首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 544 毫秒
1.
Diatom-based transfer functions for inferring epilimnetic total phosphorus (TP) have been developed from a data set of 33 southeastern Australian water storages. Regular institutional monitoring of these sites has allowed comparison of models developed from TP data covering different time periods. A model based on mean annual TP performs better than models derived from winter maximum TP, spring minimum TP or TP nearest the time of diatom sampling. A mean annual TP model (WA-PLS 2 component) has a jack-knifed diatom-inferred versus measured TP correlation coefficient (r 2 jack) of 0.69 and a root-mean-square-error of prediction (RMSEP) of 0.246 log10g TP l–1, while alternative models have RMSEP > 0.27. Deletion of two samples with uncharacteristic species composition and environmental conditions improved performance of the mean annual TP model (r 2 jack= 0.74; RMSEP = 0.233 log10g TP l–1). Comparison with other published diatom-TP calibration models indicates that this model performs relatively well, with possible contributing factors including the extensive characterisation of TP (with an average 15 determinations making up the annual mean) and the dominance of planktonic diatoms in most sites. Downcore application of the model will allow the reconstruction of reservoir nutrient histories since commissioning, and thus provide a basis for understanding and management of reservoirs.  相似文献   

2.
A 72-lake diatom training set was developed for the Irish Ecoregion to examine the response of surface sediment diatom assemblages to measured environmental variables. A variety of multivariate data analyses was used to investigate environmental and biological data structure and their inter-relationships. Of the variables used in determining a typology for lakes in the Irish Ecoregion, alkalinity was the only one found to have a significant effect on diatom assemblages. A total of 602 diatom taxa were identified, with 233 recorded at three or more sites with abundances ≥1%. Generally diatom data displayed a high degree of heterogeneity at the species level and non-linear ecological responses. Both pH and total phosphorus (TP) (in the ranges of 5.1–8.5 and 4.0–142.3 μg l−1 respectively) were shown to be the most significant variables in determining the surface sediment diatom assemblages. The calibration models for pH and TP were developed using the weighted averaging (WA) method; data manipulation showed strong influences on model performances. The optima WA models based on 70 lakes produced a jack-knifed coefficient of determination (r 2 jack) of 0.89 with a root mean squared error (RMSEP) of 0.32 for pH and r 2 jack of 0.74 and RMSEP of 0.21 (log10 μg l−1) for TP. Both models showed strong performances in comparison with existing models for Ireland and elsewhere. Application of the pH and TP transfer functions developed here will enable the generation of quantitative water quality data from the expanding number of palaeolimnological records available for the Irish Ecoregion, and thus facilitate the use of palaeolimnological approaches in the reconstruction of past lake water quality, ecological assessment and restoration.  相似文献   

3.
Physical, chemical, and biological data were collected from a suite of 57 lakes that span an elevational gradient of 1360 m (2115 to 3475 m a.s.l.) in the eastern Sierra Nevada, California, USA as part of a multiproxy study aimed at developing transfer functions from which to infer past drought events. Multivariate statistical techniques, including canonical correspondence analysis (CCA), were used to determine the main environmental variables influencing diatom distributions in the study lakes. Lakewater depth, surface-water temperature, salinity, total Kjeldahl nitrogen, and total phosphorus were important variables in explaining variance in the diatom distributions. Weighted-averaging (WA) and weighted-averaging partial least squares (WA-PLS) were used to develop diatom-based surface-water temperature and salinity inference models. The two best diatom-inference models for surface-water temperature were developed using simple WA and inverse deshrinking. One model covered a larger surface-water temperature gradient (13.7 °C) and performed slightly poorer (r2 = 0.72, RMSE = 1.4 °C, RMSEPjack = 2.1 °C) than a second model, which covered a smaller gradient (9.5 °C) and performed slightly better (r2 = 0.89, RMSE = 0.7 °C, RMSEPjack = 1.5 °C). The best diatom-inference model for salinity was developed using WA-PLS with three components (r2 = 0.96, RMSE = 4.06 mg L–1, RMSEPjack = 11.13 mg L–1). These are presently the only diatom-based inference models for surface-water temperature and salinity developed for the southwestern United States. Application of these models to fossil-diatom assemblages preserved in Sierra Nevada lake sediments offers great potential for reconstructing a high-resolution time-series of Holocene and late Pleistocene climate and drought for California.  相似文献   

