首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘新秒  李长民 《华北地质》2001,24(4):237-246
混合岩形成模式历来是地质学家研究的重要课题。混合岩在许多情况下形成于进变质的脱水熔融作用 ,并伴随着有限量的熔体分离作用。熔融过程中形成熔体的多少受到熔体中水含量的控制 ,而水含量又是温度、压力、熔体成分和水活度的函数。在水活度低和温度高的情况下 ,产生在地壳中的熔体 (如A型花岗岩的 )含水量比以前的假设要高。顺时针的P -T轨迹可能有利于流体从结晶熔体中释放出来 ,同时产生脱水矿物组合 ,而释放出来的水可以导致相邻岩石的水饱和熔融。熔体形成后的不完全汲取的特点 ,改变了局部原岩的总体成份 ,导致原地结晶的熔体和剩余物质随着温度降低而发生退变质反应。这种退变质反应具有不完全性 ,经常在混合岩晚期的结构中被记录下来。由此推导的P -T轨迹压力值的误差较大 ,其准确性受到了怀疑 ,与之相应的大地构造环境也应该重新考虑  相似文献   

2.
魏春景 《岩石学报》2016,32(6):1625-1643
高温-超高温变质岩石的矿物组合及组构特点取决于不同的进变熔融反应,不同程度的熔体丢失以及不同程度的退变反应三种过程的综合效应。利用相平衡定量研究方法可以很好地模拟进变熔融反应的类型、P-T条件、熔体含量及其丢失行为、以及熔融过程中熔体与残余物的化学成分变化等,这对探讨高温-超高温变质作用过程以及花岗岩的成因非常重要。对平均泥质岩(APR)进行相平衡模拟表明变质泥质岩在等压(0.8GPa)升温熔融过程中可发生5种熔融反应:饱和流体固相线、白云母脱水熔融、黑云母熔融、钾长石-石榴石熔融和铝铁镁矿物熔融,后两种熔融反应主要发生在超高温条件下。减压过程中发生怎样的熔融反应受减压温度控制:在麻粒岩相(如850℃)减压可发生钾长石熔融、黑云母熔融和钾长石-石榴石熔融反应;在高角闪岩相(如750℃)减压主要发生白云母脱水熔融和钾长石熔融;在超高温麻粒岩相(如950~1000℃)减压主要发生钾长石-石榴石熔融和铝铁镁矿物熔融。熔体成分受熔融反应和P-T条件控制,如在高角闪岩相发生的饱和流体固相线和白云母脱水熔融可形成弱过铝的奥长花岗质和二长花岗质熔体;在麻粒岩相发生的黑云母熔融和钾长石熔融形成的熔体具有强过铝的二长花岗岩成分;在中压超高温发生的钾长石-石榴石熔融和铝铁镁矿物熔融形成强过铝的二长(钾长)花岗岩质熔体,可形成石榴石花岗岩;在低压超高温下发生的铝铁镁矿物熔融可形成堇青石花岗岩。除了极端超高温下的铝铁镁矿物熔融外,其它熔融反应都会使残余物的成分更贫硅,贫Na_2O和K_2O,富FeO和MgO,但Al_2O_3和Mg#基本不变。高温-超高温下发生深熔的岩石只记录降温过程形成的固相线组合,但固相线的类型与温度条件取决于熔体的丢失行为。在不丢失熔体或者获得熔体的岩石中,岩石最后只记录流体饱和固相线组合;发生熔体部分丢失的岩石会记录缺流体固相线组合,并且熔体丢失越多,缺流体固相线的温度越高;发生全部流体丢失的岩石可记录岩石所达到的最高温度。因此,在一个麻粒岩相区,甚至一个野外露头上不同部位的岩石记录不同的P-T条件。熔体丢失是导致使麻粒岩相组合在升温过程中发生超高温变质,在降温过程中得以部分保存的重要条件。发生部分熔融的高级变质岩中随着温度升高,熔体含量增加,会发生锆石分解,只有在降温过程中发生锆石结晶,因此,麻粒岩中新生锆石只记录降温过程到固相线及以后的年龄,一般不会记录麻粒岩相峰期时代。对泥质高压麻粒岩来说,如果经历ITD型变质演化,会发生递进减压熔融,变质反应易于达到平衡,但如果减压速度快并使岩石直接抬升到地壳浅部,会出现一些ITD型结构标志,如残留金红石、蓝晶石,或在石榴石周围出现堇青石的反应冠状体等,此时锆石记录的退变质年龄会与峰期变质年龄相差不大(如10~30Myr);但如果泥质高压麻粒岩减压至中、深地壳,受其中有滞留熔体影响易于发育IBC型结构特征,表现为麻粒岩组合被(中压)角闪岩相组合叠加,在泥质岩中出现黑云母+夕线石构成的暗色条带,或者出现退变白云母和含白云母的浅色体。在中、深地壳经历IBC过程的麻粒岩锆石记录的退变质年龄会与峰期年龄相差很大(如~100Myr)。高级变质岩中由于出现熔体使水流体活度降低,麻粒岩作为排除部分熔体的残余物,其水活度更低。从这一角度来说,水活度低是麻粒岩相变质作用的结果,而不是条件。某些麻粒岩区之所以出现多期麻粒岩相变质叠加受流体行为控制。在亚固相线下流体饱和岩石变质熔融作用从饱和水固相线开始,然后依次发生含水矿物的脱水熔融和无水矿物熔融,这一过程中流体是内部缓冲的,在麻粒岩相温度峰期形成一组平衡矿物组合,难以保留峰期之前的信息。而流体不饱和岩石(如已形成的麻粒岩或岩浆侵入体)变质作用受外部注入流体控制,与构造变形密切相关。如果发生两期麻粒岩相变质叠加变质,在强应变域会形成晚期麻粒岩组合;在弱应变域,会出现两期麻粒岩组合,其中晚期矿物表现为反应冠状体或细粒交生体;而在一些应变非常弱的区域,可能只保留早期矿物组合。  相似文献   

