首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
麻粒岩相岩石作为洞察下地壳的窗口一直备受重视。二十世纪九十年代以来麻粒岩研究的一个重要进展是利用变质相平衡的定量研究方法模拟岩石中所发生的深熔变质反应、熔体成分变化、及熔体丢失对变质矿物组合的影响等。本文利用KASH、NKASH和KFMASH等简单体系的相平衡关系,做出P-T投影图、组分共生图解和基于固定全岩成分的P-T视剖面图解,并结合有关实验岩石学结果,讨论了高温和超高温条件下变质泥质岩和杂砂岩中的变质熔融反应、矿物组合、全岩成分与P-T条件之间的相互关系。多数变质泥质岩和杂砂岩中饱和流体固相线熔融反应可利用NKASH体系中有水流体参与的熔融反应模拟,在没有外来流体注入时,这些反应可形成3mol%熔体。在不同体系中白云母脱水熔融反应型式及其P-T条件不同,如在NKASH和KFMASH体系中模拟计算的白云母脱水熔融反应与相应的实验结果相似,分别控制了白云母分解熔融的温度下限和上限;白云母的分解温度会随着其中Fe、Mg和Ti含量的增加而升高,也随着共生斜长石中钙长石组分增加而升高,泥质岩中白云母脱水熔融可以形成~10mol%熔体。在KFMASH体系中黑云母脱水熔融反应表现为4条单变反应,其理论计算的温度比实验模拟的结果低一些。在NCKFMASH体系或实际岩石中黑云母脱水熔融反应为滑动反应,如NCKFMASH体系中黑云母从其开始熔融到最后消失在泥质岩中可跨越~100℃,在杂砂岩中可跨越30~50℃。黑云母的稳定温度随着镁值升高而升高,其稳定上限受钛影响更大,黑云母脱水熔融可以形成超过30mol%~40mol%熔体。KFMASH体系中的相平衡模拟表明以出现斜方辉石+夕线石和假蓝宝石为特征的超高温组合易于出现于富镁泥质岩中,而对正常成分泥质岩在达到1000℃的超高温条件下,主要出现石榴石+夕线石(即夕线榴),该组合在更高温度反应形成假蓝宝石+尖晶石。利用饱和水固相线反应和白云母与黑云母分解反应可以更好地限定不同的变质相。如中压和低压条件下低角闪岩相和高角闪岩相的界限可利用NKASH体系中有水流体和白云母参与的熔融反应和亚固相线条件下的白云母分解反应限定;实验确定的泥质岩中黑云母开始熔融与消失的反应可分别用于限定高角闪岩相与(正常)麻粒岩相的界限,以及(正常)麻粒岩相和超高温麻粒岩相的界限。因此,从矿物组合角度,正常麻粒岩相可限定在黑云母开始熔融到完全消失的温度范围,超高温麻粒岩相可限定在黑云母消失(有石英存在)之后的温度范围。  相似文献   

2.
魏春景  朱文萍 《岩石学报》2016,32(6):1611-1624
麻粒岩相岩石作为洞察下地壳的窗口一直备受重视。二十世纪九十年代以来麻粒岩研究的一个重要进展是利用变质相平衡的定量研究方法模拟岩石中所发生的深熔变质反应、熔体成分变化、及熔体丢失对变质矿物组合的影响等。本文利用KASH、NKASH和KFMASH等简单体系的相平衡关系,做出P-T投影图、组分共生图解和基于固定全岩成分的P-T视剖面图解,并结合有关实验岩石学结果,讨论了高温和超高温条件下变质泥质岩和杂砂岩中的变质熔融反应、矿物组合、全岩成分与P-T条件之间的相互关系。多数变质泥质岩和杂砂岩中饱和流体固相线熔融反应可利用NKASH体系中有水流体参与的熔融反应模拟,在没有外来流体注入时,这些反应可形成<3mol%熔体。在不同体系中白云母脱水熔融反应型式及其P-T条件不同,如在NKASH和KFMASH体系中模拟计算的白云母脱水熔融反应与相应的实验结果相似,分别控制了白云母分解熔融的温度下限和上限;白云母的分解温度会随着其中Fe、Mg和Ti含量的增加而升高,也随着共生斜长石中钙长石组分增加而升高,泥质岩中白云母脱水熔融可以形成~10mol%熔体。在KFMASH体系中黑云母脱水熔融反应表现为4条单变反应,其理论计算的温度比实验模拟的结果低一些。在NCKFMASH体系或实际岩石中黑云母脱水熔融反应为滑动反应,如NCKFMASH体系中黑云母从其开始熔融到最后消失在泥质岩中可跨越~100℃,在杂砂岩中可跨越30~50℃。黑云母的稳定温度随着镁值升高而升高,其稳定上限受钛影响更大,黑云母脱水熔融可以形成超过30mol%~40mol%熔体。KFMASH体系中的相平衡模拟表明以出现斜方辉石+夕线石和假蓝宝石为特征的超高温组合易于出现于富镁泥质岩中,而对正常成分泥质岩在达到1000℃的超高温条件下,主要出现石榴石+夕线石(即夕线榴),该组合在更高温度反应形成假蓝宝石+尖晶石。利用饱和水固相线反应和白云母与黑云母分解反应可以更好地限定不同的变质相。如中压和低压条件下低角闪岩相和高角闪岩相的界限可利用NKASH体系中有水流体和白云母参与的熔融反应和亚固相线条件下的白云母分解反应限定;实验确定的泥质岩中黑云母开始熔融与消失的反应可分别用于限定高角闪岩相与(正常)麻粒岩相的界限,以及(正常)麻粒岩相和超高温麻粒岩相的界限。因此,从矿物组合角度,正常麻粒岩相可限定在黑云母开始熔融到完全消失的温度范围,超高温麻粒岩相可限定在黑云母消失(有石英存在)之后的温度范围。  相似文献   

