首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. A method to calculate aquifer transmissivity, storage coefficient, and the leakage coefficient from pumping test data for a leaky aquifer is presented. The method is carried out by a computer program and is based on a minimization of the sum of squares of differences between drawdown in the observation well and the theoretical values from the Hantush and Jacob formula. No user defined starting points are necessary. Random error estimates for the parameters are given. Applications of the method are illustrated using data from pumping tests performed in leaky aquifers at the Cauca River Valley, Colombia.  相似文献   

2.
A new method for the interpretation of pumping tests in leaky aquifers   总被引:4,自引:0,他引:4  
A novel methodology for the interpretation of pumping tests in leaky aquifer systems, referred to as the double inflection point (DIP) method, is presented. The method is based on the analysis of the first and second derivatives of the drawdown with respect to log time for the estimation of the flow parameters. Like commonly used analysis procedures, such as the type-curve approach developed by Walton (1962) and the inflection point method developed by Hantush (1956), the mathematical development of the DIP method is based on the assumption of homogeneity of the leaky aquifer layers. However, contrary to the two methods developed by Hantush and Walton, the new method does not need any fitting process. In homogeneous media, the two classic methods and the one proposed here provide exact results for transmissivity, storativity, and leakage factor when aquifer storage is neglected and the recharging aquifer is unperturbed. The real advantage of the DIP method comes when applying all methods independently to a test in a heterogeneous aquifer, where each method yields parameter values that are weighted differently, and thus each method provides different information about the heterogeneity distribution. Therefore, the methods are complementary and not competitive. In particular, the combination of the DIP method and Hantush method is shown to lead to the identification of contrasts between the local transmissivity in the vicinity of the well and the equivalent transmissivity of the perturbed aquifer volume.  相似文献   

3.
Cem B. Avci  A. Ufuk Sahin 《水文研究》2014,28(23):5739-5754
Pumping tests are one of the most commonly used in situ testing techniques for assessing aquifer hydraulic properties. Numerous researches have been conducted to predict the effects of aquifer heterogeneity on the groundwater levels during pumping tests. The objectives of the present work were as follows: (1) to predict drawdown conditions and to estimate aquifer properties during pumping tests undertaken in radially symmetric heterogeneous aquifers, and (2) to identify a method for assessing the transmissivity field along the radial coordinate in radially symmetric and fully heterogeneous transmissivity fields. The first objective was achieved by expanding an existing analytical drawdown formulation that was valid for a radially symmetric confined aquifer with two concentric zones around the pumping well to an N concentric zone confined aquifer having a constant transmissivity value within each zone. The formulation was evaluated for aquifers with three and four concentric zones to assess the effects of the transmissivity field on the drawdown conditions. The specific conditions under which aquifer properties could be identified using traditional methods of analysis were also evaluated. The second objective was achieved by implementing the inverse solution algorithm (ISA), which was developed for petroleum reservoirs to groundwater aquifer settings. The results showed that the drawdown values are influenced by a volumetric integral of a weighting function and the transmissivity field within the cone of depression. The weighting function migrates in tandem with the expanding cone of depression. The ability of the ISA to predict radially symmetric and log‐normally distributed transmissivity fields was assessed against analytical and numerical benchmarks. The results of this investigation indicated that the ISA method is a viable technique for evaluating the radial transmissivity variations of heterogeneous aquifer settings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
《Advances in water resources》2007,30(4):1016-1026
We have proved that the Hantush’s model [Hantush MS. Wells near streams with semipervious beds. J Geophys Res 1965;70:2829–38] in a half-domain can be extended to a whole-domain and becomes identical to that of Hunt [Hunt B. Unsteady stream depletion from ground water pumping. Ground Water 1999;37(1):98–102] for a shallow and infinitely narrow stream, provided that the Dupuit assumption is adopted. This proof helps correct a false concept that regards the Hantush’s model as less useful because of its fully penetrating stream assumption. This study deals with interaction of an aquifer with two parallel streams based on the Hantush’s model. Semi-analytical solutions are obtained based on rigorous mass conservation requirement by maintaining continuity of flux and head along the aquifer–streambed boundaries. This study shows that the hydraulic conductivity ratio of the two streambeds appears to be the most important factor controlling the stream–aquifer interaction, followed by a less important role played by the thickness ratio of the two streambeds. When the low-permeability streambeds do not exist, the steady-state stream depletion from one stream is linearly proportional to the ratio of the shortest distance from the pumping well to the other stream over the shortest distance between the two streams. When the low-permeability streambeds are presented, similar conclusion can be drawn except that the stream depletion now also strongly depends on the hydraulic conductivity ratio of the two streambeds. When the values of the hydraulic conductivity of the two streambeds are different by an order of magnitude, the location of the pumping well that receives equal flux from two streams can be off the middle-line between the two streams by nearly 90%.  相似文献   