3.
高级变质岩中深熔作用的相平衡研究   总被引:3,自引:0,他引:3  
魏春景  王伟 《地学前缘》2007,14(1):125-134
深熔作用在高级变质岩中非常普遍并受到广泛关注。自20世纪90年代以来,随着变质相平衡研究的突破性发展,利用THERMOCALC程序和视剖面图方法可以定量研究固相线以上的熔体形成、熔体分馏和退变质反应。变质沉积岩中的熔融作用主要有三种机制饱和水固相线上的熔融、白云母脱水熔融和黑云母脱水熔融。在模拟泥质岩石的KFMASH体系和NCKFMASH体系中的相平衡计算表明,NCKFMASH体系中铁镁矿物的相平衡关系受KFMASH亚体系中矿物相平衡关系的控制,但KFMASH亚体系中固相线位置要比实际的高50~60℃。因此,模拟泥质岩石的固相线以上的相平衡关系最好在NCKFMASH或组分更多的体系中进行。相平衡研究表明麻粒岩相岩石的保存与熔体丢失有关;混合岩的形成过程包括部分熔融作用、不同程度熔体分凝与汲取和不同程度的逆反应和退变反应。  相似文献   

4.
麻粒岩相岩石作为洞察下地壳的窗口一直备受重视。二十世纪九十年代以来麻粒岩研究的一个重要进展是利用变质相平衡的定量研究方法模拟岩石中所发生的深熔变质反应、熔体成分变化、及熔体丢失对变质矿物组合的影响等。本文利用KASH、NKASH和KFMASH等简单体系的相平衡关系,做出P-T投影图、组分共生图解和基于固定全岩成分的P-T视剖面图解,并结合有关实验岩石学结果,讨论了高温和超高温条件下变质泥质岩和杂砂岩中的变质熔融反应、矿物组合、全岩成分与P-T条件之间的相互关系。多数变质泥质岩和杂砂岩中饱和流体固相线熔融反应可利用NKASH体系中有水流体参与的熔融反应模拟,在没有外来流体注入时,这些反应可形成3mol%熔体。在不同体系中白云母脱水熔融反应型式及其P-T条件不同,如在NKASH和KFMASH体系中模拟计算的白云母脱水熔融反应与相应的实验结果相似,分别控制了白云母分解熔融的温度下限和上限;白云母的分解温度会随着其中Fe、Mg和Ti含量的增加而升高,也随着共生斜长石中钙长石组分增加而升高,泥质岩中白云母脱水熔融可以形成~10mol%熔体。在KFMASH体系中黑云母脱水熔融反应表现为4条单变反应,其理论计算的温度比实验模拟的结果低一些。在NCKFMASH体系或实际岩石中黑云母脱水熔融反应为滑动反应,如NCKFMASH体系中黑云母从其开始熔融到最后消失在泥质岩中可跨越~100℃,在杂砂岩中可跨越30~50℃。黑云母的稳定温度随着镁值升高而升高,其稳定上限受钛影响更大,黑云母脱水熔融可以形成超过30mol%~40mol%熔体。KFMASH体系中的相平衡模拟表明以出现斜方辉石+夕线石和假蓝宝石为特征的超高温组合易于出现于富镁泥质岩中,而对正常成分泥质岩在达到1000℃的超高温条件下,主要出现石榴石+夕线石(即夕线榴),该组合在更高温度反应形成假蓝宝石+尖晶石。利用饱和水固相线反应和白云母与黑云母分解反应可以更好地限定不同的变质相。如中压和低压条件下低角闪岩相和高角闪岩相的界限可利用NKASH体系中有水流体和白云母参与的熔融反应和亚固相线条件下的白云母分解反应限定;实验确定的泥质岩中黑云母开始熔融与消失的反应可分别用于限定高角闪岩相与(正常)麻粒岩相的界限,以及(正常)麻粒岩相和超高温麻粒岩相的界限。因此,从矿物组合角度,正常麻粒岩相可限定在黑云母开始熔融到完全消失的温度范围,超高温麻粒岩相可限定在黑云母消失(有石英存在)之后的温度范围。  相似文献   