3.
赖兴运 《岩石学报》2003,19(4):707-716
基于岩石相平衡,对富铝泥质岩K2O-Al2O3-SiO2一H2O(KASH)和K2O-FeO—MgO—A12O3-SiO2-H2O(KFMASH)体系的混合岩化深熔作用相关系进行了模拟计算,得到泥质岩深熔作用的成岩格子、熔体成分变化特征、熔体含水量及其温压条件、石榴石变斑晶成分演化趋势和泥质岩进变质、退变质矿物组合特征、各种压力条件下S型花岗质熔体特征等,并进一步将模拟结果应用于内蒙古固阳等地的泥质岩,根据相关岩石的矿物组合及结构特征,获得了变质反应历史和P—T轨迹。  相似文献   

4.
魏春景 《岩石学报》2016,32(6):1625-1643
高温-超高温变质岩石的矿物组合及组构特点取决于不同的进变熔融反应,不同程度的熔体丢失以及不同程度的退变反应三种过程的综合效应。利用相平衡定量研究方法可以很好地模拟进变熔融反应的类型、P-T条件、熔体含量及其丢失行为、以及熔融过程中熔体与残余物的化学成分变化等,这对探讨高温-超高温变质作用过程以及花岗岩的成因非常重要。对平均泥质岩(APR)进行相平衡模拟表明变质泥质岩在等压(0.8GPa)升温熔融过程中可发生5种熔融反应:饱和流体固相线、白云母脱水熔融、黑云母熔融、钾长石-石榴石熔融和铝铁镁矿物熔融,后两种熔融反应主要发生在超高温条件下。减压过程中发生怎样的熔融反应受减压温度控制:在麻粒岩相(如850℃)减压可发生钾长石熔融、黑云母熔融和钾长石-石榴石熔融反应;在高角闪岩相(如750℃)减压主要发生白云母脱水熔融和钾长石熔融;在超高温麻粒岩相(如950~1000℃)减压主要发生钾长石-石榴石熔融和铝铁镁矿物熔融。熔体成分受熔融反应和P-T条件控制,如在高角闪岩相发生的饱和流体固相线和白云母脱水熔融可形成弱过铝的奥长花岗质和二长花岗质熔体;在麻粒岩相发生的黑云母熔融和钾长石熔融形成的熔体具有强过铝的二长花岗岩成分;在中压超高温发生的钾长石-石榴石熔融和铝铁镁矿物熔融形成强过铝的二长(钾长)花岗岩质熔体,可形成石榴石花岗岩;在低压超高温下发生的铝铁镁矿物熔融可形成堇青石花岗岩。除了极端超高温下的铝铁镁矿物熔融外,其它熔融反应都会使残余物的成分更贫硅,贫Na_2O和K_2O,富FeO和MgO,但Al_2O_3和Mg#基本不变。高温-超高温下发生深熔的岩石只记录降温过程形成的固相线组合,但固相线的类型与温度条件取决于熔体的丢失行为。在不丢失熔体或者获得熔体的岩石中,岩石最后只记录流体饱和固相线组合;发生熔体部分丢失的岩石会记录缺流体固相线组合,并且熔体丢失越多,缺流体固相线的温度越高;发生全部流体丢失的岩石可记录岩石所达到的最高温度。因此,在一个麻粒岩相区,甚至一个野外露头上不同部位的岩石记录不同的P-T条件。熔体丢失是导致使麻粒岩相组合在升温过程中发生超高温变质,在降温过程中得以部分保存的重要条件。发生部分熔融的高级变质岩中随着温度升高,熔体含量增加,会发生锆石分解,只有在降温过程中发生锆石结晶,因此,麻粒岩中新生锆石只记录降温过程到固相线及以后的年龄,一般不会记录麻粒岩相峰期时代。对泥质高压麻粒岩来说,如果经历ITD型变质演化,会发生递进减压熔融,变质反应易于达到平衡,但如果减压速度快并使岩石直接抬升到地壳浅部,会出现一些ITD型结构标志,如残留金红石、蓝晶石,或在石榴石周围出现堇青石的反应冠状体等,此时锆石记录的退变质年龄会与峰期变质年龄相差不大(如10~30Myr);但如果泥质高压麻粒岩减压至中、深地壳,受其中有滞留熔体影响易于发育IBC型结构特征,表现为麻粒岩组合被(中压)角闪岩相组合叠加,在泥质岩中出现黑云母+夕线石构成的暗色条带,或者出现退变白云母和含白云母的浅色体。在中、深地壳经历IBC过程的麻粒岩锆石记录的退变质年龄会与峰期年龄相差很大(如~100Myr)。高级变质岩中由于出现熔体使水流体活度降低,麻粒岩作为排除部分熔体的残余物,其水活度更低。从这一角度来说,水活度低是麻粒岩相变质作用的结果,而不是条件。某些麻粒岩区之所以出现多期麻粒岩相变质叠加受流体行为控制。在亚固相线下流体饱和岩石变质熔融作用从饱和水固相线开始,然后依次发生含水矿物的脱水熔融和无水矿物熔融,这一过程中流体是内部缓冲的,在麻粒岩相温度峰期形成一组平衡矿物组合,难以保留峰期之前的信息。而流体不饱和岩石(如已形成的麻粒岩或岩浆侵入体)变质作用受外部注入流体控制,与构造变形密切相关。如果发生两期麻粒岩相变质叠加变质,在强应变域会形成晚期麻粒岩组合;在弱应变域,会出现两期麻粒岩组合,其中晚期矿物表现为反应冠状体或细粒交生体;而在一些应变非常弱的区域,可能只保留早期矿物组合。  相似文献   

