首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Open‐system behaviour through fluid influx and melt loss can produce a variety of migmatite morphologies and mineral assemblages from the same protolith composition. This is shown by different types of granulite facies migmatite from the contact aureole of the Ceret gabbro–diorite stock in the Roc de Frausa Massif (eastern Pyrenees). Patch, stromatic and schollen migmatites are identified in the inner contact aureole, whereas schollen migmatites and residual melanosomes are found as xenoliths inside the gabbro–diorite. Patch and schollen migmatites record D1 and D2 structures in folded melanosome and mostly preserve the high‐T D2 in granular or weakly foliated leucosome. Stromatic migmatites and residual melanosomes only preserve D2. The assemblage quartz–garnet–biotite–sillimanite–cordierite±K‐feldspar–plagioclase is present in patch and schollen migmatites, whereas stromatic migmatites and residual melanosomes contain a sub‐assemblage with no sillimanite and/or K‐feldspar. A decrease in X Fe (molar Fe/(Fe + Mg)) in garnet, biotite and cordierite is observed from patch migmatites through schollen and stromatic migmatites to residual melanosomes. Whole‐rock compositions of patch, schollen and stromatic migmatites are similar to those of non‐migmatitic rocks from the surrounding area. These metasedimentary rocks are interpreted as the protoliths of the migmatites. A decrease in the silica content of migmatites from 63 to 40 wt% SiO2 is accompanied by an increase in Al2O3 and MgO+FeO and by a depletion in alkalis. Thermodynamic modelling in the NCKFMASHTO system for the different types of migmatite provides peak metamorphic conditions ~7–8 kbar and 840 °C. A nearly isothermal decompression history down to 5.5 kbar was followed by isobaric cooling from 840 °C through 690 °C to lower temperatures. The preservation of granulite facies assemblages and the variation in mineral assemblages and chemical composition can be modelled by ongoing H2O‐fluxed melting accompanied by melt loss. The fluids were probably released by the crystallizing gabbro–diorite, infiltrating the metasedimentary rocks and fluxing melting. Release of fluids and melt loss were probably favoured by coeval deformation (D2). The amount of melt remaining in the system varied considerably among the different types of migmatite. The whole‐rock compositions of the samples, the modelled compositions of melts at the solidus at 5.5 kbar and the residues show a good correlation.  相似文献   

2.
The petrogenetic relations among Ti‐rich minerals in high‐grade metabasites is illuminated here through a detailed petrological investigation of an anatectic garnet–clinopyroxene granulite from the Grenville Province, Ontario, Canada containing rutile, titanite and ilmenite in distinct microtextural settings. Garnet porphyroblasts exhibit zoned Ti concentrations (up to 0.15 wt% TiO2 in their cores), as well as a variety of rutile inclusion types, including clusters of small, variably elongate grains and thin (≤1 μm) oriented needles. Calcite inclusions in garnet, commonly observed surrounding garnet cores containing quartz and clinozoisite, indicate the presence of evolving C–O–H fluids during garnet growth and suggest that the rutile clusters may have formed from subsequent Ti diffusion and rutile precipitation within existing fluid inclusions. Titanite forms large subhedral crystals and typically occurs where the primary garnet–clinopyroxene assemblage is in contact with leucosome containing megacrystic hornblende, silvialitic scapolite and calcic plagioclase. Many titanite crystals exhibit marginal subgrains that correspond with sharp changes in their major and trace element composition, likely related to a dissolution–precipitation or recrystallization process following primary crystallization. Clinopyroxene–ilmenite symplectite coronas surround titanite in most locations, likely forming from reaction with the hornblende‐plagioclase matrix (±fluids/melt). Integration of multi‐equilibria thermobarometry and Zr thermometry in rutile and titanite with phase equilibrium modelling allows definition of a clockwise P–T path evolving to peak pressures of ~1.5 GPa at ~750°C during garnet and rutile growth, followed by peak temperature conditions of ~1.2 GPa and ~820–880°C associated with melt‐present titanite growth, and finally cooling and decompression to regional amphibolite facies conditions (~1.0 GPa and ~750°C) associated with the formation of clinopyroxene–ilmenite symplectites surrounding titanite. P–T pseudosections calculated for the pristine (leucosome‐ and titanite ‐free) metabasite bulk composition reproduce much of the prograde phase relations, but predict rutile as the stable Ti‐rich mineral at the peak thermal conditions associated with melt‐present titanite growth. The PM(CaO) and TM(CaO) models show that bulk CaO concentrations have a significant effect on the stability ranges of titanite and rutile. Increased bulk CaO tends to stabilize titanite to higher pressure and temperature at the expense of rutile, with a ≥15% increase in CaO producing the observed titanite‐bearing assemblage at high‐P granulite facies conditions. Thus, the model results are consistent with the textural observations, which suggest that titanite stability is associated with a chemical exchange between the host metabasite and a Ca‐rich melt.  相似文献   

