首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Mineralogical and textural characteristics and organic carbon composition of the carbonate concretions from the upper Doushantuo Formation (ca. 551 Ma) in the eastern Yangtze Gorge area reveal their early diagenetic (shallow) growth in organic-rich shale. High organic carbon content (up to 10%) and abundance of framboidal pyrites in the hosting shale suggest an anoxic or euxinic depositional environment. Well-preserved cardhouse clay fabrics in the concretions suggest their formation at 0-3 m burial depth, likely associated with microbial decomposition of organic matter and anaerobic oxidation of methane. Gases through decomposition of organic matter and/or from methanogenesis created bubbles and cavities, and anaerobic methane oxidation at the sulfate reduction zone resulted in carbonate precipitation, filling in bubbles and cavities to form spherical structures of the concretions. Rock pyrolysis analyses show that the carbonate concretions have lower total organic carbon (TOC) content but higher effective carbon than those in the host rocks. This may be caused by enclosed organic matter in pores of the concretions so that organic matter was protected from further modification during deep burial and maintained high hydrocarbon generating potential even in over-matured source rock. As a microbialite sensu latu, concretions have special growth conditions and may provide important information on the microbial activities in depositional and early burial environments.  相似文献   

2.
Methane is a potent greenhouse gas. Continental margins contain large reservoirs of methane as solid gas hydrate and the dissolved and gaseous forms of methane. Submarine methane seeps along the global continental margins, including the coastal seas, have been estimated to contribute 0.01 to 0.05 Gt of carbon to the atmosphere annually, accounting for between 1% and 5% of the global methane emissions to the atmosphere. Much of this methane is exhausted via microbial anaerobic methane oxidation. Methane biotransformation in the ocean has effects on global climate change. This review mainly introduces the mechanisms of methanogenesis and methane oxidation and describes new findings that will provide information that will improve the understanding of the balance in terms of the generation, migration and consumption of methane in marine environments. Moreover, this review provides new insights into methane biogeochemical cycles and the effects of marine methane budgets on global climate.  相似文献   

3.
Anaerobic ammonium oxidation(anammox) is a relatively new pathway within the N cycle discovered in the late 1990 s. This eminent discovery not only modified the classical theory of biological metabolism and matter cycling, but also profoundly influenced our understanding of the energy sources for life. A new member of chemolithoautotrophic microorganisms capable of carbon fixation was found in the vast deep dark ocean. If the discovery of the chemosynthetic ecosystems in the deep-sea hydrothermal vent environments once challenged the old dogma "all living things depend on the sun for growth," the discovery of anammox bacteria that are widespread in anoxic environments fortifies the victory over this dogma. Anammox bacteria catalyze the oxidization of NH_4~+ by using NO_2~- as the terminal electron acceptor to produce N_2. Similar to the denitrifying microorganisms, anammox bacteria play a biogeochemical role of inorganic N removal from the environment. However, unlike heterotrophic denitrifying bacteria, anammox bacteria are chemolithoautotrophs that can generate transmembrane proton motive force, synthesize ATP molecules and further carry out CO_2 fixation through metabolic energy harvested from the anammox process. Although anammox bacteria and the subsequently found ammonia-oxidizing archaea(AOA), another very important group of N cycling microorganisms are both chemolithoautotrophs, AOA use ammonia rather than ammonium as the electron donor and O_2 as the terminal electron acceptor in their energy metabolism. Therefore, the ecological process of AOA mainly takes place in oxic seawater and sediments, while anammox bacteria are widely distributed in anoxic water and sediments, and even in some typical extreme marine environments such as the deep-sea hydrothermal vents and methane seeps. Studies have shown that the anammox process may be responsible for 30%–70% N_2 production in the ocean. In environmental engineering related to nitrogenous wastewater treatment, anammox provides a new technology with low energy consumption, low cost, and high efficiency that can achieve energy saving and emission reduction. However, the discovery of anammox bacteria is actually a hard-won achievement. Early in the 1960 s, the possibility of the anammox biogeochemical process was predicted to exist according to some marine geochemical data. Then in the 1970 s, the existence of anammox bacteria was further predicted via chemical reaction thermodynamic calculations. However, these microorganisms were not found in subsequent decades. What hindered the discovery of anammox bacteria, an important N cycling microbial group widespread in hypoxic and anoxic environments? What are the factors that finally led to their discovery? What are the inspirations that the analyses of these questions can bring to scientific research? This review article will analyze and elucidate the above questions by presenting the fundamental physiological and ecological characteristics of the marine anammox bacteria and the principles of scientific research.  相似文献   