5.
基性岩高温-超高温变质作用与TTG质岩成因   总被引:10,自引:6,他引:4  
魏春景  关晓  董杰 《岩石学报》2017,33(5):1381-1404
变质基性岩在高温-超高温下部分熔融可以形成TTG(英云闪长质-奥长花岗质-花岗闪长质)质熔体,有关熔融反应机理、熔体地球化学特征以及太古宙TTG质岩石成因问题备受国内外学者关注。本文基于对相关实验岩石学研究的总结,结合基性岩高温-超高温相平衡的模拟计算,分析了变质基性岩(斜长角闪岩)深熔变质反应过程、P-T条件及其与TTG质岩石成因的联系。变质基性岩高温-超高温深熔作用主要受角闪石脱水熔融反应控制。在1.0GPa以下的无石榴石域,角闪石分解反应主要为:角闪石=单斜辉石+斜方辉石+斜长石+熔体(R1),该反应为多变滑动反应,以斜方辉石出现(800℃)和角闪石消失(1000~1100℃)为标志,其滑动温度范围超过200~300℃。实验岩石学确定的斜长角闪岩开始熔融或缺流体固相线大致相当于斜方辉石出现温度。实际上角闪石脱水熔融反应是从饱和水固相线开始的,反应为:角闪石+石英=单斜辉石+斜长石+熔体(R1a),开始有黑云母参与熔融反应,但该反应对熔体贡献有限。在1.0GPa以上的石榴石域,不同实验所确定的石榴角闪岩缺流体固相线温度主要介于800~900℃之间,固相线表现为正斜率、负斜率、或者为与压力无关的直线等不同结果。相平衡模拟计算表明在石榴石稳定域角闪石脱水熔融反应为较陡的负斜率,分为两部分:当有斜长石存在时,反应为角闪石+斜长石+石英=石榴石+单斜辉石+熔体(R2),低温部分有白云母、绿帘石参与反应。该反应从饱和水固相线(约630℃)开始,到角闪石消失(超过1000℃),滑动温度范围可超过400℃,跨越石榴角闪岩亚相与角闪高压麻粒岩亚相范围;在斜长石消失后角闪石脱水熔融反应为角闪石+石英=石榴石+单斜辉石+熔体(R2a),低温部分有绿帘石、白云母参与熔融反应,该反应从饱和水固相线(约650℃)开始,到角闪石消失(超过900℃),滑动温度范围可超过200~300℃。角闪石脱水熔融反应形成的无水残余物形成麻粒岩和榴辉岩,无水麻粒岩的峰期温度会超过1000℃,由于降温过程中的退变质演化,如超固相线下滞留熔体与残余物之间发生的深熔反应的逆反应,以及在亚固相线下离子交换反应,导致大多数麻粒岩只记录缺流体固相线组合与退变质温度。基性岩部分熔融的熔体成分取决于全岩成分、P-T条件及熔融程度。当熔融程度很低时(如小于5%)可形成富钾花岗质熔体,随着熔融程度增加,熔体成分可转变为奥长花岗质(如5%~20%)和英云闪长质(如大于20%),部分熔融的熔体成分受全岩成分影响很大,只有相对富钾的基性岩才能形成花岗闪长质到石英二长质熔体。太古宙TTG质岩石表现出富Sr、低Y、Yb、Nb、Ta、Ti以及稀土分馏程度高等地球化学特征,要求部分熔融压力较高,残余物中有石榴石(及金红石)存在。争论的焦点是部分熔融究竟发生在石榴角闪岩亚相(及角闪高压麻粒岩亚相),还是发生在榴辉岩相。对此,不同实验给出的不同结论应该与源岩地球化学特征不同有关。考虑到TTG质岩石的可能源岩如太古宙科马提岩和玄武岩地球化学特征的多样性,TTG质岩石本身地球化学特征上的差异也许不能完全指示熔融发生的P-T条件。综合实验岩石学和相平衡模拟结果,本文确定TTG质岩石是由基性岩在角闪石和石榴石共同稳定域由角闪石脱水熔融反应R2和R2a在角闪高压麻粒岩亚相和角闪榴辉岩亚相形成的,P-T条件为1.0~2.5GPa和800~1000/1100℃。角闪高压麻粒岩亚相相对应的地热梯度为15~25℃/km,角闪榴辉岩亚相对应的地热梯度为10~15℃/km。TTG质岩石形成的构造环境不能简单对应发生在显生宙的洋壳热俯冲带、碰撞造山带和洋底高原等。  相似文献   