4.
Lake eutrophication is a problem in many areas of Ontario, although the history of nutrient enrichment is poorly documented. The aim of this study was to construct a diatom-based transfer function to infer past phosphorus levels in Ontario lakes using paleolimnological analyses. The relationship between diatom assemblages and limnological conditions was explored from a survey of diatoms preserved in the surface sediments of 64 Southern Ontario lakes, spanning a total phosphorus gradient of 0.004 to 0.054 mg L-1. Over 420 diatom taxa were identified, 98 of which were sufficiently common to be considered in statistical analyses. Canonical correspondence analysis (CCA) determined that pH, ammonium, aluminum, spring total phosphorus (TP), strontium, total nitrogen (TN), maximum depth (MaxZ), chlorophyll a (Chla) and mean depth were significant variables in explaining the variance in the diatom species data. The environmental optima of common diatom taxa for the limnologically important variables (TP, pH, TN, MaxZ, Chla) were calculated using weighted averaging (WA) regression and calibration techniques, and transfer functions were generated. The diatom inference model for spring TP provided a robust reconstructive relationship (r2 = 0.637; RMSE = 0.007 mg L-1; r2 boot = 0.466; RMSEboot = 0.010 mg L-1). Other variables, including pH (r2 = 0.702; RMSE = 0.208; r2 boot = 0.485; RMSEboot = 0.234), TN (r2 = 0.574; RMSE = 0.0899 mg L-1; r2 boot = 0.380; RMSEboot = 0.127 mg L-1) and MaxZ (r2 = 0.554; RMSE = 1.05 m; r2 boot = 0.380; RMSEboot = 1.490 m), were also strong, indicating that they may also be reconstructed from fossil diatom communities. This study shows that it is possible to reliably infer lakewater TP and other limnological variables in alkaline Southern Ontario lakes using the WA technique. This method has the potential to aid rehabilitation programs, as it can provide water quality managers with the means to estimate pre-enrichment phosphorus concentrations and an indication of the onset and development of nutrient enrichment in a lake.  相似文献   

5.
The relationships between diatoms (Bacillariophyceae) in surface sediments of lakes and summer air temperature, pH and total organic carbon concentration (TOC) were explored along a steep climatic gradient in northern Sweden to provide a tool to infer past climate conditions from sediment cores. The study sites are in an area with low human impact and range from boreal forest to alpine tundra. Canonical correspondence analysis (CCA) constrained to mean July air temperature and pH clearly showed that diatom community composition was different between lakes situated in conifer-, mountain birch- and alpine-vegetation zones. As a consequence, diatoms and multivariate ordination methods can be used to infer past changes in treeline position and dominant forest type. Quantitative inference models were developed to estimate mean July air temperature, pH and TOC from sedimentary diatom assemblages using weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regression. Relationships between diatoms and mean July air temperature were independent of lake-water pH, TOC, alkalinity and maximum depth. The results demonstrated that diatoms in lake sediments can provide useful and independent quantitative information for estimating past changes in mean July air temperature (R2 jack = 0.62, RMSEP = 0.86 °C; R2 and root mean squared error of prediction (RMSEP) based on jack-knifing), pH (R2 jack = 0.61, RMSEP = 0.30) and TOC (R2 jack = 0.49, RMSEP = 1.33 mg l-1). The paper focuses mainly on the relationship between diatom community composition and mean July air temperature, but the relationships to pH and TOC are also discussed.  相似文献   

