘contamination degree‘ , ‘geoaccumulation index‘ , and ‘biological absorption coefficient‘ were used to assess eco-environmental quality. The investigation indicated a highly localized distribution pattern closely associated with the two pollution sources along the Le‘an River bank: one is strong acidity and a large amount of Cu in the drainage from the Dexing Cu mining area; and the other is the high concentrations of Pb and Zn in the effluents released from many smelters and mining, processing and extracting activities in the riparian zone. Results from the investigated localities indicated, at least in part, that some problems associated with environmental quality deterioration should be solved in the future.  相似文献   

4.
INTRODUCTIONMining activlties have significant envi ronmenta1 inll)ac'l ssuch as visual intrusions, dust, noise, blasting, trafflc and h}'drology (Kwolek, l999; Ripley et al., l996 ). The l)rot'csst'sof mineral extraction, processing, smelting and refinlng;1rt'never approximate to the environmental neutrality, but tht' affected areas can be ameliorated (KwoIek, l999; Klukanov;1;llltlRapant, 1999). The regions, where mining activities are I,r('sent or continuous for a long tlme, are pote…  相似文献   

5.
A total of 31 topsoil samples were systematically collected from the Panzhihuaminingarea including steel smelting,coal mining ,urban and rural districts.A normalization procedure was adopted to establish the environmental geochemical baseline models for this area.By using the above baseline models,the regional geochemical baseline values of As,Cr,Cu,Ni,Pb and Zn were determined.On the basis of the baselines,the enrichment factors were used to analyze the mechanism of trace metal pollution in topsoil from anthropogenic sources,and the results showed that the serious trace metal pollution is caused by human activities in coal mine,iron mine,smelting factory,tailing dam and other industrial districts in the Panzhihua area.  相似文献   

6.
Mining and smelting activities are the main causes for the increasing pollution of heavy metals in soil, Water body and stream sediment. An environmental geochemical investiga-tion was carried out in and around the Panzhihua mining and smelting area to determine the ex-tent of chemical contamination in soil and sediment. The main objective of this study was to in-vestigate the environmental geochemistry of Ti, V, Cr, Mn, Cu, Pb, Zn and As in soil andsediment and to assess the degree of pollution in the study area. The data of heavy metal con-centrations reveal that soils and sediments in the area have been slightly contaminated. Geo-chemical maps of Igeo of each heavy metal show that the contaminated sites are located in V-Ti-magnetite sloping and smelting, gangues dam. The pollution sources of the selected elementscome mainly from dusts resultant from mining activities and other three-waste-effluents. The areaneeds to be monitored regularly for trace metal, especially heavy metal enrichment.  相似文献   

7.
This study aims at identifying multi-source heavy metal pollution from natural and anthropogenic sources using a regression model, principal component analysis, and five different indices (geo-accumulation index (I geo), the modified degree of contamination, pollution load index (PLI), enrichment factor, and ecological risk factor. Results revealed that: (1) although the average concentrations of soil heavy metals (Cu, Cr, Pb, Hg, As, Zn) were generally low, Hg, As, and Cr concentrations exceeded national standard values by approximately 0.91, 1.84, and 0.91 times with maximum concentrations up to 0.41, 78.6, and 175.2 μg/g, respectively; (2) PLI results showed that the industrial park and Wucaiwan open coal mining area were the most polluted (PLI of 1.98, 1.71). The potential ecological hazards index indicated that the E i r of three heavy metals (Cu, Hg, As) in the soil were relatively high, presenting potential ecological risk factors of 74.89, 16.71, 4.15%, respectively; (3) stepwise regression model and principal component analysis suggest that Cu and Zn were primarily effected by the natural geological condition and atmospheric dust fall. Cr, Hg, Pb are mainly derived from anthropogenic sources, particularly coal mining activities and industrial sources. Results of this research have some significant implications for heavy metal pollution prevention and the sustainable development of the economy and ecology of arid regions in China.  相似文献   

