首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于WNAD方法的非一致网格算法及其弹性波场模拟   总被引:3,自引:2,他引:1       下载免费PDF全文
加权近似解析离散化(WNAD) 方法是近年发展的一种在粗网格步长条件下能有效压制数值频散的数值模拟技术. 在地震勘探的实际应用中, 不是所有情况都适合使用空间大网格步长. 为适应波场模拟的实际需要, 本文给出了求解波动方程的非一致网格上的WNAD算法. 这种方法在低速区、介质复杂区域使用细网格, 在其他区域采用粗网格计算. 在网格过渡区域, 根据近似解析离散化方法的特点, 采用了新的插值公式, 使用较少的网格点得到较高的插值精度. 数值算例表明, 非一致网格上的WNAD方法能够有效压制数值频散, 显著减少计算内存需求量和计算时间, 进一步提高了地震波场的数值模拟效率.  相似文献   

2.
张文生  郑晖 《地球物理学报》2019,62(6):2176-2187
本文研究了二维多孔弹性波方程的多尺度波场数值模拟方法.该多尺度方法可采用较粗的网格计算,同时又能反映细尺度上物性参数的变化信息.文中详细阐述了多尺度模拟方法与算法,并推导了相应的计算格式.基本思想是建立粗细两套网格,在粗网格上,基于有限体积方法计算更新波场;在细网格上,计算多尺度基函数,这基于有限元方法通过求解一个局部化问题得到.对含有随机分布散射体的多孔介质模型进行了数值计算,计算中应用了完全匹配层(PML)吸收边界条件,数值结果验证了本文方法和算法的正确性和有效性.  相似文献   

3.
The solution to the 2-D time-dependent unsaturated flow equation is numerically approximated by a second-order accurate cell-centered finite-volume discretization on unstructured grids. The approximation method is based on a vertex-centered Least Squares linear reconstruction of the solution gradients at mesh edges.A Taylor series development in time of the water content dependent variable in a finite-difference framework guarantees that the proposed finite volume method is mass conservative. A Picard iterative scheme solves at each time step the resulting non-linear algebraic problem. The performance of the method is assessed on five different test cases and implementing four distinct soil constitutive relationships. The first test case deals with a column infiltration problem. It shows the capability of providing a mass-conservative behavior. The second test case verifies the numerical approximation by comparison with an analytical mixed saturated–unsaturated solution. In this case, the water drains from a fully saturated portion of a 1-D column. The third and fourth test cases illustrate the performance of the approximation scheme on sharp soil heterogeneities on 1-D and 2-D multi-layered infiltration problems. The 2-D case shows the passage of an abrupt infiltration front across a curved interface between two layers. Finally, the fifth test case compares the numerical results with an analytical solution that is developed for a 2-D heterogeneous soil with a source term representing plant roots. This last test case illustrates the formal second-order accuracy of the method in the numerical approximation of the pressure head.  相似文献   

4.
To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.  相似文献   

5.
非均匀介质中地震波应力场的WNAD方法及其数值模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
通过对近似解析离散化(NAD)方法的分析,给出了一种求解声波和弹性波方程的带权重的近似解析离散化(WNAD)方法,并用WNAD方法、Lax-Wendroff 修正格式(LWC)和二阶中心差分方法计算了二维波动方程初值问题的应力场数值误差.结果表明WNAD方法具有更高的数值精度.用WNAD方法、LWC和四阶交错网格法对二维非均匀介质中弹性波传播的应力场进行了数值模拟.应力场快照和地表地震记录表明,即使是在粗网格条件下WNAD方法的模拟结果仍无可见的数值频散和源噪声.另一方面,由于WNAD方法同时计算了地震位移和梯度场,使得应力的计算更为便捷和精确,而且WNAD方法中波位移梯度局部连接关系的使用使得应力在间断处能够自动近似地满足应力连续性.  相似文献   