6.
邓亮鹏 《地质学报》2023,97(2):613-622
下地壳岩石的深熔作用不仅与麻粒岩和花岗岩的形成具有紧密关联,而且在某些构造环境下会对地球动力学演化过程造成影响,因此,对深熔岩石的变质P-T条件的准确估算及对其熔融机制的限定具有重要意义。基于内洽性热力学数据库、THERMOCALC/Perple_X等程序以及适当的固溶体活度模型,变质相平衡模拟已逐渐成为变质岩石学的常规研究方法,广泛应用于推断天然岩石的矿物共生序列、估算岩石的变质P-T条件等。不仅如此,如果有适当的熔体活度模型,变质相平衡模拟还能估算深熔岩石的熔融温度、压力及熔体比例,以及限定其涉及的熔融反应,并计算熔体、转熔矿物及残余矿物的成分等。针对不同成分岩石,包括花岗质岩石、变泥质岩、变基性岩及橄榄岩在不同压力下产生的熔体,前人陆续提出了对应的活度模型,并且其有效性得到了相关实验数据的验证。随着近年来熔体活度模型的不断更新和完善,变质相平衡模拟有望成为研究自然界深熔岩石的常规方法,为相关的麻粒岩和花岗岩成因研究、相关地球动力学演化研究提供新的思路。  相似文献   

7.
深熔过程中熔体成分与锆石行为模拟计算   总被引:3,自引:2,他引:1  
王伟  魏春景  刘晓春  赵越  高亮  娄玉行  初航  张颖慧 《岩石学报》2014,30(10):3075-3084
发生深熔作用是高级变质作用的一个重要特征。深熔过程中产生的熔体可为淡色花岗岩提供潜在的源区;深熔过程中锆石的行为直接影响对变质锆石记年地质意义的理解。在含Zr体系下的相平衡模拟显示泥质成分深熔过程中产生熔体的成分在P-T空间中规律变化。温度升高时熔体Zr/Si值、Zr、FeO、MgO以及CaO等含量明显增加,压力较高时K2O含量也随温度升高而明显增加。Na2O含量随温度升高而降低,但随压力升高而增加。压力升高时Al/Si值显著升高。温度较高时Na/(Na+K)等值线较陡,减压熔融过程不会显著改变熔体Na/(Na+K)值,而升温减压过程以及近等压升温过程都会明显降低熔体Na/(Na+K)值。中压时随温度升高熔体Fe/(Fe+Mg)值缓慢升高,而石榴石的生长发育会迅速降低熔体Fe/(Fe+Mg)值。不同温压条件下对应的固相线熔融、白云母脱水熔融以及黑云母脱水熔融形成的熔体成分具有明显差异。对比模拟熔体成分在P-T空间的演化,喜马拉雅地区电气石淡色花岗岩对应熔体的形成温压条件应低于二云母淡色花岗岩,同类型淡色花岗岩之间在形成条件上也可能存在一定差异,并经历了差异性演化过程。含Zr体系下的相平衡关系显示进变过程是消耗锆石的过程,因而在进变过程中变质锆石难以生长,发生深熔作用的岩石中的变质锆石主要在退变过程中形成并记录退变质年龄。熔体丢失相关模拟显示不同温度阶段发生熔体丢失对锆石稳定性的影响不同。温度较低时Zr含量较少的熔体丢失会扩大持续进变过程中锆石的稳定范围,而温度较高时富Zr熔体的丢失会降低持续进变过程中锆石的稳定温度。类似于分离熔融作用的过程最利于残留相中剩余锆石在持续进变过程中的保存。  相似文献   