6.
Climate in central Asia is dominated by the Asian monsoon. The varying impact of the summer monsoon across the Tibetan (Qinghai-Xizang) Plateau provides a strong gradient in precipitation, resulting in lakes of different salinity. Diatoms have been shown to indicate changes in salinity. Thus, transfer functions for diatoms and salinity or related environmental variables represent an excellent tool for paleoclimatic reconstructions in the Tibetan Plateau. Forty freshwater to hypersaline lakes (salinity: 0.1 to 91.7 g l–1) were investigated in the eastern Tibetan Plateau. The relationship between 120 diatom taxa and conductivity, maximum water depth and major ions were analyzed using an indicator value approach, ordination and taxon response models. Canonical correspondence analysis indicated that conductivity was the most important variable, accounting for 10.8% of the variance in the diatom assemblages. In addition water depth and weathering were influential. Weighted Averaging (WA) and Weighted Averaging Partial Least Square (WA-PLS) regression and calibration models were used to establish diatom-conductivity and water depth transfer functions. An optimal two-component WA-PLS model provided a high jack-knifed coefficient of prediction for conductivity (r2 jack = 0.92), with a moderate root mean squared error of prediction (RMSEPjack = 0.22), a very low mean bias (0.0003), and a moderate maximum bias (0.26). A WA model with tolerance downweighting resulted in a slightly lower r2 jack (0.89) for water depth, with RMSEPjack= 0.26, mean bias = –0.0103 and maximum bias = 0.26.  相似文献   

7.
Previous studies have shown chironomids to be excellent indicators of environmental change and training sets have been developed in order to allow these changes to be reconstructed quantitatively from subfossil sequences. Here we present the results of an investigation into the relationships between surface sediment subfossil chironomid distribution and lake environmental variables from 42 lakes on the Tibetan Plateau. Canonical correspondence analysis (CCA) revealed that of the 11 measured environmental variables, salinity (measured as total dissolved solids TDS) was most important, accounting for 10.5% of the variance in the chironomid data. This variable was significant enough to allow the development of quantitative inference models. A range of TDS inference models were developed using Weighted Averaging (WA), Partial Least Squares (PLS), Weighted Averaging–Partial Least Squares (WA–PLS), Maximum Likelihood (ML), Modern Analogues Technique (MAT) and Modern Analogues Techniques weighted by similarity (WMAT). Evaluation of the site data indicated that four lakes were major outliers, and after omitting these from the training set the models produced jack-knifed coefficients of determination (r 2) between 0.60 and 0.80, and root-mean-squared errors of prediction (RMSEP) between 0.29 and 0.44 log10 TDS. The best performing model was the two-component WA–PLS model with r 2 jack = 0.80 and RMSEPjack = 0.29 log10 TDS. The model results were similar to other chironomid-salinity models developed in different regions, and they also showed similar ecological groupings along the salinity gradient with respect to freshwater/salinity thresholds and community diversity. These results therefore indicate that similar processes may be controlling chironomid distribution across salinity gradients irrespective of biogeographical constraints. The performance of the transfer functions illustrates that chironomid assemblages from the Tibetan Plateau lakes are clearly sensitive indicators of salinity. The models will therefore allow the quantification of long-term records of past water salinity for lacustrine sites across the Tibetan Plateau, which has important implications for future hydrological research in the region.  相似文献   

8.
The analysis of chironomid taxa and environmental datasets from 46 New Zealand lakes identified temperature (February mean air temperature) and lake production (chlorophyll a (Chl a)) as the main drivers of chironomid distribution. Temperature was the strongest driver of chironomid distribution and consequently produced the most robust inference models. We present two possible temperature transfer functions from this dataset. The most robust model (weighted averaging-partial least squares (WA-PLS), n = 36) was based on a dataset with the most productive (Chl a > 10 μg l−1) lakes removed. This model produced a coefficient of determination () of 0.77, and a root mean squared error of prediction (RMSEPjack) of 1.31°C. The Chl a transfer function (partial least squares (PLS), n = 37) was far less reliable, with an of 0.49 and an RMSEPjack of 0.46 Log10μg l−1. Both of these transfer functions could be improved by a revision of the taxonomy for the New Zealand chironomid taxa, particularly the genus Chironomus. The Chironomus morphotype was common in high altitude, cool, oligotrophic lakes and lowland, warm, eutrophic lakes. This could reflect the widespread distribution of one eurythermic species, or the collective distribution of a number of different Chironomus species with more limited tolerances. The Chl a transfer function could also be improved by inputting mean Chl a values into the inference model rather than the spot measurements that were available for this study.  相似文献   