4.
Dissolved carbon monoxide (CO) is present in ground water produced from a variety of aquifer systems at concentrations ranging from 0.2 to 20 nanomoles per liter (0.0056 to 0.56 microg/L). In two shallow aquifers, one an unconsolidated coastal plain aquifer in Kings Bay, Georgia, and the other a fractured-bedrock aquifer in West Trenton, New Jersey, long-term monitoring showed that CO concentrations varied over time by as much as a factor of 10. Field and laboratory evidence suggests that the delivery of dissolved oxygen to the soil zone and underlying aquifers by periodic recharge events stimulates oxic metabolism and produces transiently high CO concentrations. In between recharge events, the aquifers become anoxic and more substrate limited, CO is consumed as a carbon source, and CO concentrations decrease. According to this model, CO concentrations provide a transient record of oxic metabolism affecting ground water systems after dissolved oxygen has been fully consumed. Because the delivery of oxygen affects the fate and transport of natural and anthropogenic contaminants in ground water, CO concentration changes may be useful for identifying predominantly anoxic ground water systems subject to periodic oxic or microaerophilic conditions.  相似文献   

5.
The behaviour of the detergent builder nitrilotriacetic acid (NTA) has been studied in the presence of a marine bacterial population potentially associated with a sewage discharge to coastal waters. Additions of 500 μg l?1 NTA were made over a period of 80 days and 7500 μg l?1 NTA over 40 days in both aerobic and anoxic environments. It was concluded that NTA was not degraded at either concentration under aerobic or anoxic conditions, despite the presence of a significant bacterial population under aerobic conditions. Possible effects of NTA recalcitrance and its accumulation in coastal marine waters are discussed.  相似文献   

6.
The biosphere interacts and co-evolves with natural environments.Much is known about the biosphere’s response to ancient environmental perturbations,but less about the biosphere’s influences on environmental change through earth history.Here,we discuss the roles of microbes in environmental changes during the critical Permian-Triassic(P-Tr)transition and present a perspective on future geomicrobiological investigations.Lipid biomarkers,stable isotopic compositions of carbon,nitrogen and sulfur,and mineralogical investigations have shown that a series of microbial functional groups might have flourished during the P-Tr transition,including those capable of sulfate reduction,anaerobic H2S oxidation,methanogenesis,aerobic CH4oxidation,denitrification,and nitrogen fixation.These microbes may have served to both enhance and degrade the habitability of the Earth-surface environment during this crisis.The integrated microbial roles have enabled the Earth’s exosphere to be a self-regulating system.  相似文献   

7.
The equilibrium diffusion technique has become a valuable tool for ecological and biogeochemical studies in aquatic environments. In sediment ecosystems, changes in concentration of microbial metabolites with increasing depth can be determined dependably and reproducibly with this technique. Since the permeation characteristics of the membranes employed are crucial, selecting the proper membrane requires knowledge about its behavior under conditions which prevail in the natural environment. Thirteen polymer sheets were evaluated comparing permeation terms for biogeochemically relevant solutes, biodegradability, and mechanical strength. Cellulose-based dialysis membranes are most satisfactory when employed in low temperature anoxic environments. For this membrane, correction terms were calculated to account for diffusion losses during retrieval and sampling. Optimal incubation times can now be predicted from experimentally determined permeation coefficients for several porewater solutes. Dialysis porewater samplers (DPS) have been successfully applied during more than 100 independent experiments for the collection of interstitial water from surface sediments. DPS were used for water depths as deep as 290 meters.  相似文献   