8.
中-低压泥质岩在KFMASH体系中的相平衡关系   总被引:3,自引:0,他引:3  
张翠光  魏春景 《岩石学报》2004,20(3):725-736
利用内部一致热力学数据库、可靠的固溶体活度模型,用有关程序THERMOCALC 3.1计算了KFMASH(K2O-FeO-MgO-Al2O3-SiO2-H2O)体系和亚体系KMASH、KFASH中的岩石成因格子。温压范围为P=0.05~1.2GPa,T=450~900℃.包括黑云母、白云母、钾长石、绿泥石、硬绿泥石、十字石、堇青石、斜方辉石、石榴石、尖晶石、红柱石、蓝晶石、矽线石、石英(过量)、熔体和水(固相线以下水过量、固相线以上水不过量)..利用这些成因格子以及所计算的AFM图、P-T视剖面图,可以很好地阐明泥质岩石中低压变质作用的相平衡关系及P-T条件。所计算的结果与岩石学研究非常吻合,能解释从绿片岩相至麻粒岩相的一系列变化。尤其是熔体的引入,使我们能够定量计算高角闪岩相以上出现的混合岩化过程。  相似文献   

9.
向华  张泽明  董昕  祁敏  林彦蒿  雷恒聪 《岩石学报》2013,29(11):3792-3802
位于东喜马拉雅构造结的南迦巴瓦杂岩是高喜马拉雅结晶岩系的一部分,是印度大陆深俯冲到欧亚板块之下经历了高压变质作用的产物。基于岩相学和矿物化学研究,本文对南迦巴瓦杂岩中的泥质变质岩进行了相平衡模拟研究。结果表明,泥质岩石经历了高压麻粒岩相变质作用,峰期矿物组成是石榴石+蓝晶石+黑云母+斜长石+钾长石+石英+金红石,峰期变质条件是~820℃,13.0~13.5kb,表明印度大陆至少俯冲到了约45km深度,构成了青藏高原的加厚下地壳。高压泥质变质岩在进变质和峰期变质过程中经历了白云母和黑云母脱水反应引起的部分深熔,熔融程度可达27vol%,形成了花岗质成分的熔体,构成了喜马拉雅造山带淡色花岗岩的源区。因此,青藏高原具有一个深熔融的中下地壳,为其侧向流动提供了有利的流变学环境。  相似文献   

10.
高级变质-深熔作用中伴随有熔体的形成,在缺失流体的不一致熔融条件下,如果熔体的萃取不完全,原地结晶熔体与残留体之间可发生特殊的退变反应———逆(熔)反应,这种反应与进变质脱水熔融恰好相反。逆(熔)反应的最佳判断标志就是在浅色体和早期深熔过程中形成的不一致熔融相之间含水矿物组合的生长。逆(熔)反应形成的退变组合是深熔作用过程的一部分,而不是另外期次的变质事件叠加。逆(熔)反应的地质意义在于它可能会影响到熔体和流体组成、流体-岩石的相互作用以及对质量平衡的研究,尤其是对p-T路径恢复的影响,从而影响到构造和热流模型的推断。  相似文献   

11.
A thermodynamic model for haplogranitic melts in the system Na2O–CaO–K2O–Al2O3–SiO2–H2O (NCKASH) is extended by the addition of FeO and MgO, with the data for the additional end‐members of the liquid incorporated in the Holland & Powell (1998) internally consistent thermodynamic dataset. The resulting dataset, with the software thermocalc , is then used to calculate melting relationships for metapelitic rock compositions. The main forms for this are PT and TX pseudosections calculated for particular rock compositions and composition ranges. The relationships in these full‐system pseudosections are controlled by the low‐variance equilibria in subsystems of NCKFMASH. In particular, the solidus relationships are controlled by the solidus relationships in NKASH, and the ferromagnesian mineral relationships are controlled by those in KFMASH. However, calculations in NCKFMASH allow the relationships between the common metapelitic minerals and silicate melt to be determined. In particular, the production of silicate melt and melt loss from such rocks allow observations to be made about the processes involved in producing granulite facies rocks, particularly relating to open‐system behaviour of rocks under high‐grade conditions.  相似文献   

12.
Metapelitic rocks in the low pressure contact metamorphic aureole around the Susqueda igneous complex, Spain show a number of features that make them an ideal testing ground for the modelling of silica‐undersaturated melting. Rocks in the aureole experienced localized depletion in silica by the segregation of quartz veins during a pre‐anatectic, regional cordierite‐andalusite grade metamorphic event. These rocks were then intruded by gabbroic to dioritic rocks of the Susqueda igneous complex that formed a migmatitic contact metamorphic aureole in the country rocks. This migmatisation event caused quartz‐saturated hornfels and restite formation in rocks that had experienced no quartz vein segregation in the previous regional metamorphic event, but silica‐undersaturated melting in those rocks that were previously depleted in silica. Silica‐undersaturated melting is investigated using a new petrogenetic P–T projection and equilibrium pseudosections calculated in the KFMASH and NCKFMASH systems, respectively. The grid considers quartz absent equilibria and a range of phases that form typically in silica‐undersaturated bulk compositions, for example corundum. It is shown that the quartz‐rich precursors in the Susqueda contact aureole produced about 10% melt during contact metamorphism. However, most of this melt was extracted leaving behind rocks with restitic bulk compositions and minor leucosome segregation. It is suggested that the melt mixed with the host igneous rocks causing an apparent magmatic zoning from diorite in the centre of the complex to tonalite at the margins. In contrast, the quartz‐poor precursors (from which the quartz veins segregated) melted in the silica‐undersaturated field producing a range of assemblages including peritectic corundum and spinel. Melting of the silica‐undersaturated rocks produced only negligible melt and no subsequent melt loss.  相似文献   