9.
Subfossil zooplankton assemblages (Cladocera 22 taxa, Rotifera 1 taxon) were identified from the surface sediments of 36 shallow (median depth = 0.7 m) Danish coastal brackish lakes differing in epilimnic salinity (SAL, range 0.2–17.4), summer-mean total phosphorus (TP, 27–327 g l–1) and total nitrogen (TN, 0.850–2.629 mg l–1), as well as in submerged macrophyte coverage and planktivorous fish density (PL-CPUE). Cladoceran species richness declined significantly with increasing SAL, TP and TN, while no significant correlation was found to either PL-CPUE, macrophyte coverage or lake surface area. Bonferroni-adjusted forward selection within canonical correspondence analysis (CCA) showed that 22.1% of the variation in zooplankton data was explained by PL-CPUE, SAL and TP uniquely; each variable explaining an almost equally significant amount of variation in the zooplankton data. Predictive models to infer PL-CPUE, SAL and TP were developed using variance weighted-averaging (WA) procedures. Almost similar values of boot-strapped coefficient of determination (r2boot-strapped 0.22–0.38) were produced by the WA inference models of PL-CPUE, SAL and TP, while the inference models of TP produced the lowest boot-strapped root-mean-squared-error of prediction (RMSEPboot-strapped 0.29–0.36 log(TP + 1), g l–1). Yet, zooplankton TP and SAL optima (WA) were strongly correlated (r2 = 0.46), while PL-CPUE optima (WA) were independent of both TP and SAL optima, indicating that only the PL-CPUE inference models are suitable for making reconstructions.  相似文献   

10.
Thecamoebians were examined from 71 surface sediment samples collected from 21 lakes and ponds in the Greater Toronto Area to (1) elucidate the controls on faunal distribution in modern lake environments; and (2) to consider the utility of thecamoebians in quantitative studies of water quality change. This area was chosen because it includes a high density of kettle and other lakes which are threatened by urban development and where water quality has deteriorated locally as a result of contaminant inputs, particularly nutrients. Fifty-eight samples yielded statistically significant thecamoebian populations. The most diverse faunas (highest Shannon Diversity Index values) were recorded in lakes beyond the limits of urban development, although the faunas of all lakes showed signs of sub-optimal conditions. The assemblages were divided into five clusters using Q-mode cluster analysis, supported by Detrended Correspondence Analysis. Canonical Correspondence Analysis (CCA) was used to examine species-environment relationships and to explain the observed clusterings. Twenty-four measured environmental variables were considered, including water property attributes (e.g., pH, conductivity, dissolved oxygen), substrate characteristics, sediment-based phosphorus (Olsen P) and 11 environmentally available metals. The thecamoebian assemblages showed a strong association with phosphorus, reflecting the eutrophic status of many of the lakes, and locally to elevated conductivity measurements, which appear to reflect road salt inputs associated with winter de-icing operations. Substrate characteristics, total organic carbon and metal contaminants (particularly Cu and Mg) also influenced the faunas of some samples. A series of partial CCAs show that of the measured variables, sedimentary phosphorus has the largest influence on assemblage distribution, explaining 6.98% (P < 0.002) of the total variance. A transfer function was developed for sedimentary phosphorus (Olsen P) using 58 samples from 15 of the studied lakes. The best performing model was based on weighted averaging with inverse deshrinking (WA Inv, rjack2 = 0.33, RMSEP = 102.65 ppm). This model was applied to a small modern thecamoebian dataset from a eutrophic lake in northern Ontario to predict phosphorus and performed satisfactorily. This preliminary study confirms that thecamoebians have considerable potential as quantitative water quality indicators in urbanising regions, particularly in areas influenced by nutrient inputs and road salts.  相似文献   