5.
魏春景  朱文萍 《岩石学报》2016,32(6):1611-1624
麻粒岩相岩石作为洞察下地壳的窗口一直备受重视。二十世纪九十年代以来麻粒岩研究的一个重要进展是利用变质相平衡的定量研究方法模拟岩石中所发生的深熔变质反应、熔体成分变化、及熔体丢失对变质矿物组合的影响等。本文利用KASH、NKASH和KFMASH等简单体系的相平衡关系,做出P-T投影图、组分共生图解和基于固定全岩成分的P-T视剖面图解,并结合有关实验岩石学结果,讨论了高温和超高温条件下变质泥质岩和杂砂岩中的变质熔融反应、矿物组合、全岩成分与P-T条件之间的相互关系。多数变质泥质岩和杂砂岩中饱和流体固相线熔融反应可利用NKASH体系中有水流体参与的熔融反应模拟,在没有外来流体注入时,这些反应可形成<3mol%熔体。在不同体系中白云母脱水熔融反应型式及其P-T条件不同,如在NKASH和KFMASH体系中模拟计算的白云母脱水熔融反应与相应的实验结果相似,分别控制了白云母分解熔融的温度下限和上限;白云母的分解温度会随着其中Fe、Mg和Ti含量的增加而升高,也随着共生斜长石中钙长石组分增加而升高,泥质岩中白云母脱水熔融可以形成~10mol%熔体。在KFMASH体系中黑云母脱水熔融反应表现为4条单变反应,其理论计算的温度比实验模拟的结果低一些。在NCKFMASH体系或实际岩石中黑云母脱水熔融反应为滑动反应,如NCKFMASH体系中黑云母从其开始熔融到最后消失在泥质岩中可跨越~100℃,在杂砂岩中可跨越30~50℃。黑云母的稳定温度随着镁值升高而升高,其稳定上限受钛影响更大,黑云母脱水熔融可以形成超过30mol%~40mol%熔体。KFMASH体系中的相平衡模拟表明以出现斜方辉石+夕线石和假蓝宝石为特征的超高温组合易于出现于富镁泥质岩中,而对正常成分泥质岩在达到1000℃的超高温条件下,主要出现石榴石+夕线石(即夕线榴),该组合在更高温度反应形成假蓝宝石+尖晶石。利用饱和水固相线反应和白云母与黑云母分解反应可以更好地限定不同的变质相。如中压和低压条件下低角闪岩相和高角闪岩相的界限可利用NKASH体系中有水流体和白云母参与的熔融反应和亚固相线条件下的白云母分解反应限定;实验确定的泥质岩中黑云母开始熔融与消失的反应可分别用于限定高角闪岩相与(正常)麻粒岩相的界限,以及(正常)麻粒岩相和超高温麻粒岩相的界限。因此,从矿物组合角度,正常麻粒岩相可限定在黑云母开始熔融到完全消失的温度范围,超高温麻粒岩相可限定在黑云母消失(有石英存在)之后的温度范围。  相似文献   

6.
高级变质-深熔作用中伴随有熔体的形成,在缺失流体的不一致熔融条件下,如果熔体的萃取不完全,原地结晶熔体与残留体之间可发生特殊的退变反应———逆(熔)反应,这种反应与进变质脱水熔融恰好相反。逆(熔)反应的最佳判断标志就是在浅色体和早期深熔过程中形成的不一致熔融相之间含水矿物组合的生长。逆(熔)反应形成的退变组合是深熔作用过程的一部分,而不是另外期次的变质事件叠加。逆(熔)反应的地质意义在于它可能会影响到熔体和流体组成、流体-岩石的相互作用以及对质量平衡的研究,尤其是对p-T路径恢复的影响,从而影响到构造和热流模型的推断。  相似文献   