13.
Progress relating to calculation of partial melting equilibria for metapelites   总被引:36,自引:4,他引:32  
Improved activity–composition relationships for biotite, garnet and silicate liquid are used to construct updated PT grids and pseudosections for high‐grade metapelites. The biotite model involves Ti charge‐balanced by hydrogen deprotonation on the hydroxyl site, following the substitution , where HD represents the hydroxyl site. Relative to equivalent biotite‐breakdown melting reactions in PT grids in K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH), those in K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (KFMASHTO) occur at temperatures close to 50 °C higher. A further consequence of the updated activity models is that spinel‐bearing equilibria occur to higher temperature and higher pressure. In contrast, the addition of Na2O and CaO to KFMASH to make the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) system lowers key biotite‐breakdown melting reactions in PT space relative to KFMASH. Combination of the KFMASHTO and NCKFMASH systems to make Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCKFMASHTO) results in key biotite‐breakdown melting reactions occurring at temperatures intermediate between those in KFMASHTO and those in NCKFMASH. Given such differences, the choice of model system will be critical to inferred PT conditions in the application of mineral equilibria modelling to rocks. Further, pseudosections constructed in KFMASH, NCKFMASH and NCKFMASHTO for several representative rock compositions show substantial differences not only in the PT conditions of key metamorphic assemblages but also overall topology, with the calculations in NCKFMASHTO more reliably reflecting equilibria in rocks. Application of mineral equilibria modelling to rocks should be undertaken in the most comprehensive system possible, if reliable quantitative PT information is to be derived.  相似文献   

14.
Petrogenetic grids are a powerful tool for understanding metamorphic terrains and many theoretical grids have been suggested for the process of granulite formation in metapelitic rocks, via fluid-absent biotite melting reactions. However, application of these grids has been difficult due to the lack of suitable experimental constraints. We present here an experimentally determined and tightly constrained petrogenetic grid for KFMASH system metapelites which extends from 840–1000°C and 5.0–12.5 kbar. Sixty four experiments on three KFMASH, mineral-mix, bulk compositions (X Mg=0.62, 0.74, 0.86) provide phase composition and assemblage data from which a grid can be derived and constrained. Reversal experiments and consideration of the phase composition data show the experiments to be close to equilibrium. The KFMASH univariant fluid-absent biotite melting reactions occur between 850 and 870°C at 5 kbar and between 900 and 915°C at 10 kbar. These reactions are connected to equilibria beyond the stability of biotite to develop a fixed framework within which the phase assemblage evolution of metapelitic rocks can be interpreted. The effect of minor components on phase equilibria is evaluated using the experimentally determined grid as a simple-system reference. The temperature at which melting occurs in metapelites is strongly controlled by the concentrations of titanium and fluorine in biotite. Pressure-temperature pseudosections presented for each of the experimental compositions show both the univariant and divariant reactions available to a particular bulk composition, clearly illustrating the possible evolution of the phase assemblage. The pseudosections also constrain the stability limits of  相似文献   

15.
       根据大陆下地壳的成分、含水基性岩体系部分熔融的基本原理和实验岩石学资料,本文对大陆下地壳的熔融机制展 开了讨论,并在此基础上对比实验熔体与大别山C 型埃达克岩的成分,进而探讨约束源岩成分、熔融的温压条件和部分熔 融程度。研究结果表明,大陆下地壳总体上是中- 基性(SiO2 50%~60% )和含少量水的,在缺乏流体相条件下伴随含水 矿物脱水的部分熔融是下地壳产生含水长英质熔体和无水残留体的主要机制。角闪岩在中等压力下(1.0~1.2 GPa,相当于 35~40 km)理论上能够产生石榴石含量超过~20% 的熔融残余,从而使得与之平衡的长英质熔体具有低Y,高Sr/Y 和La/Yb 比值等埃达克岩特征。基于水活度模型和变质基性岩p -t 相图的估算显示,含有40%~60% 角闪石的源岩(含水0.8%~1.2%) 在~950 ℃能够得到最大为15%~20% 的熔体,该熔体分数满足熔体分离的要求。大别山C型埃达克岩主要为高钾钙碱性系 列(K2O 3.5%~5%),与实验熔体成分的对比可知,其无法由低钾源岩在合理的部分熔融程度形成。根据钾在角闪岩部分熔 融过程过表现为强不相容元素的原理,利用合理假设的残余体组合得到的分配系数,估算K2O 含量为~1% 的源岩在熔融程 度为15%~20% 的情况下能够得到类似大别山C 型埃达克岩成分的熔体。  相似文献   