11.
Freshwater midges, consisting of Chironomidae, Chaoboridae and Ceratopogonidae, were assessed as a biological proxy for palaeoclimate in eastern Beringia. The northwest North American training set consists of midge assemblages and data for 17 environmental variables collected from 145 lakes in Alaska, British Columbia, Yukon, Northwest Territories, and the Canadian Arctic Islands. Canonical correspondence analyses (CCA) revealed that mean July air temperature, lake depth, arctic tundra vegetation, alpine tundra vegetation, pH, dissolved organic carbon, lichen woodland vegetation and surface area contributed significantly to explaining midge distribution. Weighted averaging partial least squares (WA-PLS) was used to develop midge inference models for mean July air temperature (r boot2 = 0.818, RMSEP = 1.46°C), and transformed depth (ln (x+1); r boot2 = 0.38, and RMSEP = 0.58).  相似文献   

12.
A diatom transfer function to infer epilimnetic total phosphorus (TP) concentration was derived using surface sediment diatom data from 68 medium-sized (10–1000 ha) lakes in Southern Finland. Publicly available monitoring records were used in lake selection to avoid gradients caused by pH and humic substances. Constrained and partially constrained ordinations indicated that TP was an important variable influencing diatom assemblages. A long floristic gradient in relation to TP was also apparent and therefore an inference model was developed for TP using unimodal-based regression and calibration methods. The final model included 61 lakes with epilimnetic TP concentrations between 3 and 89 g P l–1, measured during the autumnal circulation period. It has a jackknifed-estimated root mean squared error of prediction of 0.16 log g P l–1, a maximum bias of 0.28 log g P l–1, and an r2 jack of 0.76.The model was tested in the presently eutrophic Lake Valkjärvi (epilimnetic [TP] 60–85 g P l–1), located in Southern Finland. It successfully predicted the measured autumnal epilimnetic TP concentration for the past twenty years and the changes in inferred [TP] reflected disturbances known to have occurred before that time. The diatom-based inferences show that Lake Valkjärvi was oligo-mesotrophic as late as the 1930's and has become eutrophic because of nutrient inputs from agriculture and, especially, municipalities. However, epilimnetic TP concentration has not increased further.  相似文献   

13.
The resolution achievable for chironomid identifications has increased in recent years because of significant improvements in taxonomic literature. However, high taxonomic resolution requires more training for analysts. Furthermore, with greater taxonomic resolution, misidentifications and the number of rare, poorly represented taxa in chironomid calibration datasets may increase. We assessed the effects of various levels of taxonomic resolution on the performance of chironomid-based temperature inference models (transfer functions) and temperature reconstruction. A calibration dataset consisting of chironomid assemblage and temperature data from 100 lakes was examined at four levels of taxonomic detail. The coarsest taxonomic resolution primarily represented identifications to genus or suprageneric level. At the highest level of taxonomic resolution, identification to genus level was possible for 37% of taxa, and identification below genus was possible for 60% of taxa. Transfer functions were obtained using Weighted Averaging (WA) and Weighted Averaging-Partial Least Squares (WA-PLS) regression. Cross-validated performance statistics, such as the root mean square error of prediction (RMSEP) and the coefficient of determination (r 2) between inferred and observed values improved considerably from the lowest taxonomic resolution level (WA: RMSEP 1.91°C, r 2 0.78; WA-PLS: RMSEP 1.59°C, r 2 0.86) to the highest taxonomic resolution level (WA: RMSEP 1.66°C, r 2 0.84; WA-PLS: RMSEP 1.41°C, r 2 0.89). Reconstructed July air temperatures during the Lateglacial period based on fossil chironomid assemblages from Hijkermeer (The Netherlands) were similar for all levels of taxonomic resolution, except the coarsest level. At the coarsest taxonomic level, reconstruction failed to infer one of the known Lateglacial cold episodes in the record. Also, the difference in reconstructed values based on lowest and highest taxonomic resolutions exceeded sample-specific estimated standard errors of prediction in several instances. Our results suggest that chironomid-based transfer functions at the highest taxonomic resolution outperform models based on lower-resolution calibration data. However, transfer functions of intermediate taxonomic resolution produced results very similar to models based on high-resolution taxonomic data. In studies that include analysts with different levels of expertise, inference models based on intermediate taxonomic resolution, therefore, might provide an alternative to transfer functions of maximum taxonomic detail in order to ensure taxonomic consistency between calibration datasets and down-core records produced by different analysts.  相似文献   