8.
In order to determine the characteristics of heavy metals’ pollution and identify their sources in the soil over the Xiaoqinling gold-mining region, Shaanxi, China, 133 soil samples were collected over the region, one sample was from a close point as background, and concentrations of Hg, Pb, Cu, and As in all samples were analyzed. Results indicated that the soil was polluted by these heavy metals, as their concentrations in the soil over the studied region were higher than that in the background zone. In addition, the result indicated that these metals had their specific spatial characteristics. Among the samples, those with higher concentrations of Hg, Pb, and Cu were mainly collected from the Shuangqiao river alluvial terrace area, the loess ravine tableland, and the piedmont alluvial–pluvial inclined tableland, which are the areas of gold-mining activities. Meanwhile, the samples with higher concentrations of As were distributed over the loess ravine tableland around Tongguan County, where agricultural activities were conducted intensively. Furthermore, the sources for all the heavy metals Hg, Pb, Cu, and As in the soil over each landscape were determined through analyzing the concentration correlation of these metals and comparing the maps of metal concentration distribution and land-use types. In Yellow river–Weihe river alluvial plain area, these heavy metals were mainly from agricultural activities. In the other landscapes, As was also mainly from agricultural activities; the other metals were contrarily from the gold-related activities. Interestingly, the correlation coefficients of As concentrations with Hg, Pb or Cu concentrations were positive in the samples from Yellow river–Weihe river alluvial plain area, and on the contrary, they were negative in the samples from the other landscapes. This result showed that the correlation can be used as an index to indicate properly the effect of the gold-related or agricultural activities on the heavy metals in the soil and identify their main sources over each landscape. As human activities resulted in the site-specific characteristics in the concentrations and sources of the heavy metals in each landscape, site-specific control strategies should be selected intensively to remedy landscape soil pollution. In Yellow river–Weihe river plain area, effective control strategies should be aimed at remedying As pollution caused by agricultural activities; in the other landscapes, Hg, Pb and Cu pollution caused by gold-mining activities should be considered.  相似文献   

9.
铜陵市大气降尘中铜元素的污染特征   总被引:1,自引:0,他引:1  
为了探讨和评价矿产资源利用过程对大气污染的可能贡献,评价了典型有色金属矿山城市--铜陵市的大气降尘中铜元素的污染状况及其来源。运用ICP-AES法分析测试了铜陵市不同功能区17个大气降尘样品中铜元素的含量,并采用富集因子法定性地判断了各采样点铜元素的来源。结果表明:铜陵市大气降尘中铜元素的平均质量分数为2 190×10-6,富集因子最高值为391.5;大气降尘中铜元素污染严重,形成了以铜开采和冶炼企业为中心的污染区域;铜矿石的开采和冶炼对大气降尘中的铜元素污染贡献较大,是主要的污染源。  相似文献   

10.
研究矿业活动重金属的释放、迁移及累积特征对于控制和治理矿区水土环境污染具有重要的意义。本文通过广东大宝山矿区水土污染源调查及横石河流域沿岸水土样品采集,以研究区土壤对照值及国家环境质量为标准,试图探讨了大宝山矿区重金属迁移及累积特征。研究结果表明,横石河沿岸土壤重金属元素主要来自采矿活动的酸性废水的排放,土壤中Cd、Pb、Cu和Zn的含量均超过对照值,呈现出明显的累积特征,且Cd、Cu含量超过了国家土壤环境质量标准;土壤中重金属累积程度及其风险等级呈现出从源头向下游递减的特点,其中凉桥、水楼下地段农田重金属处于高风险区,阳河-莲心村虽有累积,但无风险;上坝村地处土壤重金属累积的中风险区,下坝村处于低风险区。研究结果为矿区重金属污染防治提供了重要依据。  相似文献   

