首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have attempted comparative analysis of the utility of linear spectral unmixing (LSU) method and band ratios for delineating bauxite from laterite within the lateritic bauxite provinces of Chotonagpur Plateau, Jharkhand of India. This was attempted based on processing of visible–near infrared (VNIR) and shortwave infrared (SWIR) spectral bands of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. In LSU method, spectral features of main constituent minerals of lateritic bauxite are used to decompose the pixel spectra to estimate the relative abundance of bauxite and laterite in each pixel to spatially delineate bauxite within laterite. We have also compared the bauxite map derived using LSU method with bauxite maps of two band ratios in terms of spatial disposition of bauxite. We also have attempted to relate the abundance values of pixels of LSU-based bauxite map with band ratio values of bauxite pixels of two selected bauxite indices.  相似文献   

2.
Mineral deposit mapping is very essential for sustainable and eco-friendly exploitation of natural resources. The Kingdom of Saudi Arabia has abundant natural resources such as natural gas, oil and minerals. It reserves high quantity of minerals such as phosphates, bauxites, copper, gold and other industrial minerals. The red soil regions located in Hail and Qassim provinces of Saudi Arabia have rich amount of bauxite (major aluminum ore) deposits. In order to initiate the focus on mapping of mineral deposits along this area, standardized hyper-spectral analysis has been carried out by using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data. The spectral signature of gibbsite (major element in bauxite) samples is analyzed with reference to the spectral features of gibbsite in the visible near infrared and short-wave infrared bands electromagnetic spectrum. Advanced hyper-spectral transformations such as minimum noise fraction function and pixel purity index have been performed to identify the target end-member. The existence of the mineral is confirmed by comparing the spectral signatures of the end-member with the predefined spectral plots of ASTER and United States Geological Survey spectral libraries. Finally, the end-members are mapped and their abundance is estimated in 0–1 scale. The study has opened up new areas for mapping of bauxite deposits in the area and leads to eco-friendly exploitation of natural resources. It also validates the high potential of ASTER multispectral satellite data for the exploration and mapping of mineral resources.  相似文献   

3.
We have delineated different granitoids based on variation in emissivity and relative surface temperature recorded in thermal bands of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor of EO-1 satellite. In this regard, we have used emissivity normalization algorithm to derive broadband emissivity from thermal bands of ASTER sensor to delineate different lithounits of the granitoid family. We have compared emissivity and radiance image composites in terms of delineation of different granitoids. We have also used false colour composite (FCC) image derived using two emissivity bands and temperature (derived using emissivity normalisation method) bands to delineate different granitoids. We could differentiate different granitoids in the three-dimensional (3D) data space of ASTER-derived emissivity bands (second and third bands) and temperature bands. Based on the analysis of 3D scatter plot, we also proposed a ternary diagram of emissivity and temperature, which can be used to delineate different granitoids.  相似文献   

4.
ASTER数据的光谱和空间分辨率均具有一定优势,适合于中等比例尺的矿产预普查。为了探讨ASTER数据应用于铝土矿预普查的效果,通过对ASTER图像彩色合成、地质解译及异常信息提取,对豫西渑池地区的铝土矿进行了预普查试验。结果表明,在北方基岩裸露地区,应用ASTER数据圈定"赋矿影像单元"和提取铝土矿遥感找矿信息能获得较好的效果。  相似文献   

5.
In spite of the dominance of traditional mineral exploration methods that demand physical characterization of rocks and intense field work, remote sensing technologies have also evolved in the recent past to facilitate mineral exploration. In the present study, we have processed visible near infrared (VNIR) and shortwave infrared (SWIR) bands of Advanced space-borne thermal emission and reflection radiometer (ASTER) data to detect surface mineralization signatures in Mundiyawas - Khera area in Alwar basin, north-eastern Rajasthan, India using spectral angle mapper (SAM). The potential of SAM method to detect target under variable illumination condition was used to delineate galena, chalcopyrite, malachite etc. as surface signatures of mineralization. It was ensured that the identified surface anomalies were spectrally pure using pixel purity index. Spectral anomalies were validated in the field and also using X-Ray diffraction data. Spectral anomaly maps thus derived were integrated using weight of evidence method with the lineament density, geochemical anomaly, bouger anomaly maps to identify few additional potential areas of mineralization. This study thus establishes the importance of remote sensing in mineral exploration to zero in on potentially ore rich but unexplored zones.  相似文献   