5.
Experimental hydraulic heads and electrical (self-potential) signals associated with a pumping test were used in an inverse model to estimate the transmissivity distribution of a real aquifer. Several works reported in the literature show that there is a relatively good linear relationship between the hydraulic heads in the aquifer and electrical signals measured at the ground surface. In this experimental test field, first, the current coupling coefficient was determined by the best fit between experimental and modeled self-potential signals at the end of the pumping phase. Soon afterward, with the hydraulic heads obtained from the self-potential signals, the transmissivity distribution of the aquifer was conditioned by means an inverse model based on the successive linear estimator (SLE). To further substantiate the estimated T field from the SLE analysis, we analyzed the drawdown rate, the derivative of the drawdown with respect to the ln(t), because the drawdown rate is highly sensitive to the variability in the transmissivity field. In our opinion, these results show that self-potential signals allow the monitoring of subsurface flow in the course of pumping experiments, and that electrical potentials serve as a good complement to piezometric observations to condition and characterize the transmissivity distribution of an aquifer.  相似文献   

6.
We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy . The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi-analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log-transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type-curve analysis and determine their sensitivity. This procedure, implemented in welltestpy , is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open-source software package welltestpy .  相似文献   

7.
A single recovery type curve from Theis'' exact solution   总被引:2,自引:0,他引:2  
Samani N  Pasandi M 《Ground water》2003,41(5):602-607
The Theis type curve matching method and the Cooper-Jacob semilog method are commonly used for estimation of transmissivity and storage coefficient of infinite, homogeneous, isotropic, confined aquifers from drawdown data of a constant rate pumping test. Although these methods are based on drawdown data, they are often applied indiscriminately to analyze both drawdown and recovery data. Moreover, the limitations of drawdown type curve to analyze recovery data collected after short pumping times are not well understood by the practicing engineers. This often may result in an erroneous interpretation of such recovery data. In this paper, a novel but simple method is proposed to determine the storage coefficient as well as transmissivity from recovery data measured after the pumping period of an aquifer test. The method eliminates the dependence on pumping time effects and has the advantage of employing only one single recovery type curve. The method based on the conversion of residual drawdown to recovered drawdown (buildup) data plotted versus a new equivalent time (delta(t) x t(p)/t(p) + delta(t)). The method uses the recovery data in one observation point only, and does not need the initial water level h0, which may be unknown. The accuracy of the method is checked with three sets of field data. This method appears to be complementary to the Cooper-Jacob and Theis methods, as it provides values of both storage coefficient and transmissivity from recovery data, regardless of pumping duration.  相似文献   

8.
A Potential-Based Inversion of Unconfined Steady-State Hydraulic Tomography   总被引:1,自引:0,他引:1  
The importance of estimating spatially variable aquifer parameters such as transmissivity is widely recognized for studies in resource evaluation and contaminant transport. A useful approach for mapping such parameters is inverse modeling of data from series of pumping tests, that is, via hydraulic tomography. This inversion of field hydraulic tomographic data requires development of numerical forward models that can accurately represent test conditions while maintaining computational efficiency. One issue this presents is specification of boundary and initial conditions, whose location, type, and value may be poorly constrained. To circumvent this issue when modeling unconfined steady-state pumping tests, we present a strategy that analyzes field data using a potential difference method and that uses dipole pumping tests as the aquifer stimulation. By using our potential difference approach, which is similar to modeling drawdown in confined settings, we remove the need for specifying poorly known boundary condition values and natural source/sink terms within the problem domain. Dipole pumping tests are complementary to this strategy in that they can be more realistically modeled than single-well tests due to their conservative nature, quick achievement of steady state, and the insensitivity of near-field response to far-field boundary conditions. After developing the mathematical theory, our approach is first validated through a synthetic example. We then apply our method to the inversion of data from a field campaign at the Boise Hydrogeophysical Research Site. Results from inversion of nine pumping tests show expected geologic features, and uncertainty bounds indicate that hydraulic conductivity is well constrained within the central site area.  相似文献   