3.
In this study, we investigate the metamorphic history of the Assynt and Gruinard blocks of the Archean Lewisian Complex, northwest Scotland, which are considered by some to represent discrete crustal terranes. For samples of mafic and intermediate rocks, phase diagrams were constructed in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCKFMASHTO) system using whole‐rock compositions. Our results indicate that all samples equilibrated at similar peak metamorphic conditions of ~8–10 kbar and ~900–1,000°C, consistent with field evidence for in situ partial melting and the classic interpretation of the central region of the Lewisian Complex as representing a single crustal block. Melt‐reintegration modelling was employed in order to estimate probable protolith compositions. Phase equilibria calculated for these modelled undepleted precursors match well with those determined for a subsolidus amphibolite from Gairloch in the southern region of the Lewisian Complex. Both subsolidus lithologies exhibit similar phase relations and potential melt fertility, with both expected to produce orthopyroxene‐bearing hornblende granulites, with or without garnet, at the conditions inferred for the Badcallian metamorphic peak. For fully hydrated protoliths, prograde melting is predicted to first occur at ~620°C and ~9.5 kbar, with up to 45% partial melt predicted to form at peak conditions in a closed‐system environment. Partial melts calculated for both compositions between 610 and 1,050°C are mostly trondhjemitic. Although the melt‐reintegrated granulite is predicted to produce more potassic (granitic) melts at ~700–900°C, the modelled melts are consistent with the measured compositions of felsic sheets from the central region Lewisian Complex.  相似文献   

4.
Contact aureoles of the anorthositic to granitic plutons of the Mesoproterozoic Nain Plutonic Suite (NPS), Labrador, are particularly well developed in the Palaeoproterozoic granulite facies, metasedimentary, Tasiuyak gneiss. Granulite facies regional metamorphism (MR), c. 1860 Ma, led to biotite dehydration melting of the paragneiss and melt migration, leaving behind biotite‐poor, garnet–sillimanite‐bearing quartzofeldspathic rocks. Subsequently, Tasiuyak gneiss within a c. 1320 Ma contact aureole of the NPS was statically subjected to lower pressure, but higher temperature conditions (MC), leading to a second partial melting event, and the generation of complex mineral assemblages and microstructures, which were controlled to a large extent by the textures of the MR assemblage. This control is clearly seen in scanning electron microscopic images of thin sections and is further supported by phase equilibria modelling. Samples collected within the contact aureole near Anaktalik Brook, west of Nain, Labrador, mainly consist of spinel–cordierite and orthopyroxene–cordierite (or plagioclase) pseudomorphs after MR sillimanite and garnet, respectively, within a quartzofeldspathic matrix. In addition, some samples contain fine‐grained intergrowths of K‐feldspar–quartz–cordierite–orthopyroxene inferred to be pseudomorphs after osumulite. Microstructural evidence of the former melt includes (i) coarse‐grained K‐feldspar–quartz–cordierite–orthopyroxene domains that locally cut the rock fabric and are inferred to represent neosome; (ii) very fine‐ to medium‐grained cordierite–quartz intergrowths interpreted to have formed by a reaction involving dissolution of biotite and feldspar in melt; and (iii) fine‐scale interstitial pools or micro‐cracks filled by feldspar interpreted to have crystallized from melt. Ultrahigh temperature (UHT) conditions during contact metamorphism are supported by (i) solidus temperatures >900 °C estimated for all samples, coupled with extensive textural evidence for contact‐related partial melting; (ii) the inferred (former) presence of osumilite; and (iii) titanium‐in‐quartz thermometry indicating temperatures within error of 900 °C. The UHT environment in which these unusual textures and minerals were developed was likely a consequence of the superposition of more than one contact metamorphic event upon the already relatively anhydrous Tasiuyak gneiss.  相似文献   