11.
武水河上游区域土壤重金属污染风险及来源分析   总被引:1,自引:0,他引:1  
生态功能区在涵养水源、保持水土、维系生物多样性等方面具有重要的作用。本文以位于南岭生态功能区的流域——武水流域为研究对象,采集流域上游交通运输用地、采矿用地、工业用地、耕地及林地5种土地利用类型土壤样品,分析7种重金属Cd、As、Cu、Hg、Ni、Pb、Zn的含量特征,采用内梅罗综合污染指数评价重金属污染的程度,Hakanson潜在生态风险指数法评价土壤重金属潜在生态风险,并应用主成分分析法探究重金属污染的来源。研究结果显示,武水河上游地区土壤重金属Cd、As、Cu、Hg、Ni、Pb、Zn平均含量分别为1.28、72.44、54.62、0.27、68.32、72.29和158.42mg/kg,均高于土壤背景值,其中采矿用地土壤重金含量除Hg外均高于其他类型土壤。均值状态下土壤中Cd和As单因子污染指数分别为5.07、3.25,其中采矿用地中Cd单因子污染指数可达13.59;土壤重金属综合污染指数表明,采矿用地污染最为严重,其次是工业用地,林地呈安全状态。潜在生态危害指数评价结果显示,采矿用地和工业用地达到了强生态危害,其他类型土壤为轻微生态危害,而采矿用地土壤中Cd达到极强生态危害,As为强生态危害。土壤重金属来源研究结果表明,As、Cd、Cu和Zn来源于矿山开采及工业活动,Ni和Hg主要来源于成土母质,Pb则来源于交通运输。研究认为:武水流域上游区土壤重金属污染情况较为严重,Cd和As是区内主要的风险因子,主要来源于矿山开采以及工业活动。  相似文献   

12.
《China Geology》2020,3(3):402-410
This paper focuses on the heavy metal enrichment and heavy metal pollution degree associated with mining activities in some crops and the soils of different parent materials in the Xiaoqinling Gold Belt. According to the geochemical analysis results of the soils observed in the gold belt, the soils are most highly enriched in Pb, followed by Cr, Cu, and Zn. Furthermore, they are relatively poor in Hg, Cd, and As. It is also shown that the heavy metals in all kinds of soils have the same geochemical characteristics in the gold belt. As for the crops (such as corn and wheat) in the gold belt, Zn and Cu are the most abundant elements, followed by Pb and Cr. Meanwhile, Hg, Cd, and As were found to have relatively low concentrations in the crops. The heavy metals in wheat and corn have the same geochemical characteristics in the gold belt in general. Compared to the aeolian loess soils and the crops therein, heavy metals are more enriched in diluvial and alluvial soils and the crops therein. As shown by relevant studies, the Hg, Pb, Cd, Cu, and Zn pollution are mainly caused by mining activities. Corn and wheat in the gold belt have a high tendency of risk exposure to heavy metal pollution since they are mostly affected by mining activities and feature high background values of heavy metal concentrations. Furthermore, wheat is more liable to be enriched in heavy metals than corn is grown in all types of soils. The Hg pollution in soils leads to Hg accumulation, increasing the risk of Hg uptake in crops, and further affecting human health. This study will provide a scientific basis for the control and management of heavy metals in farmland soils of mining areas.  相似文献   

13.
云南省武定县土壤重金属地球化学分布特征及其来源浅析   总被引:4,自引:0,他引:4  
秦元礼 《地质与勘探》2020,56(3):540-550
为探明西南地区耕地土壤重金属污染的分布特征及来源,选取云南省武定县优耕区为研究区,在分析1802件表层土壤和4条剖面土壤重金属含量的基础上,运用地累积指数法评估重金属污染风险,利用地统计分析、单因子方差分析、正定矩阵分析探讨重金属的空间分布特征、污染水平及潜在来源。8种重金属与云南省背景值相差较小,其中Cr、Ni平均含量高于云南省背景值,是其背景值的1.75和1.14倍,As、Cu、Hg、Ni、Pb和Zn低于其背景值。8种重金属元素呈现东高西低、南高北低的分布趋势,异常区分布规律明显。地累积指数结果表明,8种重金属中仅Cd存在轻微污染,其余元素均处于无污染水平,与以往认为西南地区是地质高背景区、土壤污染严重有较大出入,需要对西南重金属高背景区的观点进行重新认识和修订。研究区内8种重金属主要有3个污染源:矿业开采源、肥料和交通污染源和成土母质源。其中,As、Cu、Hg主要受迤纳厂铜矿开采的影响; Pb、Cd、Zn受刺竹箐铅锌矿床的开采、交通污染和肥料施用的共同影响; Cr、Ni受成土母质影响较大。  相似文献   