9.
A mathematical model that describes the drawdown due to constant pumpage from a finite radius well in a two‐zone leaky confined aquifer system is presented. The aquifer system is overlain by an aquitard and underlain by an impermeable formation. A skin zone of constant thickness exists around the wellbore. A general solution to a two‐zone leaky confined aquifer system in Laplace domain is developed and inverted numerically to the time‐domain solution using the modified Crump (1976) algorithm. The results show that the drawdown distribution is significantly influenced by the properties and thickness of the skin zone and aquitard. The sensitivity analyses of parameters of the aquifer and aquitard are performed to illustrate their effects on drawdowns in a two‐zone leaky confined aquifer system. For the negative‐skin case, the drawdown is very sensitive to the relative change in the formation transmissivity. For the positive‐skin case, the drawdown is also sensitive to the relative changes in the skin thickness, and both the skin and formation transmissivities over the entire pumping period and the well radius and formation storage coefficient at early pumping time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The solutions of constant‐head and constant‐flux tests are commonly used to predict the temporal or spatial drawdown distribution or to determine aquifer parameters. Theis and Thiem equations, for instance, are well‐known transient and steady‐state drawdown solutions, respectively, of the constant‐flux test. It is known that the Theis equation is not applicable to the case where the aquifer has a finite boundary or the pumping time tends to infinity. On the other hand, the Thiem equation does not apply to the case where the aquifer boundary is infinite. However, the issue of obtaining the Thiem equation from the transient drawdown solution has not previously been addressed. In this paper, the drawdown solutions for constant‐head and constant‐flux tests conducted in finite or infinite confined aquifers with or without consideration of the effect of the well radius are examined comprehensively. Mathematical verification and physical interpretation of the solutions to these two tests converging or not converging to the Thiem equation are presented. The result shows that there are some finite‐domain solutions for these two tests that can converge to the Thiem equation when the time becomes infinitely large. In addition, the time criteria to give a good approximation to the finite‐domain solution by the infinite‐domain solution and the Thiem equation are investigated and presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The expected head and standard deviation of the head from the first order Taylor series approximation is compared to Monte Carlo simulation, for steady flow in a confined aquifer with transmissivity as a random variable. Emphasis is on the effect of changes in the covariance structure of the transmissivity, and pumping rates, on the errors in the first order Taylor series approximation. The accuracy of the first order Taylor series approximation is found to be particularly sensitive to pumping rates. With significant pumping the approximation is found to under estimate both the expected drawdown and head variance, and the error increases as the pumping rate increases. This can lead to large errors in probability constraints based on moments from the first order Taylor series approximation.  相似文献   

12.
A new steady‐state analytical solution to the two‐dimensional radial‐flow equation was developed for drawdown (head) conditions in an aquifer with constant transmissivity, no‐flow conditions at the top and bottom, constant head conditions at a known radial distance, and a partially completed pumping well. The solution was evaluated for accuracy by comparison to numerical simulations using MODFLOW. The solution was then used to estimate the rise of the salt water‐fresh water interface (upconing) that occurs under a pumping well, and to calculate the critical pumping rate at which the interface becomes unstable, allowing salt water to enter the pumping well. The analysis of salt water‐fresh water interface rise assumed no significant effect on upconing by recharge; this assumption was tested and supported using results from a new steady‐state analytical solution developed for recharge under two‐dimensional radial‐flow conditions. The upconing analysis results were evaluated for accuracy by comparison to those from numerical simulations using SEAWAT for salt water‐fresh water interface positions under mild pumping conditions. The results from the equation were also compared with those of a published numerical sharp‐interface model applied to a case on Cape Cod, Massachusetts. This comparison indicates that estimating the interface rise and maximum allowable pumping rate using the analytical method will likely be less conservative than the maximum allowable pumping rate and maximum stable interface rise from a numerical sharp‐interface model.  相似文献   