5.
Much of the exposed Archean crust is composed of composite gneiss which includes a large proportion of intermediate to tonalitic material. These gneiss terranes were typically metamorphosed to amphibolite to granulite facies conditions, with evidence for substantial partial melting at higher grade. Recently published activity–composition (a?x) models for partial melting of metabasic to intermediate compositions allows calculation of the stable metamorphic minerals, melt production and melt composition in such rocks for the first time. Calculated P?T pseudosections are presented for six bulk rock compositions taken from the literature, comprising two metabasic compositions, two intermediate/dioritic compositions and two tonalitic compositions. This range of bulk compositions captures much of the diversity of rock types found in Archean banded gneiss terranes, enabling us to present an overview of metamorphism and partial melting in such terranes. If such rocks are fluid saturated at the solidus, they first begin to melt in the upper amphibolite facies. However, at such conditions, very little (< 5%) melt is produced and this melt is granitic in composition for all rocks. The production of greater proportions of melt requires temperatures ~800–850 °C and is associated with the first appearance of orthopyroxene at pressures below 8–9 kbar or with the appearance and growth of garnet at higher pressures. The temperature at which orthopyroxene appears varies little with composition providing a robust estimate of the amphibolite–granulite facies boundary. Across this boundary, melt production is coincident with the breakdown of hornblende and/or biotite. Melts produced at granulite facies range from tonalite–trondhjemite–granodiorite for the metabasic protoliths, granodiorite to granite for the intermediate protoliths and granite for the tonalitic protoliths. Under fluid‐absent conditions the melt fertility of the different protoliths is largely controlled by the relative proportions of hornblende and quartz at high grade, with the intermediate compositions being the most fertile. The least fertile rocks are the most leucocratic tonalites due to their relatively small proportions of hydrous mafic phases such as hornblende or biotite. In the metabasic rocks, melt production becomes limited by the complete consumption of quartz to higher temperatures. The use of phase equilibrium forward‐modelling provides a thermodynamic framework for understanding melt production, melt loss and intracrustal differentiation during the Archean.  相似文献   

6.
Water‐fluxed melting has long been thought to have a minor influence on the thermal and chemical structure of the crust. We report here on amphibolite facies metasedimentary rocks from the 490–450 Ma Famatinian Orogen, in northwest Argentina, that have undergone water‐fluxed incongruent biotite melting at relatively low temperature, which have produced and lost a significant volume of melt. The protoliths consist of the turbiditic Puncoviscana Formation (Neoproterozoic to Early Cambrian). The field area exhibits a condensed metamorphic field gradient, from greenschist to amphibolite facies suprasolidus conditions, recording a low pressure almost isobaric path, reaching peak conditions estimated at 700°C at 4 kbar. Thermodynamic modelling in the MnNCKFMASHTO system is applied to investigate melting at such low pressure as a function of water content. Calculations using a typical turbidite composition show how small amounts of added free H2O may increase significantly the melt fraction with little or no change in either the melt or residual phase compositions. They indicate negligible difference in normative An–Ab–Or proportions and ferromagnesian contents between melts derived by dehydration and water‐fluxed melts. The same is true for the content of H2O dissolved in melts, which remains constant and the melt produced is granitic whether or not aqueous fluids are present. Thus, neither the residue nor the melt composition are indicators of the presence of aqueous fluids during anatexis. Recognizing the impact of small additions of H2O to an anatectic terrane may therefore be difficult. The most significant change related to water‐fluxing is the relative proportions of minerals and melt fraction, rather than the actual mineral assemblage. The modal proportion of feldspar decreased while those of cordierite and biotite increased in the residual assemblages, as <5 mol.% of free H2O was added. The impact of this addition is to more than double the proportion of water‐undersaturated melt to 25–30 mol.%. We have also developed a simple way to estimate how much melt a residual rock has lost, if the compositional trends of the protoliths are known. In summary, we find that even though the addition of small amounts of free H2O impacts significantly on rock fertility, there is little obvious record in the field. The combined application of careful petrological investigation and thermodynamic modelling is the key to identify the influence of aqueous fluids, and exploit systems that became open not only to fluid influx but also to the extraction of melt.  相似文献   

7.
Rocks of basic and intermediate bulk composition occur in orogenic terranes from all geological time periods and are thought to represent significant petrological components of the middle and lower continental crust. However, the former lack of appropriate thermodynamic models for silicate melt, amphibole and clinopyroxene that can be applied to such lithologies at high temperature has inhibited effective phase equilibrium modelling of their petrological evolution during amphibolite‐ and granulite facies metamorphism. In this work, we present phase diagrams calculated in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCKFMASHTO) compositional system for a range of natural basic and intermediate bulk compositions for conditions of 2–12 kbar and 600–1050 °C using newly parameterized activity–composition relationships detailed in a companion paper by Green et al. in this issue. Particular attention is given to mid‐ocean ridge basalt (MORB) and diorite protolith bulk compositions. Calculated subsolidus mineral assemblages in all basic and intermediate rock types are modally dominated by hornblende and plagioclase, with variable proportions of epidote, clinopyroxene, garnet, biotite, muscovite, quartz, titanite or ilmenite present at different pressures. The H2O‐saturated (wet) solidus has a negative P?T slope and occurs between ~620–690 °C at mid‐ to lower‐crustal pressures of 5–10 kbar. The lowest‐T melts generated close to the wet solidus are calculated to have granitic major‐element oxide compositions. Melting at higher temperature is attributed primarily to multivariate hydrate‐breakdown reactions involving biotite and/or hornblende. Partial melt compositions calculated at 800–1050 °C for MORB show good correlation with analysed compositions of experimental glasses produced via hydrate‐breakdown melting of natural and synthetic basic protoliths, with Niggli norms indicating that they would crystallize to trondhjemite or tonalite. Diorite is shown to be significantly more fertile than MORB and is calculated to produce high‐T melts (>800 °C) of granodioritic composition. Subsolidus and suprasolidus mineral assemblages show no significant variation between different members of the basalt family, although the P?T conditions at which orthopyroxene stabilizes, thus defining the prograde amphibolite–granulite transition, is strongly dependent on bulk‐rock oxidation state and water content. The petrological effects of open‐ and closed‐system processes on the mineral assemblages produced during prograde metamorphism and preserved during retrograde metamorphism are also examined via a case‐study analysis of a natural Archean amphibolite from the Lewisian Complex, northwest Scotland.  相似文献   