14.
Quantitative inference models for water-chemistry variables are derived from epiphytic diatom assemblages in 186 lentic and mostly shallow freshwaters in lower Belgium (Flanders). When the complete pH range is considered (pH 3.4–9.3), robust transfer functions are obtained for median pH (jack-knifed r 2 = 0.88, RMSEP = 0.38 pH units or 6.4% of the observed range) and dissolved inorganic carbon concentration (jack-knifed r 2 = 0.86, RMSEP = 0.194 log10 mg DIC l−1 or 10.2% of the observed range) by means of weighted-averaging partial least squares regression (WA-PLS). For these variables, the calibration models are as reliable as those based on sedimentary diatom assemblages. Inferences of pH may be improved by combining estimates from epiphytic and sediment assemblages. In circumneutral and alkaline conditions, WA-PLS calibration of maximum or median total phosphorus is possible (log-transformed; jack-knifed r 2 = 0.64 or 0.66 and RMSEP = 14% or 12.3% of the observed range, respectively). It makes little difference if taxa showing no response to TP are taken into consideration or not. These models considerably expand the prospects of using historical herbarium materials to hindcast environmental conditions and also allow more accurate interpretation of current compositional changes in epiphytic communities. Compared to littoral sediment assemblages, fewer water-column variables can be inferred reliably from epiphyton. This probably results from differences between the effective gradients in both habitats, together with lower in situ species diversity and less effective spatial integration (i.e. lower recruitment of phytoplankton) in the epiphyton. A comparison of the HOF response-model types and WA-optima of diatom taxa for epiphytic and sediment assemblages shows that the relationship to individual variables, and in particular to those related to trophic status, may differ with habitat. Thus, the combination of samples from both habitat types in the same calibration model is not recommended. Electronic Supplementary Material Supplementary material is available and is accessible for authorised users in the online version of this article at  相似文献   

15.
Fossil assemblages of chironomid larvae (non-biting midges) preserved in lake sediments are well-established paleothermometers in north-temperate and boreal regions, but their potential for temperature reconstruction in tropical regions has never before been assessed. In this study, we surveyed sub-fossil chironomid assemblages in the surface sediments of 65 lakes and permanent pools in southwestern Uganda (including the Rwenzori Mountains) and central and southern Kenya (including Mount Kenya) to document the modern distribution of African chironomid communities along the regional temperature gradient covered by lakes situated between 489 and 4,575 m above sea level (a.s.l). We then combined these faunal data with linked Surface-Water Temperature (SWTemp: range 2.1–28.1°C) and Mean Annual Air Temperature (MATemp: range 1.1–24.9°C) data to develop inference models for quantitative paleotemperature reconstruction. Here we compare and discuss the performance of models based on different numerical techniques [weighted-averaging (WA), weighted-averaging partial-least-squares (WA-PLS) and a weighted modern analogue technique (WMAT)], and on subsets of lakes with varying gradient lengths of temperature and other environmental variables. All inference models calibrated against MATemp have a high coefficient of determination ( r\textjack2 r_{\text{jack}}^{2}  = 0.81–0.97), low maximum bias (0.84–2.59°C), and low root-mean-squared error of prediction (RMSEP = 0.61–1.50°C). The statistical power of SWTemp models is generally weaker ( r\textjack2 r_{\text{jack}}^{2}  = 0.77–0.95; maximum bias 1.55–3.73°C; RMSEP = 1.39–1.98°C), likely because the surface-water temperature data are spot measurements failing to catch significant daily and seasonal variation. Models based on calibration over the full temperature gradient suffer slightly from the limited number of study sites at intermediate elevation (2,000–3,000 m), and from the presence of morphologically indistinguishable but ecologically distinct taxa. Calibration confined to high-elevation sites (>3,000 m) has poorer error statistics, but is less susceptible to biogeographical and taxonomic complexities. Our results compare favourably with chironomid-based temperature inferences in temperate regions, indicating that chironomid-based temperature reconstruction in tropical Africa can be achieved.  相似文献   