13.
Actual pumping tests may involve continuously decreasing rates over a certain period of time, and the hydraulic conductivity (K) and specific storage (Ss) of the tested confined aquifer cannot be interpreted from the classical constant‐rate test model. In this study, we revisit the aquifer drawdown characteristics of a pumping test with an exponentially decreasing rate using the dimensionless analytical solution for such a variable‐rate model. The drawdown may decrease with time for a short period of time at intermediate pumping times for such pumping tests. A larger ratio of initial to final pumping rate and a smaller radial distance of the observation well will enhance the decreasing feature. A larger decay constant results in an earlier decrease, but it weakens the extent of such a decrease. Based on the proposed dimensionless transformation, we have proposed two graphical methods for estimating K and Ss of the tested aquifer. The first is a new type curve method that does not employ the well function as commonly done in standard type curve analysis. Another is a new analytic method that takes advantage of the decreasing features of aquifer drawdown during the intermediate pumping stage. We have demonstrated the applicability and robustness of the two new graphical methods for aquifer characterization through a synthetic pumping test.  相似文献   

14.
The interaction between a gaining stream and a water-table aquifer is studied at an outwash plain. The aquifer is hydraulically well connected to the stream. Pumping tests were carried out in 1997 and 1998 in two wells 60 m from the stream, screening different depths of the aquifer. Drawdown was measured on both sides of the stream. Hydraulic head, drawdown, and stream depletion data were analyzed using numerical flow models. Similar models were fitted to each of two different data sets: Model A was fitted to steady-state hydraulic head and streamflow gain data not influenced by pumping; and model B was fitted to drawdown data measured during the 1998 pumping test. Each calibrated model closely fits its calibration data; however, predictions were biased if model A was used to predict the calibration data of model B, and vice versa. To further test the models, they were used to predict streamflow depletion during the two pumping tests as well as the drawdown during the 1997 test. Neither of these data were used for calibration. Model A predicted the measured depletions fairly accurately during both tests, whereas the predicted drawdowns in 1997 were significantly larger than actually measured. Contrary to this, the 1997 drawdowns predicted by model B were nearly unbiased; the predicted depletions deviate significantly from the measured depletions in 1997, but they compare well with the observations in 1998. Thus, although field work and analyses were extensive and done carefully to develop a ground water flow model that could predict both drawdown and streamflow depletion, the model predictions are biased. Analyses indicate that the deviations between model and data may be because of error in the models' representations of either the release of water from storage or of the hydrology in the riparian zone.  相似文献   

15.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

16.
This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.  相似文献   

17.
This paper presents an analytical solution to tide‐induced head fluctuations in a two‐dimensional estuarine‐coastal aquifer system that consists of an unconfined aquifer and a heterogeneous confined aquifer extending under a tidal river with a semipermeable layer between them. This study considers the joint effects of tidal‐river leakage, inland leakage, dimensionless transmissivity between the tidal‐river and inland confined aquifer, and transmissivity anisotropic ratios. The analytical solution for this model is obtained via the separation of variables method. Three existing solutions related to head fluctuation in one‐ or two‐dimensional leaky confined aquifers are considered as special cases in the present solution. This study shows that there is a threshold of tidal‐river confined aquifer length. When the tidal‐river length is greater than the threshold length, the inland head fluctuations remain sensitive to the leakage effect but become insensitive to the tidal‐river width and dimensionless transmissivity. Considering leakage and transmissivity anisotropy, this study also demonstrates that at a location farther from the river–inland boundary, head fluctuations increase with increasing leakage and transmissivity anisotropy; the maximum head fluctuation occurs when leakage and transmissivity anisotropy are both at their maximum values. The combined action of the 3 effects of loading, tidal‐river aquifer leakage, and inland aquifer leakage differs significantly according to various aquifer parameters. The analytical solution in this paper can be applied to demonstrate the behaviours of the head fluctuations of an estuarine‐coastal aquifer system, and the head fluctuations can be clearly described when the tidal and hydrogeological parameters are derived from field measurement data or hypothetical cases.  相似文献   