16.
Retrograde processes in migmatites and granulites revisited   总被引:13,自引:1,他引:13  
Many migmatites and granulites preserve evidence of a clockwise P–T evolution involving decompression (decrease in P) while close to the thermal peak. The extent of post‐thermal peak reaction is influenced by several factors, including: (1) the P–T path in relation to invariants in the system and the Clapeyron slopes of the equilibria; (2) the rate of cooling; and (3) the availability of fluid (H2O‐rich volatile phase or melt) for fluid‐consuming reactions. Reaction may occur between products of a prograde (increasing T) fluid‐generating reaction as the same equilibrium is re‐crossed in the retrograde (decreasing T) sense. In general, reaction reversal or ‘back reaction’ requires the P–T path to approximate isobaric heating and cooling, without significant decompression, and evolved fluid to remain within the equilibration volume. The larger the decompression segment in the P–T evolution, the more chance there is of crossing different reactions along the retrograde segment from those crossed along the prograde segment. For common pelite compositions, we may generalize by considering three pressure regimes separated by the [Spl, Ms, H2O] invariant in KFMASH (approximately 9 kbar) and the intersection of muscovite breakdown with the H2O‐rich volatile phase‐saturated solidus (approximately 4 kbar). Reaction reversal cannot occur along P–T paths that traverse around one of these points, but may occur along P–T paths confined to one of the three regimes in between. Additionally, above the solidus, melt segregation and loss potentially change the composition of the equilibration volume; and, the size of the equilibration volume shrinks with decreasing T. Since the proportion of melt to residue in the equilibration volume may change with decreasing size, the composition of the equilibration volume may change throughout the supra‐solidus part of the retrograde segment of the P–T evolution. If melt has been lost from the equilibration volume, reaction reversal may not be possible or may be only partial; indeed, the common preservation of close‐to‐peak mineral assemblages in migmatite and granulite demonstrates that extensive reaction with melt is uncommon, which implies melt isolation or loss prior to crossing potential melt‐consuming reactions. Water dissolved in melt is transported through the crust to be exsolved on crystallization at the solidus appropriate to the intrinsic a(H2O). This recycled water causes retrogression at subsolidus conditions. Consideration of the evidence for supra‐solidus decompression‐dehydration reactions, and review of microstructures that have proven controversial, such as corona and related microstructures, selvage microstructures and ‘late’ muscovite, leads to the conclusion that there is more than one way for these microstructures to form and reminds us that we should always consider multiple working hypotheses!  相似文献   

17.
Creation of pathways for melt to migrate from its source is the necessary first step for transport of magma to the upper crust. To test the role of different dehydration‐melting reactions in the development of permeability during partial melting and deformation in the crust, we experimentally deformed two common crustal rock types. A muscovite‐biotite metapelite and a biotite gneiss were deformed at conditions below, at and above their fluid‐absent solidus. For the metapelite, temperatures ranged between 650 and 800 °C at Pc=700 MPa to investigate the muscovite‐dehydration melting reaction. For the biotite gneiss, temperatures ranged between 850 and 950 °C at Pc=1000 MPa to explore biotite dehydration‐melting under lower crustal conditions. Deformation for both sets of experiments was performed at the same strain rate (ε.) 1.37×10?5 s?1. In the presence of deformation, the positive ΔV and associated high dilational strain of the muscovite dehydration‐melting reaction produces an increase in melt pore pressure with partial melting of the metapelite. In contrast, the biotite dehydration‐melting reaction is not associated with a large dilational strain and during deformation and partial melting of the biotite gneiss melt pore pressure builds more gradually. Due to the different rates in pore pressure increase, melt‐enhanced deformation microstructures reflect the different dehydration melting reactions themselves. Permeability development in the two rocks differs because grain boundaries control melt distribution to a greater extent in the gneiss. Muscovite‐dehydration melting may develop melt pathways at low melt fractions due to a larger volume of melt, in comparison with biotite‐dehydration melting, generated at the solidus. This may be a viable physical mechanism in which rapid melt segregation from a metapelitic source rock can occur. Alternatively, the results from the gneiss experiments suggest continual draining of biotite‐derived magma from the lower crust with melt migration paths controlled by structural anisotropies in the protolith.  相似文献   