6.
A finite volume upwind numerical scheme for the solution of the linear advection equation in multiple dimensions on Cartesian grids is presented. The small-stencil, Modified Discontinuous Profile Method (MDPM) uses a sub-cell piecewise constant reconstruction and additional information at the cell interfaces, rather than a spatial extension of the stencil as in usual methods. This paper presents the MDPM profile reconstruction method in one dimension and its generalization and algorithm to two- and three-dimensional problems. The method is extended to the advection–diffusion equation in multiple dimensions. The MDPM is tested against the MUSCL scheme on two- and three-dimensional test cases. It is shown to give high-quality results for sharp gradients problems, although some scattering appears. For smooth gradients, extreme values are best preserved with the MDPM than with the MUSCL scheme, while the MDPM does not maintain the smoothness of the original shape as well as the MUSCL scheme. However the MDPM is proved to be more efficient on coarse grids in terms of error and CPU time, while on fine grids the MUSCL scheme provides a better accuracy at a lower CPU.  相似文献   

7.
The Fourier pseudospectral method has been widely accepted for seismic forward modelling because of its high accuracy compared to other numerical techniques. Conventionally, the modelling is performed on Cartesian grids. This means that curved interfaces are represented in a ‘staircase fashion‘causing spurious diffractions. It is the aim of this work to eliminate these non-physical diffractions by using curved grids that generally follow the interfaces. A further advantage of using curved grids is that the local grid density can be adjusted according to the velocity of the individual layers, i.e. the overall grid density is not restricted by the lowest velocity in the subsurface. This means that considerable savings in computer storage can be obtained and thus larger computational models can be handled. One of the major problems in using the curved grid approach has been the generation of a suitable grid that fits all the interfaces. However, as a new approach, we adopt techniques originally developed for computational fluid dynamics (CFD) applications. This allows us to put the curved grid technique into a general framework, enabling the grid to follow all interfaces. In principle, a separate grid is generated for each geological layer, patching the grid lines across the interfaces to obtain a globally continuous grid (the so-called multiblock strategy). The curved grid is taken to constitute a generalised curvilinear coordinate system, where each grid line corresponds to a constant value of one of the curvilinear coordinates. That means that the forward modelling equations have to be written in curvilinear coordinates, resulting in additional terms in the equations. However, the subsurface geometry is much simpler in the curvilinear space. The advantages of the curved grid technique are demonstrated for the 2D acoustic wave equation. This includes a verification of the method against an analytic reference solution for wedge diffraction and a comparison with the pseudospectral method on Cartesian grids. The results demonstrate that high accuracies are obtained with few grid points and without extra computational costs as compared with Cartesian methods.  相似文献   

8.
A mesh grading approach based on investigated lump method has been presented for simulating wave propagation in high velocity-contrast media. Unstructured fine grids are used to discretize the low wave-velocity medium in order to ensure the accuracy of numerical computation, and unstructured coarse grids are used for the high wave-velocity medium in order to substantially reduce the computational cost. On the interface, one coarse grid can match the fine grids of arbitrary odd number. The key feature of the proposed method is the constructions of investigated lumps on the interfaces of media. The transition zone, which is commonly used in the discontinuous grid scheme based on the staggered-grid finite-difference method, will not be used any more. Moreover, the computational instability that the discontinuous grid schemes frequently encountered does not arise in the proposed method. The comparisons with the analytical solutions and the application in studying the effects of sedimentary basin demonstrated that the mesh grading approach is a valid, accurate, convenient and flexible algorithm in simulating wave propagations in high velocity-contrast media with irregular interfaces.  相似文献   

9.
The seismic wave field, in its high-frequency asymptotic approximation, can be interpolated from a low- to a high-resolution spatial grid of receivers and, possibly, point sources by interpolating the eikonal (travel time) and the amplitude. These quantities can be considered as functions of position only. The travel time and the amplitude are assumed to vary in space only slowly, otherwise the validity conditions of the theory behind would be violated. Relatively coarse spatial sampling is then usually sufficient to obtain their reasonable interpolation. The interpolation is performed in 2-D models of different complexity. The interpolation geometry is either 1-D, 2-D, or 3-D according to the source-receiver distribution. Several interpolation methods are applied: the Fourier interpolation based on the sampling theorem, the linear interpolation, and the interpolation by means of the paraxial approximation. These techniques, based on completely different concepts, are tested by comparing their results with a reference ray-theory solution computed for gathers and grids with fine sampling. The paraxial method holds up as the most efficient and accurate in evaluating travel times from all investigated techniques. However, it is not suitable for approximation of amplitudes, for which the linear interpolation has proved to be universal and accurate enough to provide results acceptable for many seismological applications.  相似文献   