7.
深熔过程中熔体成分与锆石行为模拟计算   总被引:3,自引:2,他引:1  
王伟  魏春景  刘晓春  赵越  高亮  娄玉行  初航  张颖慧 《岩石学报》2014,30(10):3075-3084
发生深熔作用是高级变质作用的一个重要特征。深熔过程中产生的熔体可为淡色花岗岩提供潜在的源区;深熔过程中锆石的行为直接影响对变质锆石记年地质意义的理解。在含Zr体系下的相平衡模拟显示泥质成分深熔过程中产生熔体的成分在P-T空间中规律变化。温度升高时熔体Zr/Si值、Zr、FeO、MgO以及CaO等含量明显增加,压力较高时K2O含量也随温度升高而明显增加。Na2O含量随温度升高而降低,但随压力升高而增加。压力升高时Al/Si值显著升高。温度较高时Na/(Na+K)等值线较陡,减压熔融过程不会显著改变熔体Na/(Na+K)值,而升温减压过程以及近等压升温过程都会明显降低熔体Na/(Na+K)值。中压时随温度升高熔体Fe/(Fe+Mg)值缓慢升高,而石榴石的生长发育会迅速降低熔体Fe/(Fe+Mg)值。不同温压条件下对应的固相线熔融、白云母脱水熔融以及黑云母脱水熔融形成的熔体成分具有明显差异。对比模拟熔体成分在P-T空间的演化,喜马拉雅地区电气石淡色花岗岩对应熔体的形成温压条件应低于二云母淡色花岗岩,同类型淡色花岗岩之间在形成条件上也可能存在一定差异,并经历了差异性演化过程。含Zr体系下的相平衡关系显示进变过程是消耗锆石的过程,因而在进变过程中变质锆石难以生长,发生深熔作用的岩石中的变质锆石主要在退变过程中形成并记录退变质年龄。熔体丢失相关模拟显示不同温度阶段发生熔体丢失对锆石稳定性的影响不同。温度较低时Zr含量较少的熔体丢失会扩大持续进变过程中锆石的稳定范围,而温度较高时富Zr熔体的丢失会降低持续进变过程中锆石的稳定温度。类似于分离熔融作用的过程最利于残留相中剩余锆石在持续进变过程中的保存。  相似文献   

8.
赖兴运 《岩石学报》2003,19(4):707-716
基于岩石相平衡,对富铝泥质岩K2O-Al2O3-SiO2一H2O(KASH)和K2O-FeO—MgO—A12O3-SiO2-H2O(KFMASH)体系的混合岩化深熔作用相关系进行了模拟计算,得到泥质岩深熔作用的成岩格子、熔体成分变化特征、熔体含水量及其温压条件、石榴石变斑晶成分演化趋势和泥质岩进变质、退变质矿物组合特征、各种压力条件下S型花岗质熔体特征等,并进一步将模拟结果应用于内蒙古固阳等地的泥质岩,根据相关岩石的矿物组合及结构特征,获得了变质反应历史和P—T轨迹。  相似文献   

9.
本文选取闽西北前寒武纪变质基底中的混合岩和花岗岩为研究对象,以探讨两者之间的成因联系.详细的岩石学和主量、微量元素地球化学以及锆石U-Pb年代学研究表明,闽西北混合岩是同变形地壳深熔作用的产物,基底变质岩中的黑云母在较低温(约800℃)、H2O不饱和的条件下发生脱水熔融反应产生熔体,构造变形作用在熔体的分离和迁移过程中起到了重要作用.闽西北基底变质岩可能为形成混合岩和花岗岩的源岩,其深熔产生的初始熔体发生结晶分异作用,堆晶产物形成了混合岩的浅色体,而残余熔体继续演化形成花岗岩.混合岩和相关花岗岩形成基本同时,其成岩年龄为437~441Ma.它们均为华南加里东期构造热事件的产物.  相似文献   