8.
Pelitic hornfelses within the inner thermal aureole of the Etive igneous complex underwent limited partial melting, generating agmatic micro‐stromatic migmatites. In this study, observed volume proportions of vein leucosomes in the migmatites are compared with modelled melt volumes in an attempt to constrain the controls on melting processes. Petrogenetic modelling in the MnNCKFMASHT system was performed on the compositions of 15 analysed Etive pelite samples using THERMOCALC. Melt modes were calculated at 2.2 kbar (the estimated pressure in the southern Etive aureole) from solidus temperatures to 800 °C for both fluid‐absent and fluid‐present conditions. Volume changes accompanying fluid‐absent melting at 2.2 kbar were also calculated. P–T pseudosections reproduce the zonal sequence of the southern Etive aureole fairly well. The modelled solidus temperatures of silica‐rich pelitic compositions are close to 680 °C at 2.2 kbar and, in the absence of free fluid, melt modes in such compositions rise to between 12 and 29% at 800 °C, half of which is typically produced over the narrow reaction interval in which orthopyroxene first appears. Silica‐poor compositions have solidus temperatures of up to ~770 °C and yield <11.4% melt at 800 °C under fluid‐absent conditions. For conditions of excess H2O, modelled melt modes increase dramatically within ~13 °C of the solidus, in some cases to >60%; by 800 °C they range from 61 to 88% and from 29 to 74% in silica‐rich and silica‐poor compositions, respectively. Calculated volume changes for fluid‐absent melting are positive for all modelled compositions and reach 4.5% in some silica‐rich compositions by 800 °C. Orthopyroxene formation is accompanied by a volume increase of up to 1.48% over a temperature increase of as little as 2.7 °C, supporting the arguments for melt‐induced ‘hydrofracturing’ as a viable melt‐escape mechanism in low‐P metamorphism. Mineral assemblages in the innermost aureole support previous conclusions that partial melting took place predominantly under fluid‐absent conditions. However, vein leucosome proportions, estimated by image analysis, do not show the expected correlation with grade, and are locally greatly in excess of melt modes predicted by fluid‐absent models, particularly close to the melt‐in isograd. Melting of interlayered psammites, addition of H2O from interlayered melt‐free rocks, and metastable persistence of muscovite are ruled out as major causes of the excess melt anomaly. The most likely cause, we believe, is that local variations existed in the amount of fluid available at the onset of melting, promoted by focussing of fluid released by dehydration in the middle and outer aureole; however, some redistribution of melt by compaction‐driven flow through the vein channel network cannot be ruled out. The formation of melt‐filled fractures in the inner Etive aureole was assisted by stresses that caused extension at high angles to the igneous contact. The fractures were probably caused either by transient pressure reduction in the diorite magma chamber associated with a second phase of intrusion, or by sub‐solidus thermal contraction in the diorite pluton during the early stages of inner‐aureole cooling.  相似文献   

9.
The recent development of activity–composition relations for mineral and melt phases in high‐grade metamafic rocks allows mineral equilibria tools to be used to further aid our understanding of partial melting and the mineralogical consequences of melt segregation in these rocks. We show that bulk compositional data from natural amphibolites cover a wide compositional range, with particular variability in the content and ratios of Ca, Na and K indicating that low‐grade metasomatic alteration can substantially alter the igneous protolith chemistry and potentially affect the volume and composition of melt generated. Mineral equilibria calculations for five samples that span the compositional variability in our data set indicate that melting occurs primarily via the fluid‐absent breakdown of amphibole+quartz to produce a pressure‐sensitive peritectic assemblage of augite, orthopyroxene and/or garnet. The introduction of orthopyroxene at the onset of the amphibolite‐to‐granulite‐facies transition at lower pressure results in an increased rate of melt production until quartz is typically exhausted, and this is similarly seen for the introduction of garnet at higher pressure. Calculated melt compositions are dependent on the protolith composition, but initial solidus melting and biotite breakdown produce 1–3 mol.% of K‐rich granitic melts. As hornblende melting proceeds, 15–20 vol.% of either more granodioritic‐to‐tonalitic or granodioritic‐to‐trondhjemitic melt is produced. Once quartz is exhausted, intermediate to mafic melt compositions are produced at ultrahigh‐temperature conditions. Quartz‐rich lithologies with high Ca coupled to low Na and K are the most fertile under orogenic conditions, yielding up to 25 mol.% of sub‐alkalic granitic melt by 850°C. Such rocks did not experience significant subsolidus alteration. Altered compositions with low Ca and elevated Na and K are not as fertile, yielding less than 15 mol.% of alkalic granitic melt by 850°C. These melt volumes are enough to be segregated, and can make a contribution to granite magmatism and intracrustal differentiation that should not be overlooked.  相似文献   