6.
The dynamism of geomorphic provinces in fluvial systems present considerable ambiguities in mapping by remote sensing. This necessitates use of multiple satellite data to characterize such depositional provinces. We use, an integrated dataset to characterize the geomorphic provinces (e.g. active flood plain, older food plain, fan etc.) of the Kosi River (Bihar), India. This is done using contrast in spectral signatures derived from multispectral bands (of IRS-P6 LISS III), radiant temperature (from ETM+) and radar-roughness (from radar brightness image RISAT-1). ASTER DEM has been used in deriving topographic profiles. The optical imagery, enables regional characterization through direct tonal changes (e.g. active flood plain is brighter than older flood plain). The radiant temperatures show variations across provinces. Geomorphic transitions are represented by topographic breaks. Radar backscatter imagery, show differences in radar-return from different sub-provinces. Observations made using specific sensor characterize each provinces and is supplementary/complimentary to the parameter(s) from other sensors.  相似文献   

7.
Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.  相似文献   

8.
Morphometric parameters derived from three different sources viz., Survey of India topographic map (1:50,000), SRTM (Shuttle Radar Topographic Mission 90 m) and DEM derived from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer — 30 m) are evaluated to examine any difference within the results for the proper planning and management of the watersheds. Extracting drainage network from DEMs is mainly based on the flow of water from higher to lower elevation and steepest descent in a pixel. Common morphometric parameters are considered for analysis. The results show that the morphometric parameters derived from the SRTM and ASTER data provide good and satisfying results. The results will be more efficient when the DEM cell size is smaller or the resolution of the image is higher.  相似文献   

9.
The study area is located near the town of Filippoi, north of the city of Kavala in northern Greece, known from ancient times for its rich gold mines, situated inside hydrothermal alteration zones (Fe–Mn oxide minerals). A Very High-Resolution (0.5 m pixel size) image of Worldview-2 satellite was digitally enhanced, yielding target areas of potential ore existence and lineaments. Ground-truth that followed digital image processing, revealed abandoned ancient mines, slags and ore occurrences. Also, a number of lineaments delineated on the satellite image were verified as faults.  相似文献   

10.
ASTER立体像对提取玛尔挡坝区DEM及精度评价   总被引:4,自引:0,他引:4  
ASTER立体像对提取DEM已经成为近年来DEM提取研究的热点问题。本文基于ENVI软件,利用AS-TER立体像对提取青藏高原玛尔挡坝区DEM,并对其进行精度评价和误差来源分析。结果表明,利用ENVI软件提取ASTER-DEM方法可行,提取的DEM效果较好,能与地形图重叠,高程精度可达30m,而且地形较平坦地区精度高于地形陡峭地区;控制点的多少及精度、成像时的环境和气象条件、波段特性、影像空间分辨率等都影响着DEM的精度。  相似文献   

11.
本文在介绍航空高光谱热红外的两种发射率反演算法——ARTEMISS算法和ASTER TES算法基础上,以甘肃柳园地区的热红外高光谱TASI数据为基础,对实验区进行了发射率反演,结合野外实测结果,对两种算法的图像质量和精度进行了对比分析。结果显示,两种算法均能满足反演精度要求,ASTER TES算法图像质量好,精度较高;ARTEMISS步骤简单,反演结果能很好地体现出岩性差异。在实际应用中应结合不同的应用要求来选择不同的反演算法。  相似文献   