8.
《Continental Shelf Research》2007,27(10-11):1501-1509
The anoxic oxidation of ammonia by manganese oxides is a newly recognised pathway for the production of N2 in sedimentary environments, potentially contributing a significant loss of nitrogen from the world's oceans. Due to the complex recycling of redox species in marine sediments this process is difficult to discern in the natural environment, and is consequently poorly understood. The potential for anoxic nitrification coupled to manganese reduction was investigated through field research and laboratory incubation experiments. Field data from Loch Fyne, a manganese-rich site, did not provide conclusive evidence for anoxic nitrification, although minor accumulation of nitrate was observed in anoxic pore-waters. Incubation of Loch Fyne sediments showed anoxic nitrification to occur, with accumulation of both nitrate and nitrite coincident with removal of ammonia under anoxia, although these observations were not reproduced in repeat experiments. The laboratory evidence for anoxic nitrification confirms the reaction is possible in marine sediments; however, the wider significance of anoxic nitrification remains uncertain. Contrary to previous assumptions about anoxic nitrification, results suggest the reaction may not be dependent on total manganese concentrations and may be inhibited by conventional heterotrophic manganese reduction in manganese-rich sediments.  相似文献   

9.
A radiotracer method that measures rates of oxidation of methane to carbon dioxide has been applied to anoxic marine sediments. The results confirm the occurrence of anaerobic methane oxidation and agree with model predictions of a zone of intense anaerobic methane oxidation at the base of the sulfate-reducing zone.  相似文献   

10.
张弛  董毅 《地球物理学报》2015,58(8):2718-2729
微生物广泛参与了其所处地质环境的物理和化学性质改造过程.监控微生物与地质介质之间相互作用的过程并了解其机制对近地面环境工程中土壤及地下水污染整治等实际应用有着至关重要的作用.地球物理勘测成像技术不仅能够在传统应用中测量和表征地表以下的物理特性变化,大量直接有效的证据表明这些方法还可以捕获孔隙介质中的生物地球化学变化的动态过程,包括监测微生物、微生物活动以及它们与矿物之间的相互作用.生物地球物理(Biogeophysics)作为勘探地球物理的一个新兴分支学科,包含了微生物学、生物地球科学以及地球物理勘测等多个学科,侧重于研究微生物与地质介质相互作用对地球物理场的影响.过去十几年在生物地球物理领域的研究充分表明和验证了地球物理勘测方法的独特优点(最小化侵入、时空连续及跨尺度运用),并为将传统勘测方法用于探索跨时间空间各尺度的地下生物地球化学动态过程提供了理论及实验依据.本篇综述将系统介绍生物地球物理学科的理论背景、发展和研究前沿.首先讨论微生物及其活动引起的孔隙介质中物理化学性质的变化.其次,将侧重于探讨微生物活动对包括地电法、电磁法、探地雷达以及地震法等不同地球物理场的响应.最后将讨论生物地球物理领域的机遇、挑战和潜在应用.  相似文献   

11.
The initial gradient of dissolved sulfate in the pore waters of anoxic marine sediments, representing a wide variety of environments from the deep-sea to estuaries, has been found to be directly proportional, within a factor of two, to the rate of sedimentation. Data from all areas considered, except the Mississippi Delta, fall along the same straight line. The linear proportionality can be explained on the basis of a theoretical model which assumes that organic matter decomposition by sulfate-reducing bacteria, plus associated fermentative micro-organisms, is first order with respect to the concentration of metabolizable organic matter. The model also assumes that the reactivity of metabolizable organic matter varies considerably from sediment to sediment while its concentration remains essentially constant. It is likely that the proportionality observed here also applies to other sediments and, thus, the initial sulfate gradient may be a useful parameter for estimating the rate of deposition of anoxic sediments.  相似文献   

12.
The influence of a further developed inlake restoration method on the P-immobilisation and microbial activities, especially under anoxic conditions was investigated. The impact of nitrate and iron dosing with a newly developed nitrate storage compound (Depox®Fe) was tested in enclosures in the eutrophic dimictic Lake Dagowsee, Germany. Additions of 50 g m−2 of NO3–N and 66 g m−2 of Fe3+ ensured availability of nitrate at the sediment surface during a 2-months period.As a result the phosphate release from the anoxic sediments was completely suppressed even 1 year after the application. The hypolimnetic deoxygenation was unaffected by the Depox®Fe addition. However, sulfur reduction and methanogenesis were inhibited and the phosphatase activity increased.  相似文献   