16.
Ireland provides a unique setting for the study of past climates, as its climate is dominated by westerly airflow from the North Atlantic and readily responsive to changes in North Atlantic circulation patterns. Although there has been substantial research on Ireland’s past environments, quantitative palaeolimnological research, especially chironomid-based research, has been lacking. In order to further develop chironomid-based palaeolimnological investigations, a calibration set was constructed to determine the dominant environmental controls on modern chironomids in western Ireland. Chironomid subfossils were collected from surface sediments of 50 lakes. The lakes were characterised with 36 environmental variables, including physical attributes, lake water characteristics, lake sediment characteristics and land cover within each catchment. In this exploratory study, no specific environmental variable was targeted and lakes were chosen to span gradients of latitude, elevation, depth and trophic status. Redundancy analysis showed that six environmental variables—mean July air temperature, lake depth, dissolved organic carbon, and percentage catchment land cover of agriculture, peat bog and scrubland—captured a large and statistically significant portion of the variance in the chironomid data. July temperature and agricultural land cover were the most dominant environmental variables, with July temperature proving the most suitable for inference model development. A classical weighted-averaging model was developed to estimate July air temperature, with a coefficient of determination (r jack 2 ) of 0.60 and root mean square error of prediction (RMSEP) of 0.57 °C. Results suggest that summer temperature is the dominant influence on chironomid distribution across a wide variety of lake types, and the relatively small RMSEP should allow for more accurate reconstructions of Ireland’s relatively subdued Holocene temperature fluctuations.  相似文献   

17.
We examined the relationship between three key environmental variables (water depth, loss-on-ignition, and bottom-water temperature) and fossil chironomid distributions sampled from within-lake gradients in three small, moderately deep (18–35 m), maar lakes on St Michael Island, western Alaska. Site-specific (one lake, 29 samples) and local (three lakes, 87 samples) inference models for reconstructing water depth were developed using partial least squares regression and calibration. These models and a previously published regional model (136 lakes, one central-lake sample from each) are used to infer water depths from 78 fossil samples spanning the last ~30,000 14C years B.P. at Zagoskin Lake. Although the site-specific [r 2 boot = 0.90, root mean square error of prediction (RMSEP) = 1.76] and local (r boot2 = 0.68, RMSEP = 4.36) inference models have better performance statistics than the regional model, few clear trends among all three models exist in the lake-level reconstruction. We propose that multiple, within-lake sampling of gradients can be used to improve the performance statistics of water-depth transfer functions and ultimately reconstruct paleohydrology in regions known to exhibit large fluctuations in moisture balance through time given that: (1) adequate analogs are established and (2) taphonomic processes important to benthic invertebrate remains are more fully understood.  相似文献   

18.
Surface sediments from 68 small lakes in the Alps and 9 well-dated sediment core samples that cover a gradient of total phosphorus (TP) concentrations of 6 to 520 g TP l-1 were studied for diatom, chrysophyte cyst, cladocera, and chironomid assemblages. Inference models for mean circulation log10 TP were developed for diatoms, chironomids, and benthic cladocera using weighted-averaging partial least squares. After screening for outliers, the final transfer functions have coefficients of determination (r2, as assessed by cross-validation, of 0.79 (diatoms), 0.68 (chironomids), and 0.49 (benthic cladocera). Planktonic cladocera and chrysophytes show very weak relationships to TP and no TP inference models were developed for these biota. Diatoms showed the best relationship with TP, whereas the other biota all have large secondary gradients, suggesting that variables other than TP have a strong influence on their composition and abundance. Comparison with other diatom – TP inference models shows that our model has high predictive power and a low root mean squared error of prediction, as assessed by cross-validation.  相似文献   