12.
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) SWIR bands are used in identification of alteration zones which have developed during hydrothermal activity. Among the available methods of hyperspectral data analysis, PCA and RBD techniques are found to be useful in delineation of clay alteration and iron oxide zones. ASTER data analysis by PCA and RBD of (B5+B7)/B6 shows delineation of two distinct alteration zones with characteristic mineral assemblages viz. propylitic zone (chlorite, epidote, montmorillonite and calcite) and phyllic zone (illite, kaolinite, white mica and quartz). Iron oxide rich zones (gossans) have been delineated using ASTER band ratio technique (B2/B1). Geochemical dispersion of soil samples shows that Pb and Zn concentration is higher in phyllic and propylitic zones around Sawar and Malpura area respectively. Thus, ASTER data shows the potential in discrimination of metasedimentary rocks and delineation of alteration zones for targeting base metals around Sawar-Malpura area in central Rajasthan.  相似文献   

13.
The Sonajeel prospect is located in the Arasbaran belt which is one of the significant copper mineralization belts in NW Iran. There are mostly Eocene volcano-sedimentary rocks and Post Eocene intrusive units which are the source for mineralization in the area. ASTER multispectral images were used for delineation of alteration zones as a key feature of porphyry copper mineralization. Due to the need for geometric correction and ortho-rectification of the ASTER images, a high resolution QuickBird image with pixel width of about 60 cm (in PAN) was employed as a reference image in order to boost the rectification process. Ortho-rectification has been done by using digital elevation model which is created by topographic map in scale 1:1000. Potassic alteration as one of the essential alteration types in porphyry copper deposits, distributed mostly in the north of the Sonajeel prospect that determined by Thermal infrared bands processing. Phyllic and argillic alteration zones detected by creating relative absorption band-depth grids which are comparable to field observations. Moreover, silica rich areas which are remnants of hydrothermal circulation and form at the top of porphyry copper systems were detected for recognition of epithermal deposits (with 1 km distance from Sonajeel porphyry system). Finally, Remote Sensing results were compared by field evidences especially for determination of an epithermal system. Most parts of the alteration zones were observed of the surface confirmed with the remote sensing alteration (in average about 75% matched fittingly), displayed concentrations anomalous in the NE and NW parts of the studied area.  相似文献   

14.
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR–SWIR (0.4–2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial–spectral–temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.  相似文献   

15.
This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1:50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological response units (HRUs) in Sitla Rao watershed (North India). The HRUs were derived using water storage capacity and slope to produce surface runoff zones. The DEMs were evaluated on elevation accuracy and representation of morphometric features. The DEM derived from optical stereo pairs (ASTER and CARTOSAT) provided higher vertical accuracies than the SRTM and topographic map-based DEM. The SRTM with a coarse resolution of 90 m provided vertical accuracy but better morphometry compared to topographic map. The HRU maps derived from the fine resolution DEM (ASTER and CARTOSAT) were more detailed but did not provide much advantage for hydrological studies at the scale of Sitla Rao watershed (5800 ha).  相似文献   

16.
To delineate channel networks from DEMs regardless of landform type, this article proposes a new method using slope-weighted flow accumulation. To validate the method, SRTM-3, a global DEM dataset with a resolution of approximately 90 m, was used for analysis of the Loess Plateau, China. Channel networks delineated with and without slope-weighted flow accumulation were derived in both uplands and hilly lands for comparison. In the weighted flow accumulation method, the thresholds for delineating the channels were defined by detecting a turning point in the frequency distribution of the weighted flow accumulation function or by visual similarity with drainage channels extracted from topographic maps. The channel networks delineated with weighting showed closer correlation with a topographic map than the channel networks without weighting, despite the differences in thresholds. Moreover, the channel networks delineated with weighting represented the differences between landform types, while the channel networks without weighting did not. Weighting on the basis of the slope angle shows promise as a general channel delineation method which reflects the actual topography due to its hydrogeomorphological functions.  相似文献   