10.
求解声波方程的辛可分Runge-Kutta方法   总被引:2,自引:0,他引:2       下载免费PDF全文
本文基于声波方程的哈密尔顿系统,构造了一种新的保辛数值格式,简称NSPRK方法.该方法在时间上采用二阶辛可分Runge-Kutta方法,空间上采用近似解析离散算子进行离散逼近.针对本文发展的新方法,我们给出了NSPRK方法在一维和二维情况下的稳定性条件、一维数值频散关系以及二维数值误差,并在计算效率方面与传统辛格式和四阶LWC方法进行了比较.最后,我们将本文方法应用于声波在三层各向同性介质和异常体模型中的波传播数值模拟.数值结果表明,本文发展的NSPRK方法能有效压制粗网格或具有强间断情况下数值方法所存在的数值频散,从而极大地提高了计算效率,节省了计算机内存.  相似文献   

11.
A new computational scheme for calculating the first-arrival travel times on a rectangular grid of points is proposed. The new proposed method is of second-order accuracy. This means that the error of the calculated travel time is proportional to the second power of the grid spacing. The method should be sufficiently accurate for all applications in smooth seismic models. On the other hand, the method is not, in its present form, proposed for models with structural interfaces which make the method unstable and generate travel-time errors of the first order. Equations are also presented for the appropriate evaluation of the errors of calculated travel times to check their accuracy, and the proposed method is compared with other numerical methods. The method is developed, described and demonstrated in 2-D, but may also be extended to 3-D models and to general models with structural interfaces.  相似文献   

12.
提出一种新的三维空间不规则网格有限差分方法,模拟具有地形构造的非均匀各向异性介质中弹性波传播过程. 该方法通过具有二阶时间精度和四阶空间精度的不规则交错网格差分算子来近似一阶弹性波动方程,与多重网格不同,无需在精细网格和粗糙网格间进行插值,所有网格点上的计算在同一次空间迭代中完成. 针对具有复杂物性参数和复杂几何特征的地层结构,使用精细不规则网格处理粗糙界面、断层和空间界面等复杂几何构造, 理论分析和数值算例表明,该方法不但节省了大量计算机内存和计算时间,而且具有令人满意的稳定性和精度.  相似文献   

13.
Cellular‐based approaches for flood inundation modelling have been extensively calibrated and evaluated for the prediction of flood flows on rural river reaches. However, there has only been limited application of these approaches to urban environments, where the need for flood management is greatest. Practical application of two‐dimensional (2D) flood inundation models is often limited by computation time and processing power on standard desktop PCs when attempting to resolve flows on the high‐resolution grids necessary to replicate urban features. Consequently, it is necessary to evaluate the effectiveness of coarse grids to represent flood flows through urban environments. To examine these effects, LISFLOOD‐FP, a 2D storage cell model, is applied to hypothetical flooding scenarios in Greenfields, Glasgow. Grid resampling techniques in GIS software packages are evaluated and a bilinear gridding technique appears to provide the most accurate and physically intuitive results. A gridding method maintaining sharp elevation changes at building interfaces and neighbouring land is presented and estimates of the discretization noise associated with the coarse resolution grids suggest little improvement over current gridding methods. The variation in model results from the friction sensitivity analysis suggests a non‐stationary response to Manning's n with changing model resolution. Model results suggests that a coarse resolution model for urban applications is limited by the representation of urban media in coarse model grids. Furthermore, critical length scales related to building dimensions and building separation distances exist in urban areas that determine maximum possible grid resolutions for hydraulic models of urban flooding. Copyright ©, 2008 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we propose a nearly‐analytic central difference method, which is an improved version of the central difference method. The new method is fourth‐order accurate with respect to both space and time but uses only three grid points in spatial directions. The stability criteria and numerical dispersion for the new scheme are analysed in detail. We also apply the nearly‐analytic central difference method to 1D and 2D cases to compute synthetic seismograms. For comparison, the fourth‐order Lax‐Wendroff correction scheme and the fourth‐order staggered‐grid finite‐difference method are used to model acoustic wavefields. Numerical results indicate that the nearly‐analytic central difference method can be used to solve large‐scale problems because it effectively suppresses numerical dispersion caused by discretizing the scalar wave equation when too coarse grids are used. Meanwhile, numerical results show that the minimum sampling rate of the nearly‐analytic central difference method is about 2.5 points per minimal wavelength for eliminating numerical dispersion, resulting that the nearly‐analytic central difference method can save greatly both computational costs and storage space as contrasted to other high‐order finite‐difference methods such as the fourth‐order Lax‐Wendroff correction scheme and the fourth‐order staggered‐grid finite‐difference method.  相似文献   