18.
An analytical model of stream/aquifer interaction is proposed that predicts drawdown in an aquifer with leakage from a finite-width stream induced by pumping from a well. The model is formulated based on the assumptions of stream partial penetration, a semipervious streambed, and distributed recharge across a finite-width stream. Advantages of the analytical solution include its simple structure, consisting of the Theis well function with integral modifications. The solution is derived for the semi-infinite domain between the stream and pumping well, which is of primary interest to hydrogeologists. Previous stream/aquifer analytical models are compared to the analytical solution based on dimensionless drawdown profiles. Drawdown in the aquifer near a wide stream was found to be less than that predicted by a solution that ignored stream width. Deviations between the proposed analytical solutions and previous solutions increase as stream width increases. For a hypothetical stream/aquifer system, the proposed analytical solution was equivalent to prior solutions when the ratio of the distance between the stream and aquifer to the stream width was greater than 25. This analytical solution may provide improved estimates of aquifer and streambed leakage parameters by curve fitting experimental field drawdown data.  相似文献   

19.
This paper presents a geostatistical approach to multi-directional aquifer stimulation in order to better identify the transmissivity field. Hydraulic head measurements, taken at a few locations but under a number of different steady-state flow conditions, are used to estimate the transmissivity. Well installation is generally the most costly aspect of obtaining hydraulic head measurements. Therefore, it is advantageous to obtain as many informative measurements from each sampling location as possible. This can be achieved by hydraulically stimulating the aquifer through pumping, in order to set-up a variety of flow conditions. We illustrate the method by applying it to a synthetic aquifer. The simulations provide evidence that a few sampling locations may provide enough information to estimate the transmissivity field. Furthermore, the innovation of, or new information provided by, each measurement can be examined by looking at the corresponding spline and sensitivity matrix. Estimates from multi-directional stimulation are found to be clearly superior to estimates using data taken under one flow condition. We describe the geostatistical methodology for using data from multi-directional simulations and address computational issues.  相似文献   

20.
Cautions and Suggestions for Geochemical Sampling in Fractured Rock   总被引:2,自引:0,他引:2  
Collecting water samples for geochemical analyses in open bedrock boreholes or in discrete intervals of boreholes intersected by multiple fractures is likely to yield ambiguous results for ground water chemistry because of the variability in the transmissivity, storativity, and hydraulic head of fractures intersecting the borehole. Interpreting chemical analyses of water samples collected in bedrock boreholes requires an understanding of the hydraulic conditions in the borehole under the ambient flow regime in the aquifer as well as during sampling. Pumping in open boreholes, regardless of the pumping rate and the location of the pump intake, first draws water from the borehole and then from fractures intersecting the borehole. The time at which the volumetric rate of water entering the borehole from fractures is approximately equal to the pumping rate can be identified by monitoring the logarithm of drawdown in the borehole as a function of the logarithm of time. Mixing of water entering the borehole from fractures with water in the borehole must be considered in estimating the time at which the pump discharge is representative of aquifer water. In boreholes intersected by multiple fractures, after the contribution from the borehole volume has diminished, the contribution of fractures to the pump discharge will be weighted according to their transmissivity, regardless of the location of the pump intake. This results in a flux-averaged concentration in the pump discharge that is biased by the chemical signature of those fractures with the highest transmissivity. Under conditions where the hydraulic head of fractures varies over the length of the borehole, open boreholes will be subject to ambient flow in the water column in the borehole. In some instances, the magnitude of the ambient flow may be similar to the designated pumping rate for collecting water samples for geochemical analyses. Under such conditions, the contributions to the pump discharge from individual fractures will be a function not only of the transmissivity of the fractures, but also of the distribution of hydraulic head in fractures intersecting the borehole. To reduce or eliminate the deleterious effects of conducting geochemical sampling in open boreholes, a straddle-packer apparatus that isolates a single fracture or a series of closely spaced fractures is recommended. It is also recommended that open boreholes be permanently outfitted with borehole packers or borehole liners in instances where maintaining the hydraulic and chemical stratification in the aquifer is of importance. In a field example, a comparison of results from sampling in an open borehole and in discrete intervals of the same borehole showed dramatic differences in the concentrations of chemical constituents in the water samples, even though chemical field parameters stabilized prior to both open borehole and discrete interval sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号