17.
Abstract

The present study was an attempt to delineate potential groundwater zones in Kalikavu Panchayat of Malappuram district, Kerala, India. The geo-spatial database on geomorphology, landuse, geology, slope and drainage network was generated in a geographic information system (GIS) environment from satellite data, Survey of India topographic sheets and field observations. To understand the movement and occurrence of groundwater, the geology, geomorphology, structural set-up and recharging conditions have to be well understood. In the present study, the potential recharge areas are delineated in terms of geology, geomorphology, land use, slope, drainage pattern, etc. Various thematic data generated were integrated using a heuristic method in the GIS domain to generate maps showing potential groundwater zones. The composite output map scores were reclassified into different zones using a decision rule. The final output map shows different zones of groundwater prospect, viz., very good (15.57% of the area), good (43.74%), moderate (28.38%) and poor (12.31%). Geomorphic units such as valley plains, valley fills and alluvial terraces were identified as good to excellent prospect zones, while the gently sloping lateritic uplands were identified as good to moderate zones. Steeply sloping hilly terrains underlain by hard rocks were identified as poor groundwater prospect zones.  相似文献   

18.
This study compares the spectral sensitivity of remotely sensed satellite images, used for the detection of archaeological remains. This comparison was based on the relative spectral response (RSR) Filters of each sensor. Spectral signatures profiles were obtained using the GER-1500 field spectroradiometer under clear sky conditions for eight different targets. These field spectral signature curves were simulated to ALOS, ASTER, IKONOS, Landsat 7-ETM+, Landsat 4-TM, Landsat 5-TM and SPOT 5. Red and near infrared (NIR) bandwidth reflectance were re-calculated to each one of these sensors using appropriate RSR Filters. Moreover, the normalised difference vegetation index (NDVI) and simple ratio (SR) vegetation profiles were analysed in order to evaluate their sensitivity to sensors spectral filters. The results have shown that IKONOS RSR filters can better distinguish buried archaeological remains as a result of difference in healthy and stress vegetation (approximately 1–8% difference in reflectance of the red and NIR band and nearly 0.07 to the NDVI profile). In comparison, all the other sensors showed similar results and sensitivities. This difference of IKONOS sensor might be a result of its spectral characteristics (bandwidths and RSR filters) since they are different from the rest of sensors compared in this study.  相似文献   

19.
Spectral analysis technique has been utilized to identify the Bauxite mineral occurrences in Panchpatmali, Orissa, India. Spectral processing of Landsat ETM+ data has been carried out by converting the digital data from quantized and calibrated values to reflectance values. Minimum noise fraction transformation is used to determine the inherent dimensionality of reflected Landsat ETM+ data, to segregate noise in the data, and to reduce the computational requirements for subsequent processing and interactively to locate pure pixels within the data-set, projecting n-dimensional scatterplots. Spectral processing results are displayed in the form of images corresponding to each group of pixels (endmembers). Mixed tune matched filtering method has been applied on Landsat ETM+ images which gave three score (abundance) images for three different classes (endmembers) such as Bauxite, vegetation and soil. Further, mineralized zones are identified using image fusion of ERS-2 SAR and Landsat ETM+ data using intensity-hue-saturation technique.  相似文献   

20.
The drainage network of a sixth-order tropical river basin, viz. Ithikkara river basin, was extracted from different sources such as Survey of India topographic maps (1: 50,000; TOPO) and digital elevation data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (30 m) and Shuttle Radar Topography Mapping Mission (SRTM) (90 m). Basin morphometric attributes were estimated to evaluate the accuracy of the digital elevation model (DEM)-derived drainage networks for hydrologic applications as well as terrain characterization. The stream networks derived from ASTER and SRTM DEMs show significant agreement (with slight overestimation of lower order streams) with that of TOPO. The study suggests that SRTM (despite the coarser spatial resolution) provides better results, in drainage delineation and basin morphometry, compared to ASTER. Further, the variability of basin morphometry among the data sources might be attributed to spatial variation of elevation, raster grid size and vertical accuracy of the DEMs as well as incapability of the surface hydrologic analysis functions in the GIS platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号