10.
Pelitic schists from contact aureoles surrounding mafic–ultramafic plutons in Westchester County, NY record a high‐P (~0.8 GPa) high‐T (~790 °C) contact overprint on a Taconic regional metamorphic assemblage (~0.5 GPa). The contact metamorphic assemblage of a pelitic sample in the innermost aureole of the Croton Falls pluton, a small (<10 km2) gabbroic body, consists of quartz–plagioclase–biotite–garnet–sillimanite–ilmenite–graphite–Zn‐rich Al‐spinel. Both K‐feldspar and muscovite are absent, and abundant biotite, plagioclase, sillimanite, quartz and ilmenite inclusions are found within subhedral garnet crystals. Unusually low bulk‐rock Na and K contents imply depletion of alkalic components and silica through anatexis and melt extraction during contact heating relative to typical metapelites outside the aureole. Thermobarometry on nearby samples lacking a contact overprint yields 620–640 °C and 0.5–0.6 GPa. In the aureole sample, WDS X‐ray chemical maps show distinct Ca‐enriched rims on both garnet and matrix plagioclase. Furthermore, biotite inclusions within garnet have significantly higher Mg concentration than matrix biotite. Thermobarometry using GASP and garnet–biotite Mg–Fe exchange equilibria on inclusions and adjacent garnet host interior to the high‐Ca rim zone yield ~0.5 ± 0.1 GPa and ~620 ± 50 °C. Pairs in the modified garnet rim zone yield ~0.9 ± 0.1 GPa and ~790 ± 50 °C. Thermocalc average P–T calculations yield similar results for core (~0.5 ± ~0.1 GPa, ~640 ± ~80 °C) and rim (~0.9 ± ~0.1 GPa, ~800 ± ~90 °C) equilibria. The core assemblages are interpreted to record the P–T conditions of peak metamorphism during the Taconic regional event whereas the rim compositions and matrix assemblages are interpreted to record the P–T conditions during the contact event. The high pressures deduced for this later event are interpreted to reflect loading due to the emplacement of Taconic allochthons in the northern Appalachians during the waning stages of regional metamorphism (after c. 465 Ma) and before contact metamorphism (c. 435 Ma). In the absence of contact metamorphism‐induced recrystallization, it is likely that this regional‐scale loading would remain cryptic or unrecorded.  相似文献   

11.
Stromatic metatexites occurring structurally below the contact with the Ronda peridotite (Ojén nappe, Betic Cordillera, S Spain) are characterized by the mineral assemblage Qtz+Pl+Kfs+Bt+Sil+Grt+Ap+Gr+Ilm. Garnet occurs in low modal amount (2–5 vol.%). Very rare muscovite is present as armoured inclusions, indicating prograde exhaustion. Microstructural evidence of melting in the migmatites includes pseudomorphs after melt films and nanogranite and glassy inclusions hosted in garnet cores. The latter microstructure demonstrates that garnet crystallized in the presence of melt. Re‐melted nanogranites and preserved glassy inclusions show leucogranitic compositions. Phase equilibria modelling of the stromatic migmatite in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2–O2–C (MnNCaKFMASHOC) system with graphite‐saturated fluid shows P–T conditions of equilibration of 4.5–5 kbar, 660–700 °C. These results are consistent with the complete experimental re‐melting of nanogranites at 700 °C and indicate that nanogranites represent the anatectic melt generated immediately after entering supersolidus conditions. The P–T estimate for garnet and melt development does not, however, overlap with the low‐temperature tip of the pure melt field in the phase diagram calculated for the composition of preserved glassy inclusions in garnet in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) system. A comparison of measured melt compositions formed immediately beyond the solidus with results of phase equilibria modelling points to the systematic underestimation of FeO, MgO and CaO in the calculated melt. These discrepancies are present also when calculated melts are compared with low‐T natural and experimental melts from the literature. Under such conditions, the available melt model does not perform well. Given the presence of melt inclusions in garnet cores and the P–T estimates for their formation, we argue that small amounts (<5 vol.%) of peritectic garnet may grow at low temperatures (≤700 °C), as a result of continuous melting reactions consuming biotite.  相似文献   