15.
A generalized dual porosity method (GDPM) has been developed to incorporate sub-grid scale heterogeneity into large-scale flow and transport simulations. The method is spatially variable in the sense that the method can be applied with different levels of resolution for different spatial nodes in the simulation. The method utilizes the nodal connectivity structure and linear equation solvers of unstructured grids like those used in the finite element method, and can be applied to any problem without externally modifying the numerical grid. The algorithm scales linearly in CPU time and storage with the number of GDPM nodes. We demonstrate the utility and computational efficiency of the technique with two verification problems and an example problem of a field site.  相似文献   

16.
CT断面图象序列中多个目标三维重建和显示(英文)   总被引:3,自引:0,他引:3  
本文在断面图象序列中,单个目标的三维重建的基础上,提出一种同时快速重建和显示断层斟象序列中多个目标的方法,并在微机图象处理系统上实现三维重建和显示,效果较为理想,这是当前世界上的前沿问题。  相似文献   

17.
The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell’s equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology.  相似文献   

18.
地球介质自组织性对地震波走时和振幅的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
本文采用随机介质描述地球内部大尺度背景场上存在的小尺度不均匀性和自组织结构;文中没有采用传统的层状网格结构,提出了块状结构来描述复杂的二维自组织结构的方法,分别以高斯型、指数型和von Karman型等自相关函数描述各向同性和各向异性非均匀分布自组织特征;采用射线追踪分析了不同分布特征自组织结构对地震波运动学和动力学特征参数的影响;结果表明,由于地球内部介质的自组织性存在,地震波射线轨迹可能发生明显的畸变; 不同偏移距处,地震反射振幅减弱或增强; 自组织结构从高斯型到von Karman型,在小尺度上表现更大的非均匀性,因此走时和振幅表征依次更强的平均效应.  相似文献   

19.
— 3-D amplitude preserving prestack migration of the Kirchhoff type is a task of high computational effort. A substantial part of this effort is spent on the calculation of proper weight functions for the diffraction stack. We propose a new strategy to compute the migration weights directly from coarse gridded travel-time data which are in any event needed for the summation along diffraction time surfaces. The technique employs second-order travel-time derivatives that contain all necessary information on the weight functions. Their determination alone from travel times significantly reduces the requirements in computational time and particularly storage, since it is done on the fly. Application of the method shows good accordance between numerical and analytical results for the simple types of models considered in this study.  相似文献   

20.
利用曲线网格有限差分方法,研究了三维倾斜断层的破裂传播过程.基于断层面生成贴体曲线网格,并通过坐标变换将含曲线网格的物理空间转换到含均匀直角网格的计算空间,实现了有限差分方法对复杂界面的处理.通过模拟地震断层的自相似破裂和自发破裂,并与已有发表的结果对比,发现拟合程度较高,验证了本方法的有效性和精确性.重点研究了不同倾角的倾斜断层破裂,最后展望了今后用本方法对非均匀介质中和任意起伏地表下的任意非平面断层破裂动力学的进一步研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号