10.
麻粒岩的研究进展与方法   总被引:2,自引:0,他引:2  
近年来,有关麻粒岩的研究取得了长足进展,本文讨论了4个相关问题:(1)麻粒岩的大地构造环境与P-T轨迹。麻粒岩可以形成于4种大地构造环境中:(a)碰撞造山带以形成高压麻粒岩为特征,为中压相系,包括曾位于地壳浅部的岩石经历构造埋深达到变质峰期后再折返的过程,为顺时针型P-T轨迹;也包括曾经历洋壳或陆壳俯冲形成的高压-超高压榴辉岩相岩石折返叠加变质形成的麻粒岩,P-T轨迹以减压为主。(b)地壳伸展区以形成低压麻粒岩为特征,并可达到超高温条件,其P-T轨迹为减压加热至温度峰期,随后发生等压或降压冷却。(c)岛弧或陆缘岩浆增生区的下地壳多为高压麻粒岩相,其中侵入的辉长岩首先经历等压冷却,然后再经历升温升压进变质过程。(d)太古宙克拉通麻粒岩相表壳岩呈皮筏状分布于TTG片麻岩内部,多达到超高温条件,发育逆时针型P-T轨迹,受太古宙特殊的垂直构造体制控制。(2)麻粒岩的进变质过程与流体行为。按照流体行为,麻粒岩的进变质过程分为3种型式:(a)流体饱和进变质过程,指岩石在饱水固相线之前达到流体饱和,随后发生饱水固相线熔融与含水矿物的脱水熔融,以及阶段性熔体丢失,导致岩石中水含量降低,缺流体固相线温度升高;在峰期之后的降温过程中,发生熔融反应的逆反应,或结晶反应,形成含水矿物,结晶反应终止于缺流体固相线。(b)流体不饱和或缺流体进变质过程,指岩石在进变质过程中会处于流体缺失状态,不会发生变质反应,岩石中原来的矿物组合以亚稳定状态保留至缺流体固相线后,才开始变质演化,因此经常形成一些不平衡结构。(c)流体过饱和进变质过程,指有过量水参与的熔融反应过程,也称为水化熔融,与熔体注入或局部汇聚有关;水化熔融过程中会更多地消耗斜长石、石英及辉石等无水矿物,导致残余物中富集角闪石和黑云母等含水矿物。(3)确定麻粒岩P-T条件的视剖面图方法。利用视剖面图方法分析麻粒岩的变质条件时,首先需要通过岩相学观察区分出峰期组合和最终组合;然后通过计算T-M(H2O)图解确定最终组合的含水量;最后利用所确定的水含量计算P-T视剖面图。利用P-T视剖面图分析麻粒岩的峰期变质条件时,首先找到峰期矿物组合在视剖面图上的稳定域,然后再结合有价值的矿物成分等值线确定P-T条件。特别需要注意的是,岩相学观察确定的峰期组合和最终组合都可能受局部结构域控制,与滞留熔体的不均匀分布或原地分凝有关,此时不能简单地用全岩成分模拟其相平衡关系。(4)相平衡模拟时需要选择有效的全岩成分。当选择实测全岩成分进行相平衡模拟时,首先需要检验其有效性,即检验实测全岩成分是否能够代表薄片中所观察到的相平衡关系。方法是计算有效全岩成分,并与实测全岩成分进行对比。对于成分不均匀的变质岩石,需要处理局部结构域的成分。分如下3种情况:(a)宏观尺度的结构域,可以分别取样;(b)微观尺度的结构域,需要在显微薄片中进行图像分析,针对不同结构域分别进行相平衡模拟;(c)由叠加或退变质形成的结构域,需要确定相应的变质反应,通过对反应配平,确定有效全岩成分。此外,文中还介绍了计算岩石中的水含量、O含量和各种矿物相含量的方法与注意事项。  相似文献   

11.
基性岩高温-超高温变质作用与TTG质岩成因   总被引:10,自引:6,他引:4  
魏春景  关晓  董杰 《岩石学报》2017,33(5):1381-1404
变质基性岩在高温-超高温下部分熔融可以形成TTG(英云闪长质-奥长花岗质-花岗闪长质)质熔体,有关熔融反应机理、熔体地球化学特征以及太古宙TTG质岩石成因问题备受国内外学者关注。本文基于对相关实验岩石学研究的总结,结合基性岩高温-超高温相平衡的模拟计算,分析了变质基性岩(斜长角闪岩)深熔变质反应过程、P-T条件及其与TTG质岩石成因的联系。变质基性岩高温-超高温深熔作用主要受角闪石脱水熔融反应控制。在1.0GPa以下的无石榴石域,角闪石分解反应主要为:角闪石=单斜辉石+斜方辉石+斜长石+熔体(R1),该反应为多变滑动反应,以斜方辉石出现(800℃)和角闪石消失(1000~1100℃)为标志,其滑动温度范围超过200~300℃。实验岩石学确定的斜长角闪岩开始熔融或缺流体固相线大致相当于斜方辉石出现温度。实际上角闪石脱水熔融反应是从饱和水固相线开始的,反应为:角闪石+石英=单斜辉石+斜长石+熔体(R1a),开始有黑云母参与熔融反应,但该反应对熔体贡献有限。在1.0GPa以上的石榴石域,不同实验所确定的石榴角闪岩缺流体固相线温度主要介于800~900℃之间,固相线表现为正斜率、负斜率、或者为与压力无关的直线等不同结果。相平衡模拟计算表明在石榴石稳定域角闪石脱水熔融反应为较陡的负斜率,分为两部分:当有斜长石存在时,反应为角闪石+斜长石+石英=石榴石+单斜辉石+熔体(R2),低温部分有白云母、绿帘石参与反应。该反应从饱和水固相线(约630℃)开始,到角闪石消失(超过1000℃),滑动温度范围可超过400℃,跨越石榴角闪岩亚相与角闪高压麻粒岩亚相范围;在斜长石消失后角闪石脱水熔融反应为角闪石+石英=石榴石+单斜辉石+熔体(R2a),低温部分有绿帘石、白云母参与熔融反应,该反应从饱和水固相线(约650℃)开始,到角闪石消失(超过900℃),滑动温度范围可超过200~300℃。角闪石脱水熔融反应形成的无水残余物形成麻粒岩和榴辉岩,无水麻粒岩的峰期温度会超过1000℃,由于降温过程中的退变质演化,如超固相线下滞留熔体与残余物之间发生的深熔反应的逆反应,以及在亚固相线下离子交换反应,导致大多数麻粒岩只记录缺流体固相线组合与退变质温度。基性岩部分熔融的熔体成分取决于全岩成分、P-T条件及熔融程度。当熔融程度很低时(如小于5%)可形成富钾花岗质熔体,随着熔融程度增加,熔体成分可转变为奥长花岗质(如5%~20%)和英云闪长质(如大于20%),部分熔融的熔体成分受全岩成分影响很大,只有相对富钾的基性岩才能形成花岗闪长质到石英二长质熔体。太古宙TTG质岩石表现出富Sr、低Y、Yb、Nb、Ta、Ti以及稀土分馏程度高等地球化学特征,要求部分熔融压力较高,残余物中有石榴石(及金红石)存在。争论的焦点是部分熔融究竟发生在石榴角闪岩亚相(及角闪高压麻粒岩亚相),还是发生在榴辉岩相。对此,不同实验给出的不同结论应该与源岩地球化学特征不同有关。考虑到TTG质岩石的可能源岩如太古宙科马提岩和玄武岩地球化学特征的多样性,TTG质岩石本身地球化学特征上的差异也许不能完全指示熔融发生的P-T条件。综合实验岩石学和相平衡模拟结果,本文确定TTG质岩石是由基性岩在角闪石和石榴石共同稳定域由角闪石脱水熔融反应R2和R2a在角闪高压麻粒岩亚相和角闪榴辉岩亚相形成的,P-T条件为1.0~2.5GPa和800~1000/1100℃。角闪高压麻粒岩亚相相对应的地热梯度为15~25℃/km,角闪榴辉岩亚相对应的地热梯度为10~15℃/km。TTG质岩石形成的构造环境不能简单对应发生在显生宙的洋壳热俯冲带、碰撞造山带和洋底高原等。  相似文献   