12.
A thermodynamic model for haplogranitic melts in the system Na2O–CaO–K2O–Al2O3–SiO2–H2O (NCKASH) is extended by the addition of FeO and MgO, with the data for the additional end‐members of the liquid incorporated in the Holland & Powell (1998) internally consistent thermodynamic dataset. The resulting dataset, with the software thermocalc , is then used to calculate melting relationships for metapelitic rock compositions. The main forms for this are PT and TX pseudosections calculated for particular rock compositions and composition ranges. The relationships in these full‐system pseudosections are controlled by the low‐variance equilibria in subsystems of NCKFMASH. In particular, the solidus relationships are controlled by the solidus relationships in NKASH, and the ferromagnesian mineral relationships are controlled by those in KFMASH. However, calculations in NCKFMASH allow the relationships between the common metapelitic minerals and silicate melt to be determined. In particular, the production of silicate melt and melt loss from such rocks allow observations to be made about the processes involved in producing granulite facies rocks, particularly relating to open‐system behaviour of rocks under high‐grade conditions.  相似文献   

13.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   

14.
During regional prograde metamorphism, H2O generated by ongoing dehydration reactions is likely to be continuously lost from a rock by compaction. Classical melting experiments cannot easily simulate this phenomenon, because ideally, all run products are conserved within the experimental charge, although significant equilibration and H2O generation may occur during heating. Phase equilibria modelling is used to consider the effect of subsolidus water loss (SWL) on subsequent melting relationships of felsic lithologies (including metapelite, metagreywacke and metatonalite) in the suprasolidus. SWL drives the bulk composition towards the minimum saturation point on the boundary of the wet‐melting field and results in significantly reduced subsequent melt generation when compared to melting experiments involving conservation of subsolidus H2O. This effect is most significant at PT conditions just above the solidus. For initially hydrated rocks, the reduction in melt production causes rheologically critical thresholds (e.g. melt connectivity threshold, melt escape threshold and the solid‐to‐liquid transition) to be intersected at temperatures generally more than 100 °C, higher than predicted by idealized experimental melting curves.  相似文献   

15.
This study uses field, microstructural and geochemical data to investigate the processes contributing to the petrological diversity that arises when granitic continental crust is reworked. The Kinawa migmatite formed when Archean TTG crust in the São Francisco Craton, Brazil was reworked by partial melting at ~730 °C and 5–6 kbar in a regional‐scale shear zone. As a result, a relatively uniform leucogranodiorite protolith produced compositionally and microstructurally diverse diatexites and leucosomes. All outcrops of migmatite display either a magmatic foliation, flow banding or transposed leucosomes and indicate strong, melt‐present shearing. There are three types of diatexite. Grey diatexites are interpreted to be residuum, although melt segregation was incomplete in some samples. Biotite stable, H2O‐fluxed melting is inferred via the reaction Pl + Kfs + Qz + H2O = melt and geochemical modelling indicates 0.35–0.40 partial melting. Schlieren diatexites are extremely heterogeneous; residuum‐rich domains alternate with leucocratic quartzofeldspathic domains. Homogeneous diatexites have the highest SiO2 and K2O contents and are coarse‐grained, leucocratic rocks. Homogeneous diatexites, quartzofeldspathic domains from the schlieren diatexites and the leucosomes contain both plagioclase‐dominated and K‐feldspar‐dominated feldspar framework microstructures and hence were melt‐derived rocks. Both types of feldspar frameworks show evidence of tectonic compaction. Modelling the crystallization of an initial anatectic melt shows plagioclase appears first; K‐feldspar appears after ~40% crystallization. In the active shear zone setting, shear‐enhanced compaction provided an essentially continuous driving force for segregation. Thus, Kinawa migmatites with plagioclase frameworks are interpreted to have formed by shear‐enhanced compaction early in the crystallization of anatectic melt, whereas those with K‐feldspar frameworks formed later from the expelled fractionated melt. Trace element abundances in some biotite and plagioclase from the fractionated melt‐derived rocks indicate that these entrained minerals were derived from the wall rocks. Results from the Kinawa migmatites indicate that the key factor in generating petrological diversity during crustal reworking is that shear‐enhanced compaction drove melt segregation throughout the period that melt was present in the rocks. Segregation of melt during melting produced residuum and anatectic melt and their mixtures, whereas segregation during crystallization resulted in crystal fractionation and generated diverse plagioclase‐rich rocks and fractionated melts.  相似文献   