13.
Ground water chemistry data collected over a six-year period show that the distribution of contaminants and redox processes in a shallow petroleum hydrocarbon-contaminated aquifer has changed rapidly over time. Shortly after a gasoline release occurred in 1990, high concentrations of benzene were present near the contaminant source area. In this contaminated zone, dissolved oxygen in ground water was depleted, and by 1994 Fe(III) reduction and sulfate reduction were the predominant terminal electron accepting processes. Significantly, dissolved methane was below measurable levels in 1994, indicating the absence of significant methanogenesis. By 1996, however, depletion of solid-phase Fe(III)-oxyhydrox ides in aquifer sediments and depletion of dissolved sulfate in ground water resulted in the onset of methanogenesis. Between 1996 and 2000, water-chemistry data indicated that methanogenic metabolism became increasingly prevalent. Molecular analysis of 16S-rDNA extracted from sediments shows the presence of a more diverse methanogenic community inside as opposed to outside the plume core, and is consistent with water-chemistry data indicating a shift toward methanogenesis over time. This rapid evolution of redox processes reflects several factors including the large amounts of contaminants, relatively rapid ground water flow (approximately 0.3 m/day [approximately foot/day]), and low concentrations of microbially reducible Fe(III) oxyhydroxides ( approximately 1 micromol/g) initially present in aquifer sediments. These results illustrate that, under certain hydrologic conditions, redox conditions in petroleum hydrocarbon-contaminated aquifers can change rapidly in time and space, and that the availability of solid-phase Fe(III)-oxyhydroxides affects this rate of change.  相似文献   

14.
Connectivity has recently emerged as a key concept for understanding hydrological response to vegetation change in semi‐arid environments, providing an explanatory link between abiotic and biotic, structure and function. Reduced vegetation cover following woody encroachment, generally promotes longer, more connected overland flow pathways, which has the potential to result in an accentuated rainfall‐runoff response and fluxes of both soil erosion and carbon. This paper investigates changing hydrological connectivity as an emergent property of changing ecosystem structure over two contrasting semi‐arid grass to woody vegetation transitions in New Mexico, USA. Vegetation structure is quantified to evaluate if it can be used to explain observed variations in water, sediment and carbon fluxes. Hydrological connectivity is quantified using a flow length metric, combining topographic and vegetation cover data. Results demonstrate that the two woody‐dominated sites have significantly longer mean flowpath lengths (4 · 3 m), than the grass‐dominated sites (2 · 4 m). Mean flowpath lengths illustrate a significant positive relationship with the functional response. The woody‐dominated sites lost more water, soil and carbon than their grassland counterparts. Woody sites erode more, with mean event‐based sediment yields of 1203 g, compared to 295 g from grasslands. In addition, the woody sites lost more organic carbon, with mean event yields of 39 g compared to 5 g from grassland sites. Finally, hydrological connectivity (expressed as mean flowpath length) is discussed as a meaningful measure of the interaction between structure and function and how this manifests under the extreme rainfall that occurs in semi‐arid deserts. In combination with rainfall characteristics, connectivity emerges as a useful tool to explain the impact of vegetation change on water, soil and carbon losses across semi‐arid environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Biomarker analyses for evaluating maturity of organic matter and depositional environments such as redox conditions, were performed in sediments across the Cenomanian–Turonian boundary (CTB) in the Saku Formation of the Yezo Group distributed along the Shumarinai‐gawa River and the Omagari‐zawa River, both in the Tomamae area, Hokkaido, Japan. Maturity indicators using steranes and hopanes, show that organic matter in sediments from the Shumarinai‐gawa and Omagari‐zawa sections are of lower maturity than those from the Hakkin‐gawa section (Oyubari area). Moreover, the ββ hopane ratios clearly show that the maturity of the Shumarinai‐gawa samples is lower than that of the Omagari‐zawa samples. These variations in the maturity of organic matter presumably reflect the difference in their burial histories. The results for the pristane/phytane (Pr/Ph) ratios suggest that the Shumarinai‐gawa samples were deposited under dysoxic to anoxic environments across the CTB, while the depositional environments of the Omagari‐zawa samples were relatively oxic. By another paleoredox indicator using C35 homohopanoids including a homohopene index (HHenI), higher values are observed in the Shumarinai‐gawa section, particularly in the horizons of the preceding period and an early stage of the first negative shift phase and the latest oceanic anoxic event 2 (OAE2) interval. These results suggest that the Shumarinai‐gawa samples record dysoxic to anoxic environments across the CTB. In contrast, the signals for the C35 homohopanoid index values show a relatively oxic condition in the Omagari‐zawa section. The trends of stratigraphic variations in redox conditions are different from those in the OAE2 interval in the proto‐Atlantic and Tethys regions as reported previously. Hence, the redox variations in the Tomamae area were basically related to a local environmental setting rather than global anoxia. However, the prominent anoxic emphasis observed in the HHenI profile of the Shumarinai‐gawa section can be a distinctive, and possibly global, event in the North‐West Pacific just before the OAE2.  相似文献   