12.
南迦巴瓦地区广泛出露的中下地壳变基性岩部分熔融形成的层状混合岩和淡色花岗岩,为研究部分熔融过程中榍石的地球化学行为对熔体的微量元素组成的影响提供了良好的机会。相对于源岩或熔融残留体,淡色体亏损Ti、V、REE、Y、Nb、Ta、U等元素,与混合岩中榍石的微量元素特征互补。混合岩、淡色体和榍石微量元素特征表明南迦巴瓦角闪岩部分熔融形成的淡色体的微量元素特征主要受控于榍石的地球化学行为。角闪岩脱水部分熔融过程中,由于长英质熔体的低Ti溶解度,榍石以未熔残留体形式存在于暗色体中,导致熔体亏损Ti、REE、Nb、Ta、V、U等元素和Sr/Y比值相对升高。关键元素在榍石和熔体之间的配分系数受熔体成分影响明显。角闪岩中变质榍石DNb/Ta<1,因此变质榍石残留导致熔体Nb/Ta相对于源岩升高;而高Si-Al花岗质熔体中榍石DNb/Ta>1,因此与高Si-Al熔体平衡的榍石的分离(转熔或结晶分异)将导致熔体Nb/Ta比值相对源岩降低。榍石在部分熔融过程中的微量元素效应为理解变基性岩部分熔融产生熔体的地球化学特征提供新的认识。  相似文献   

13.
邓亮鹏 《地质学报》2023,97(2):613-622
下地壳岩石的深熔作用不仅与麻粒岩和花岗岩的形成具有紧密关联,而且在某些构造环境下会对地球动力学演化过程造成影响,因此,对深熔岩石的变质P-T条件的准确估算及对其熔融机制的限定具有重要意义。基于内洽性热力学数据库、THERMOCALC/Perple_X等程序以及适当的固溶体活度模型,变质相平衡模拟已逐渐成为变质岩石学的常规研究方法,广泛应用于推断天然岩石的矿物共生序列、估算岩石的变质P-T条件等。不仅如此,如果有适当的熔体活度模型,变质相平衡模拟还能估算深熔岩石的熔融温度、压力及熔体比例,以及限定其涉及的熔融反应,并计算熔体、转熔矿物及残余矿物的成分等。针对不同成分岩石,包括花岗质岩石、变泥质岩、变基性岩及橄榄岩在不同压力下产生的熔体,前人陆续提出了对应的活度模型,并且其有效性得到了相关实验数据的验证。随着近年来熔体活度模型的不断更新和完善,变质相平衡模拟有望成为研究自然界深熔岩石的常规方法,为相关的麻粒岩和花岗岩成因研究、相关地球动力学演化研究提供新的思路。  相似文献   