16.
Partial melting of metagreywacke: a calculated mineral equilibria study   总被引:2,自引:0,他引:2  
Greywacke occurs in most regionally metamorphosed orogenic terranes, with depositional ages from Archean to recent. It is commonly the dominant siliciclastic rock type, many times more abundant than pelite. Using calculated pseudosections in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O system, the partial melting of metagreywacke is investigated using several natural protolith compositions that reflect the main observed compositional variations. At conditions appropriate for regional metamorphism at mid‐crustal depths (6–8 kbar), high‐T subsolidus assemblages are dominated by quartz, plagioclase and biotite with minor garnet, orthoamphibole, sillimanite, muscovite and/or K‐feldspar (±Fe–Ti oxides). Modelled solidus temperatures are dependent on bulk composition and vary from 640 to 690 °C. Assuming minimal melting at the H2O‐saturated solidus, initial prograde anatexis at temperatures up to ~800 °C is characterized by very low melt productivity. Significant melt production in commonly occurring (intermediate) metagreywacke compositions is controlled by the breakdown of biotite and production of orthopyroxene (±K‐feldspar) across multivariant fields until biotite is exhausted at 850–900 °C. Assuming some melt is retained in the source, then at temperatures beyond that of biotite stability, melt production occurs via the consumption of plagioclase, quartz and any remaining K‐feldspar as the melt becomes progressively more Ca‐rich and H2O‐undersaturated. Melt productivity with increasing temperature across the melting interval in metagreywacke is generally gradational when compared to metapelite, which is characterized by more step‐like melt production. Comparison of the calculated phase relations with experimental data shows good consistency once the latter are considered in terms of the variance of the equilibria involved. Calculations on the presumed protolith compositions of residual granulite facies metagreywacke from the Archean Ashuanipi subprovince (Quebec) show good agreement with observed phase relations. The degree of melt production and subsequent melt loss is consistent with the previously inferred petrogenesis based on geochemical mass balance. The results show that, for temperatures above 850 °C, metagreywacke is sufficiently fertile to produce large volumes of melt, the separation from source and ascent of which may result in large‐scale crustal differentiation if metagreywacke is abundant.  相似文献   

17.
A sequence of prograde isograds is recognized within the Dalradian Inzie Head gneisses where pelitic compositions have undergone variable degrees of partial melting via incongruent melting reactions consuming biotite. Three leucosome types are identified. At the lowest grades, granitic leucosomes containing porphyroblasts of cordierite (CRD‐melt) are abundant. At intermediate grades, CRD‐melt mingles with garnetiferous leucosomes (GT‐melt). At the highest grades, CRD‐melt coexists with orthopyroxene‐bearing leucosomes (OPX‐melt), while garnet is conspicuously absent. The prograde metamorphic field gradient is constrained to pressures of 2–3 kbar below the CRD‐melt isograd, and no greater than 4.5 kbar at the highest grade around Inzie Head. A petrogenetic grid, calculated using thermocalc , is presented for the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system for the phases orthopyroxene, garnet, cordierite, biotite, sillimanite, H2O and melt with quartz and K‐feldspar in excess. For the implied field gradient, the reaction sequence predicted by the grid is consistent with the successive prograde development of each leucosome type. Compatibility diagrams suggest that, as anatexis proceeded, bulk compositions may have been displaced towards higher MgO content by the removal of (relatively) ferroan granitic leucosome. An isobaric (P = 4 kbar) TaH2O diagram shows that premigmatization fluids must have been water‐rich (aH2O > 0.85) and suggests that, following the formation of small volumes of CRD‐melt, the system became fluid‐absent and melting reactions buffered aH2O to lower values as temperatures rose. GT‐ and OPX‐melt formed by fluid‐absent melting reactions, but a maximum of 7–11% CRD‐melt fraction can be generated under fluid‐absent conditions, much less than the large volumes observed in the field. There is strong evidence that the CRD‐melt leucosomes could not have been derived by buoyantly aided upwards migration from levels beneath the migmatites. Their formation therefore required a significant influx of H2O‐rich fluid, but in a quantity insufficient to have exhausted the buffering capacity of the solid assemblage plus melt. Fluid : rock ratios cannot have exceeded 1 : 30. The fluid was channelled through a regionally extensive shear zone network following melt‐induced failure. Such an influx of fluid at such depths has obvious consequences for localized crustal magma production and possibly for cordierite‐bearing granitoids in general.  相似文献   