16.
The interaction between surface and subsurface water has a crucial influence on the biochemistry of stream environments. Even though the river discharge and the flow conditions can seldom be considered to be steady, the influence of this unsteadiness on the hyporheic exchange has often been neglected. In this work, a model for the study of hyporheic exchange during unsteady conditions has been developed. The model provides a sound analytical framework for the analysis of the effects of a varying stream discharge on the exchange between a stream and the hyporheic zone. The effects of the unsteadiness on the water exchange flux, the residence time of the solutes in the bed, and the stored mass are quantified. A synthetic example shows the substantial influence of a flood on the hyporheic exchange, and that the application of a steady model can lead to an underestimation of the exchanged mass, even after the flood has ended.  相似文献   

17.
Problem on development control of marine source bed hold in Chinese petroleum industry progression. The Hongshuizhuang Formation,Tieling Formation and Xiamaling Formation in the Middle and Upper Proterozoic are important hydrocarbon source beds in northern North China, and investigation of their sedimentary environments and the controls has great significance for petroleum exploration in North China. Based on sedimentology (sequence stratigraphy), palaeoecology, sedimentary geochemistry, and sedimentary palaeogeography, their development pattern is discussed. All these studies indicate that the development controls of the hydrocarbon source beds include a favorite palaeogeographic location, exceeding propagation of biomes in low and middle latitudes, anoxic environments, enrichment of phosphorus element and the adsorption of clay minerals during the preservation of organic matter in the marine carbonates.  相似文献   

18.
The global warming potential of methane (CH4) is about 30 times stronger than that of carbon dioxide (CO2) over a century timescale. Methane emission is hypothesized to have contributed to global climate change events and mass extinctions during Earth’s history. Therefore, the study of CH4 production processes is critically important to the understanding of global climate change. It has been a dogma that biogenic CH4 detectable in the oceans originates exclusively from the anaerobic metabolic activity of methanogenic archaea in hypoxic and anoxic environments, despite reports that many oxic surface and near-surface waters of the world’s oceans are CH4-supersaturated, thereby rendering net sea-to-air emissions of CH4. The phenomenon of CH4 production in oxic marine waters is referred to as the “ocean methane paradox”. Although still not totally resolved, recent studies have generated several hypotheses regarding the sources of CH4 production in oxic seawater. This review will summarize our current understanding of the importance of CH4 in the global climate and analyze the biological processes and their underpinning mechanisms that lead to the production of CH4 in oxic seawater environments. We will also tentatively explore the relationships of these microbial metabolic processes with global changes in climate and environment.  相似文献   

19.
The nearshore sediments in the Bay of Naples show a buildup of organic carbon and increased levels of lead, copper and chromium as a result of discharge of domestic and industrial waste water. Twenty to twenty-five square kilometres of bottom area have been contaminated by the buildup of anoxic muds with elevated heavy metal concentrations.  相似文献   

20.
Intermittent anoxia in the Saanich Inlet water column provides an easily accessible marine O2/H2S interface to study the response of metals to both a steep redox gradient and the availability of reactive reduced sulfur species. Our study indicates a strong anoxic zone sink for copper and cadmium and the characteristically enhanced solubility of manganese and iron. Thiosulfate and sulfite are below detection limits (1 μM and 0.1 μM, respectively) and thus not important in metal complexation. Elemental sulfur concentrations are high at the oxic/anoxic interface and throughout the anoxic zone, indicating the potential for metal complexation by polysulfides. A thermodynamic approach employing metal sulfide formation and class specific sulfidic ligand complexation to generate equilibrium profiles adequately describes the solubility of iron, copper, and cadmium. The extension of this scheme to other transition and class B metals in other marine environments with redox fronts is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号