19.
This paper presents a new method (moving-windows) that optimizes diatom-based paleolimnological reconstructions of past environmental conditions from supra-regional training sets. The moving-window method identifies the best number of nearest neighbours (window size) from a merged supra-regional EDDI and local (MV) training set (n = 429) for each fossil diatom assemblage and the best type of transfer function (ML, WA-PLS) based on the error statistic of each transfer function (highest cross-validated R 2, lowest cross-validated average bias, maximum bias and RMSEP). At first we evaluated the moving-window approach by comparing measured TP-values with inferred TP-values using both the moving-window approach and the WA-PLS method. The relative errors of the moving-window approach were not significantly different for 208 samples that had an error <15 μg/l TP using the WA-PLS method. However, for the remaining 221 samples with errors >>15 μg/l TP using the WA-PLS method, the moving window approach significantly reduced the relative error of the inferred TP levels. Secondly, the moving- window approach was used to reconstruct epilimnetic total phosphorous (TP) for Lake Dudinghausen, Lake Rugensee, Lake Tiefer See and Lake Drewitzer See (Northern Germany) using both the supra-regional EDDI training set and a local training set from Northern Germany (MV training set). The moving-window inferred TP-levels of the four study lakes were compared with published reconstructed TP-values and with inferred TP-values based on the local MV training set. Overall, the moving-window and the published TP-trends agree well with each other. However, the moving-window reconstructions generally indicated lower TP-levels throughout the past ∼5,000 to 12,000 years, including past maxima. Thus, the moving-window method seems to generate more realistic absolute TP levels due to the optimized window size (highest number of modern analogues, best error statistics). The identification of more realistic absolute historic TP-values is important for the validation of reference conditions for inland waters. This study also demonstrates that a robust local training set may, similar to moving-window training sets, also lead to reliable reconstructions, if the geological settings of the local training set lakes and the study lakes are similar.  相似文献   

20.
A modern diatom-pH calibration data-set consisting of surface-sediment diatom assemblages from 118 lakes and 530 taxa is presented. The AL:PE data-set is from high-altitude or high-latitude lakes in the Alps, Norway, Svalbard, Kola Peninsula, UK, Slovenia, Slovakia, Poland, Portugal, and Spain (pH range = 4.5-8.0; DOC range = 0.2-3.2 mg l-1). In addition, 92 epilithon samples from 22 high-altitude or high-latitude lakes comprise an AL:PE epilithon diatom-pH data-set. Weighted averaging partial least squares regression is used to develop pH-inference models. The AL:PE data-set has a root-mean-square-error of prediction (RMSEP) of 0.33 and a maximum bias of 0.36 pH units and r2 of 0.82, as assessed by leave-one-out cross-validation. The epilithon data-set has, after data-screening and the deletion of one very obvious outlier, a RMSEP of 0.23 and a maximum bias of 0.18 pH units and r2 of 0.88. The 167 sample SWAP diatom-pH data-set from lowland or upland lakes in the UK, Norway, and Sweden has a RMSEP of 0.29 and a maximum bias of 0.23 pH units and r2 of 0.86.The pH optima, as estimated by weighted averaging and Gaussian regression, are compared for the three data-sets (AL:PE, SWAP, AL:PE epilithon). There is a good correspondence between the AL:PE and the AL:PE epilithon optima, but a consistent bias between the AL:PE and SWAP optima, with the SWAP optima being lower than the AL:PE estimates.The predictive performances of the AL:PE and SWAP calibration data-sets are compared using independent test samples and six core sequences, all from high-altitude lakes, one in south-east Siberia and five in eastern Scotland. The results show the importance of using the AL:PE data-set for inferring lake-water pH from diatom assemblages in high-altitude or high latitude lakes with low DOC concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号