18.
Monazite is a common accessory phase in felsic granulite ribbon mylonites exposed in the Upper Deck domain of the Athabasca granulite terrane, western Canadian Shield. Field relationships, bulk rock geochemistry and phase equilibria modelling in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 system are consistent with the garnet‐rich rocks representing the residual products of ultrahigh temperature melting of biotite‐bearing paragneisses driven by intraplating of mafic magma in continental lower crust. The c. 2.64–2.61 Ga Y‐rich resorbed monazite cores included in garnet are interpreted as relicts of detrital grains deposited on the Earth's surface after c. 2.61 Ga. Yttrium‐poor monazite domains in garnet are depleted in Sm and Gd and linked to fluid‐absent melting of biotite + plagioclase + quartz ± sillimanite during a prograde loading path from 0.8 to ≥1.4 GPa. The c. 2.61–2.55 Ga Y‐depleted, Th‐rich monazite domains crystallized in the presence of garnet + ternary feldspar ± orthopyroxene + peraluminous melt. The c. 2.58–2.52 Ga monazite rims depleted in Th + Ca and enriched in Eu are linked to localized melt extraction synchronous with growth of high‐pressure (HP) grossular‐rich garnet at the expense of plagioclase during crustal thickening, culminating at >950 °C. Re‐heating and dextral transpressive lower crustal reactivation at c. 1.9 Ga resulted in syn‐kinematic growth of (La + Ce)‐enriched monazite and a second generation of garnet, concurrent with recrystallization of feldspar and orthopyroxene at 1.0–1.2 GPa and 600–700 °C. Monazite grains in this study are marked by positive Eu‐anomalies relative to chondrite. A direct link is implied between Y, Sm, Eu and Gd in monazite and two major phases in continental lower crust: garnet and plagioclase. Positive Eu‐anomalies in lower crustal monazite associated with modally abundant garnet appear to be directly related to Eu‐enrichment and depletions of Y, Sm and Gd that are consequences of garnet growth and plagioclase breakdown during HP melting of peraluminous bulk compositions.  相似文献   

19.
Suprasolidus continental crust is prone to loss and redistribution of anatectic melt to shallow crustal levels. These processes ultimately lead to differentiation of the continental crust. The majority of granulite facies rocks worldwide has experienced melt loss and the reintegration of melt is becoming an increasingly popular approach to reconstruct the prograde history of melt‐depleted rocks by means of phase equilibria modelling. It involves the stepwise down‐temperature reintegration of a certain amount of melt into the residual bulk composition along an inferred P–T path, and various ways of calculating and reintegrating melt compositions have been developed and applied. Here different melt‐reintegration approaches are tested using El Hoyazo granulitic enclaves (SE Spain), and Mt. Stafford residual migmatites (central Australia). Various sets of P–T pseudosections were constructed progressing step by step, to lower temperatures along the inferred P–T paths. Melt‐reintegration was done following one‐step and multi‐step procedures proposed in the literature. For El Hoyazo granulites, modelling was also performed reintegrating the measured melt inclusions and matrix glass compositions and considering the melt amounts inferred by mass–balance calculations. The overall topology of phase diagrams is pretty similar, suggesting that, in spite of the different methods adopted, reintegrating a certain amount of melt can be sufficient to reconstruct a plausible prograde history (i.e. melting conditions and reactions, and melt productivity) of residual migmatites and granulites. However, significant underestimations of melt productivity may occur and have to be taken into account when a melt‐reintegration approach is applied to highly residual (SiO2 <55 wt%) rocks, or to rocks for which H2O retention from subsolidus conditions is high (such as in the case of rapid crustal melting triggered by mafic magma underplating).  相似文献   

20.
Contact metamorphism associated with mafic intrusives is one of several mechanisms that has been invoked to produce extensive high‐temperature (HT) metamorphism and associated partial melting of the crust. Indisputable evidence for polymetamorphism in these settings can be difficult to decipher because both melt loss and retrogression (i.e. rehydration) can erase or obscure the records of earlier HT metamorphism by modifying HT mineral parageneses and compositions. Here, a combination of detailed field and petrographical observations, inverse mineral thermometry, and thermodynamic forward modelling is used to delineate the polymetamorphic history of migmatites from the Smith River Allochthon (SRA) in the central Appalachians. Bulk rock geochemical data suggest that some metapelitic samples lost a significant amount of melt during interpreted contact metamorphism with the Rich Acres gabbro, resulting in a residual bulk composition (<50 wt% SiO2, ~30 wt% Al2O3). Garnet cores (Grt1) in SiO2‐depleted samples are interpreted to grow during this HT contact metamorphism, with Fe‐Ti oxide thermometry on spinel inclusions in Grt1, cordierite–garnet thermometry, and thermodynamic forward modelling constraining peak P–T conditions during contact heating of the migmatites to ~800ºC and ~0.5 GPa. This is associated with an inferred peak assemblage prior to melt loss of crd+kfs+pl+grt+bt+spl (mag+usp+hc)+ilm+sil+qtz+melt. Garnet in SiO2‐depleted samples has a distinct high‐Ca rim (Grt2), which appears to record a younger metamorphic event. A combination of substantial melt loss and later rehydration appears to be a major control on the ability of SiO2‐depleted samples to faithfully record evidence for this polymetamorphism. The tectonic implications of this younger metamorphic event are not entirely clear, but it appears to record renewed burial and heating of the SRA sometime after the Taconic orogeny, which may be related to either the neo‐Acadian or Alleghanian orogenies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号