18.
P -T paths from anatectic pelites   总被引:2,自引:1,他引:1  
A relatively simple petrogenetic grid for partial melting of pelitic rocks in the NCKFMASH system is presented based on the assumption that the only H2O available for melting is through dehydration reactions. The grid includes both discontinuous and continuous Fe-Mg reactions; contours of Fe/(Fe+Mg) for continuous reactions define P-T vectors along which continuous melting will occur. For biotite-bearing assemblages (garnet+biotite + sillimanite + K-feldspar + liquid and garnet + biotite + cordierite + K-feldspar + liquid), Fe/(Fe+Mg) contours have negative slopes and melting will occur with increasing temperature or pressure. For biotite-absent assemblages (garnet + cordierite + sillimanite + K-feldspar + liquid or garnet + cordierite + orthopyroxene + K-feldspar + liquid) Fe/(Fe + Mg) contours have flat slopes and melting will occur only with increasing pressure. The grid predicts that abundant matrix K-feldspar should only be observed if rocks are heated at P < 3.8 kbar, that abundant retrograde muscovite should only be observed if rocks are cooled at P > 3.8 kbar, and that generation of late biotite + sillimanite replacing garnet, cordierite, or as selvages around leu- cosomes should be common in rocks in which melt is not removed. There is also a predicted field for dehydration melting of staurolite between 5 and 12 kbar. Textures in migmatites from New Hampshire, USA, suggest that prograde dehydration melting reactions are very nearly completely reversible during cooling and crystallization in rocks in which melt is not removed. Therefore, many reaction textures in “low grade” migmatites may represent retrograde rather than prograde reactions. Received: 5 March 1998 / Accepted: 7 August 1998  相似文献   

19.
 Thermodynamic modelling of (1) osumilite solid solutions and (2) dehydration melting in pelitic compositions within the KFMASH system is quite successful in reproducing the invariant and univariant reactions determined in experimental studies. Even though rather preliminary, such melt thermodynamic models may be very useful in interpolating and extrapolating the limited information available from a small number of experimental runs. These methods allow the compositions of all phases to be monitored as a function of pressure, temperature and equilibrium phase assemblage for any desired bulk composition. Locating the higher variance phase fields (e.g. quadrivariant, quinivariant) is often difficult or impossible by inspection, but is made relatively easy using thermodynamic software such as thermocalc. In the KFMASH system the calculated partition of Fe and Mg between osumilite, garnet, cordierite, orthopyroxene and biotite are shown to be in good agreement with experimental and natural data and allow reliable calculation of mineral compositions coexisting with quartz-saturated and H2O-undersaturated melts for a variety of bulk compositions. These phase diagram calculations allow quite tight limits to be placed on the pressure, temperature and water activity conditions which accompanied metamorphism of natural osumilite occurrences in Nain, Namaqualand, and Rogaland. At fixed bulk composition, the initial melting of pelites by dehydration of biotite can occur via univariant, divariant or trivariant equilibria depending upon pressure of metamorphism. Of particular interest is that, for low pressures or more magnesian bulk compositions, fluid-absent melting begins by generating liquid from the high-variance assemblage biotite+cordierite+K-feldspar+ quartz. This type of modelling allows investigation, at least qualitatively, of the fine scale details of melt production as a function of changes in pressure, temperature and bulk composition. Received: 29 November 1995 / Accepted: 22 April 1996  相似文献   

20.
Low‐pressure and high‐temperature (LP–HT) metamorphism of basaltic rocks, which occurs globally and throughout geological time, is rarely constrained by forward phase equilibrium modelling, yet such calculations provide valuable supplementary thermometric information and constraints on anatexis that are not possible to obtain from conventional thermometry. Metabasalts along the southern margin of the Sudbury Igneous Complex (SIC) record evidence of high‐grade contact metamorphism involving partial melting and melt segregation. Peak metamorphic temperatures reached at least ~925°C at ~1–3 kbar near the SIC contact. Preservation of the peak mineral assemblage indicates that most of the generated melt escaped from these rocks leaving a residuum characterized by a plagioclase–orthopyroxene–clinopyroxene–ilmenite‐magnetite±melt assemblage. Peak temperatures reached ~875°C up to 500 m from the SIC lower contact, which marks the transition to metabasalts that only experienced incipient partial melting without melt loss. Metabasalts ~500 to 750 m from the SIC contact are characterized by a similar two‐pyroxene mineral assemblage, but typically contain abundant hornblende that overgrew clino‐ and orthopyroxene along an isobaric cooling path. Metabasalts ~750 to 1,000 m from the SIC contact are characterized by a hornblende–plagioclase–quartz–ilmenite assemblage indicating temperatures up to ~680°C. Mass balance and phase equilibria calculations indicate that anatexis resulted in 10–20% melt generation in the inner ~500 m of the aureole, with even higher degrees of melting towards the contact. Comparison of multiple models, experiments, and natural samples indicates that modelling in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCFMASHTO) system results in the most reliable predictions for the temperature of the solidus. Incorporation of K2O in the most recent amphibole solution model now successfully predicts dehydration melting by the coexistence of high‐Ca amphibole and silicate melt at relatively low pressures (~1.5 kbar). However, inclusion of K2O as a system component results in prediction of the solidus at too low a temperature. Although there are discrepancies between modelling predictions and experimental results, this study demonstrates that the pseudosection approach to mafic rocks is an invaluable tool to constrain metamorphic processes at LP–HT conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号