14.
为研究青藏高原金属矿山勘探、开采、闭坑阶段不同开发阶段河流重金属污染的严重程度,通过野外调查,室内测试分析,对比5个金属矿山河流重金属元素含量、污染指数沿程变化,得出以下结果:(1)勘探阶段和闭坑后河流水质污染较小,开采阶段矿业活动对河水水质污染较大。(2)As、Pb、Cd、Cu和Zn五种元素是金属矿山的特征污染物。开采矿区中德尔尼铜矿区、下柳沟铅锌矿、甲玛矿区河流均有重金属元素污染,微碱性环境中德尔尼铜矿区,主要污染物为As,单项污染指数为0~10.6;下柳沟铅锌矿Pb、Cd、Cu和Zn元素单项污染指数分别为0.2~2.1、0~55、0.4~24、0.3~1550;偏酸性环境中甲玛矿区的特征污染物主要为Cu、Cd。其中Cu、Cd单项污染指数为0~4174、0~4;勘探矿区大场金矿、闭坑矿区罗布莎铬铁矿区河流未出现污染元素。(3)青藏高原5处典型的高海拔山地矿山河流由于稀释作用重金属流经2km后达到安全水平,研究结果可为青藏高原矿山开采中河流水环境保护提供参考依据。  相似文献   

15.
《China Geology》2022,5(4):649-661
In this paper, 25 sampling points of overlying deposits in Tonglushan mining area, Daye City, Hubei Province, China were tested for heavy metal content to explore pollution characteristics, pollution sources and ecological risks of heavy metals in sediments. A geo-accumulation index method was used to evaluate the degree of heavy metal pollution in the sediment. The mean sediment quality guideline quotient was used for evaluating the ecological risk level of heavy metal in the sediment. And a method of correlation analysis, clustering analysis, and principal component analysis was used for preliminary analysis on the source of heavy metal in the sediment. It was indicated that there was extremely heavy metal pollution in the sediment, among which Cd was extremely polluted, Cu strongly contaminated, Zn, As, and Hg moderately contaminated, and Pb, Cr, and Ni were slightly contaminated. It was also indicated by the mean sediment quality guideline-quotient result that there was a high ecological risk of heavy metals in the sediment, and 64% of the sample sites had extremely high hidden biotoxic effects. For distribution, the contamination of branches was worse than that of the main channel of Daye Dagang, and the deposition of each heavy metal was mainly influenced by the distance from this sample site to the sewage draining exit of a tailings pond. The source analysis showed that the heavy metals in the sediment come from pollution discharging of mining and beneficiation companies, tailings ponds, smelting companies, and transport vehicles. In the study area, due to the influence of heavy metal discharging from these sources, the ecotoxicity of heavy metals in the sediment was extremely high, and Cd was the most toxic pollutant. The research figured out the key restoration area and elements for ecological restoration in the sediment of the Tonglüshan mining area, which could be referenced by monitoring and governance of heavy metal pollution in the sediment of the polymetallic mining area.©2022 China Geology Editorial Office.  相似文献   

16.
The Linares region (southern Spain) has been subjected to two important sources of pollution: the intensive mining works and the urban-industrial activity. To obtain a geochemical characterisation of the soil, 31 trace elements were analysed and 669 soil samples were collected. By means of clustering analysis, we identified groups of elements and grid squares in which relations could be established concerning soil lithology, urban and industrial activities and the degree of pollution impact; in addition, we were able to characterise the geochemical background of the study area. The multivariate study led us to identify four factors. Particularly important was factor 2, which represented the elements associated with mineral paragenesis (Cu, Pb, As, Co, Mn, Zn, Sn, Ba). This factor also contains elements related with an urban-industrial activity, such as Pb, Cu, Zn, As and Ba. Furthermore, we identified factor 4, associating Ni, V and Cr, and which is related to the use of fuels.  相似文献   