14.
大别造山带北大别超高压变质构造单元中广泛发育混合岩。基于对罗田和岳西穹隆中混合岩的野外观察、岩相学、矿物化学和锆石LA-ICP-MS U-Pb定年系统工作,发现北大别混合岩主要分为中等深熔混合岩和高度深熔混合岩两种类型。中等深熔混合岩为叠层状混合岩和膨胀结构混合岩;高度深熔混合岩为眼球状混合岩和析离体状混合岩。锆石U-Pb同位素定年结果表明,混合岩中新生锆石年龄范围为125 Ma~138 Ma,加权平均年龄为130.7 Ma±1.8 Ma;两个继承锆石的年龄分别为602.8 Ma±16.8 Ma和667.3 Ma±17.6 Ma;混合岩叠层状暗色体中锆石年龄连续且分布集中,加权平均年龄为703 Ma±10 Ma,代表原岩的形成年龄。北大别混合岩的原岩为新元古代的岩石,其混合岩化作用发生在140 Ma至125 Ma期间。不同浅色体中斜长石的含量和牌号差异显著,反映了浅色体形成于不同演化程度的熔体结晶。斜长石-角闪石温压计估算结果显示,混合岩形成的温压条件为723℃~768℃和370 MPa~520 MPa,对应于中上地壳环境。混合岩的成因机制以长英质片麻岩水饱和条件下的富水熔融为主。其反应为:黑云母+石英+斜长石+水=角闪石+斜长石(残留)+花岗质熔体。少数混合岩的成因机制为角闪片麻岩中角闪石的脱水熔融。其反应为:角闪石+斜长石+石英=单斜辉石+富水熔体。  相似文献   

15.
刘福来  徐学纯 《地质学报》1997,71(3):254-265,T001
麻粒岩相条件下石榴黑云斜长片麻岩实验结果表明,含水矿物黑云母(Bi)脱水熔融、长英质矿物部分熔融的性质主要受控于温度条件;而矿物相转变不仅受控于温压条件,而且与脱水熔融、部分熔融存在密切成因联系。依据Bi脱水熔融性质和石榴石(Gi)转变反应特征,可划分以下三个阶段:(1)当温度在700℃时,Bi转变为钛铁矿(Ilm)+磁铁矿(Mt)+H_2O,Gt转变为Mt,(2)当温度在730—760℃,Bi脱水熔融为富K_2O熔体(Melt)+Ilm+Mt,Gt转变为紫苏辉石(Hy)+堇青石(Crd);(3)当温度大于790℃时,Bi脱水熔融为Melt+Hy+Ilm+Mt+H_2O,Gt则转变为Hy+尖晶石(Sp)+Crd组合。熔体比例和熔体演化特征除受温压条件控制外,与长英质矿物部分熔融程度和脱水熔融性质关系密切。实验结果显示,在麻粒岩相变质作用以及与其相伴随的重熔作用(或区域性混合岩化作用)过程中,不仅存在传统的固相+固相(或流体相)的反应和脱水熔融反应,而且存在熔体参与的变质反应(即:未熔矿物与熔体之间的反应)。该项实验对深入探讨麻粒岩相矿物演化的成因机制及其动力学意义提供可靠的实验依据。  相似文献   

16.
在新疆阿尔泰地区的高级变质带中广泛发育着一系列规模不等的透镜状和条带状的浅色脉体,主要有含Al2SiO5的淡色花岗岩脉、白云母斜长花岗岩脉和白云母二长花岗岩脉。主量元素分析表明这3类脉体的A/CNK=1.1~2.14,属于S型花岗岩。从白云母二长花岗岩脉→白云母斜长花岗岩脉→含Al2SiO5的淡色花岗岩脉,SiO2的含量增高,Al2O3、Na2O、K2O的含量降低。在NKFMASH体系中的pT视剖面图上进行相平衡分析和熔体成分计算表明,含Al2SiO5的浅色花岗岩脉和白云母斜长花岗岩脉的熔体形成与蓝晶石型变质带的抬升降压过程有关,其熔融温度没有超过白云母脱水熔融反应,并且含Al2SiO5的淡色花岗岩脉不是由生成的熔体直接结晶形成的,而需要经历一定的碱性组分随流体迁移丢失;白云母二长花岗岩脉的熔体形成主要以增温为主,并与白云母脱水熔融反应有关。十字石的脱水熔融反应对熔体形成有明显贡献。  相似文献   