17.
Abstract: The present study demonstrates distribution and chemical forms of heavy metals in soils of the Almalyk mining and smelting industrial area along five transects. The study area is located in Almalyk, Uzbekistan, where the intensification of industrial enterprises negatively impacts the environment. The distribution of 17 heavy metals (Cu, Zn, Pb, Sc, V, Cr, Co, Ni, Ga, Rb, Sr, Y, Zr, Nb, Ba, Th, and U) were studied in 21 sampling locations (21×3=63 soil samples) along five radial transects with a total length of 60?km downwind deposition gradient. Soil samples were collected from the upper layer (0–10?cm) at 4–6?km intervals. As a result of X-ray fluorescence spectrometry analyses by using X-ray fluorescence spectroscopy (XRF, Philips Analytical Ink, USA ), a significant decrease in heavy metal (Cu, Zn, Pb) deposition was found going from the source in a downwind direction. Soil samples taken from the first location (near the pollution sources) showed higher concentrations of Cu, Zn and Pb, and lower concentrations with increasing distance from the source. Obtained data showed different impact of pollution sources to heavy metal deposition and distribution in soils. The Almalyk mining and smelting complex is the major source of Pb, Zn and Cu enrichment in soils. Distribution of other trace elements does not exceed background content and suggests lithogenic background. This allowed us to divide these elements into two groups: (1) technogenic (Cu, Zn and Pb); and (2) lithogenic (Sc, V, Cr, Co, Ni, Ga, Rb, Sr, Y, Zr, Nb, Ba, Th and U) origins.  相似文献   

18.
The analysis of a short core collected in the Tinto Estuary (SW Spain) permits to delimitate the influence of historical mining activities on sediments and microfauna (Foraminifera and Ostracoda). In very shallow palaeochannels of the middle estuary, a first mining period (~3,600 cal years BP) caused high sediment pollution by Cu, with a significant diminution of the palaeontological record due to continuous acid mining drainage processes. In this core, the polluted levels derived from both Roman extractions (2,000–1,900 years BP) and the extensive mining activities between 1870 and 1935 have been eroded. The 1,800–200 years BP period is characterized by a limited mining activity and an important improvement of this ecosystem. In addition, the effects of recent industrial wastes have been limited in this area.  相似文献   

19.
小秦岭金矿区小麦和玉米重金属的健康风险评价   总被引:3,自引:0,他引:3  
重金属污染引发的农产品质量安全问题已成为全社会关注的焦点。为了解小秦岭金矿开发引起的重金属污染风险,采集了同点位的农田土壤、小麦和玉米籽粒样品,测定了其中Hg、Pb、Cd、Cr、As、Cu和Zn的含量及其在土壤中的形态;采用指数法和RAC风险评价法分析了土壤重金属的污染风险,采用转移因子和目标风险指数法评价了小麦、玉米籽粒中重金属的健康风险。结果表明:小秦岭金矿区土壤中Hg、Pb、Cd、Cu、Zn含量受矿业活动影响强度大,在土壤中累积明显;土壤中Hg、Cd、Pb、Cu总量超过了国家限值,呈现污染;Cd、Hg、Cu具有潜在生态风险。小麦和玉米籽粒中Pb以及玉米籽粒中的Cd的平均含量高于国家标准,呈现一定程度的污染;部分小麦样品中的Hg、Cd和部分玉米样品中的Cd超过WHO/FAO安全限值,小麦和玉米籽粒中度Pb平均含量超过欧盟安全标准,说明具有潜在的健康风险。重金属的转移因子表明Cd、Zn及Cu比其他重金属更容易从土壤转移到小麦和玉米籽粒中;通过小麦对重金属的摄入量略高于玉米,远低于WHO/FAO推荐剂量;目标风险指数评价表明,只消费小麦或玉米基本不产生健康风险,但同时消费矿区生长的小麦和玉米具有较高的Pb健康风险。  相似文献   

20.
This research focuses on the development of metal pollution in sediment cores from three estuaries in Northwest Spain: Viveiro, Ortigueira and Barqueiro. Pb, Cu, Co, Cr, Cd and Zn and total organic carbon were assessed using principal component analysis (PCA) in order to obtain background values, measure pollution levels and identify pollution sources. Results were interpreted by considering the local industrial history, grain size and C/N relationship. The pollution levels obtained bear a strong resemblance to those documented for of a moderately industrialised area. PCA identifies factors that reflect mainly temporal associations with metals. Sedimentation rates between 0.9 and 1.1 cm/year were determined. In Viveiro core levels of Cr pollution are associated with tanneries. In Ortigueira, high core levels of Cu and Co are linked to mining, and Cr levels to adjacent ultramafic rocks. Erosion of Holocene sediment causes high values of Co and Cr in the Barqueiro core. Cu increase in the three estuaries is related to fungicide use since 1910. Sea level rise appears to be affecting the marine characteristics of the sediments in Barqueiro. In Viveiro, the nature of the sediment reflects engineering work and land reclamation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号