17.
地壳深熔条件下的转熔矿物研究进展   总被引:1,自引:0,他引:1  
地壳深熔作用有两种形式,即流体相缺乏的脱水熔融和流体相存在的加水熔融。由于地壳岩石中水含量的差异(岩石中含水矿物的丰度和外来水的加入量),岩石发生不同形式的部分熔融所需要的温度和压力条件有很大差异。转熔矿物是岩石发生不一致熔融的产物,在形成过程中携带了地壳深熔源区物质和熔体的大量信息,是追溯高温变质岩石经历深熔作用的最可靠依据。它们与高级变质岩中残留的变质矿物和岩浆或熔体中结晶的岩浆矿物具有明显不同的来源,分别代表了岩石曾经历的不同演化历史。通过对不同成因的矿物进行矿物结构、包裹体、主量元素、微量元素和同位素以及共生矿物组合等多方面的综合考察,可以有效识别出高级变质岩中的转熔矿物、变质残余矿物和岩浆矿物。准确识别高温-超高温变质岩以及花岗岩中不同成因的矿物相,是研究高温变质作用的前提条件,对研究混合岩和S型花岗岩的成因都起着非常重要的作用。  相似文献   

18.
喜马拉雅造山带的部分熔融与淡色花岗岩成因机制   总被引:1,自引:0,他引:1  
喜马拉雅造山带核部由高级变质岩和淡色花岗岩组成,是研究大陆碰撞造山带部分熔融与花岗岩成因的天然实验室.基于最新研究成果,探讨了喜马拉雅造山带核部变质作用的条件、类型以及P-T轨迹、部分熔融的方式与程度及熔体成分以及变质作用与部分熔融的时间和持续过程.相关证据表明,造山带核部经历了高压麻粒岩相至榴辉岩相变质作用,具有以增温增压进变质和近等温降压退变质为特征的顺时针型P-T轨迹.这些高压变质岩石发生了长期持续的高温变质与部分熔融.在泥质岩石的进变质过程中白云母和黑云母脱水熔融可以形成不同成分的熔体.同时,总结了淡色花岗岩的形成时间、地球化学特征和源区熔融方式,结果表明碰撞造山过程中加厚下地壳的脱水熔融形成了喜马拉雅造山带的淡色花岗岩.   相似文献   

19.
俯冲带部分熔融   总被引:3,自引:3,他引:0  
张泽明  丁慧霞  董昕  田作林 《岩石学报》2020,36(9):2589-2615
俯冲带是地幔对流环的下沉翼,是地球内部的重要物理与化学系统。俯冲带具有比周围地幔更低的温度,因此,一般认为俯冲板片并不会发生部分熔融,而是脱水导致上覆地幔楔发生部分熔融。但是,也有研究认为,在水化的洋壳俯冲过程中可以发生部分熔融。特别是在下列情况下,俯冲洋壳的部分熔融是俯冲带岩浆作用的重要方式。年轻的大洋岩石圈发生低角度缓慢俯冲时,洋壳物质可以发生饱和水或脱水熔融,基性岩部分熔融形成埃达克岩。太古代的俯冲带很可能具有与年轻大洋岩石圈俯冲带类似的热结构,俯冲的洋壳板片部分熔融可以形成英云闪长岩-奥长花岗岩-花岗闪长岩。平俯冲大洋高原中的基性岩可以发生部分熔融产生埃达克岩。扩张洋中脊俯冲可以导致板片窗边缘的洋壳部分熔融形成埃达克岩。与俯冲洋壳相比,俯冲的大陆地壳具有很低的水含量,较难发生部分熔融,但在超高压变质陆壳岩石的折返过程中可以经历广泛的脱水熔融。超高压变质岩在地幔深部熔融形成的熔体与地幔相互作用是碰撞造山带富钾岩浆岩的可能成因机制。碰撞造山带的加厚下地壳可经历长期的高温与高压变质和脱水熔融,形成S型花岗岩和埃达克质岩石。  相似文献   

20.
固相线以下变质过程中水的行为   总被引:2,自引:0,他引:2  
在p–T 视剖面上定量计算全岩饱和水含量等值线可以更有效地讨论变质矿物组合的演化。Guiraud 等认为在封闭体系中发生的变质作用通过递进脱水作用使岩石向水含量降低方向演化,脱出的水离开岩石体系。当变质过程向水含量增加方向演化时,岩石会很快变成流体缺失状态,不利于变质矿物组合的进一步演化。因此,从岩石中的实际矿物组合所得到的“变质峰期”应该理解为脱水反应结束,并可能发生少量水化反应的位置,并不一定对应p–T 轨迹所经历的实际峰期温度或压力。利用p–T 视剖面图和饱和水含量等值线的行为研究阿尔泰造山带泥质岩石的中低压变质作用发现,阿尔泰地区红柱石型变质带的发生与蓝晶石型变质带的抬升有关,主要发生铝硅酸盐矿物之间的同质多相转变,低压变质矿物组合未能达到热力学平衡状态。与泥质岩中低压变质演化明显不同的是超高压榴辉岩在峰期以后的减压过程中仍然发生递进脱水作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号