首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Takehiko  Suzuki  Dennis  Eden  Toru  Danhara  Osamu  Fujiwara 《Island Arc》2005,14(4):666-678
Abstract A Middle Pleistocene widespread tephra referred to here as Hakkoda–Kokumoto Tephra (Hkd–Ku) has been newly recognized. Hkd–Ku, derived from the Hakkoda Caldera located in northernmost Honshu Is. of northeast Japan, covers much of Honshu Is. At the type locality in the proximal area, Hkd–Ku comprises Plinian pumice deposits and an immediately overlying ignimbrite. The fine vitric ash nature of the distal ash‐fall deposits of Hkd–Ku suggests that they are coignimbrite ash‐fall deposits. Hkd–Ku was identified using a combination of refractive indices and chemical compositions of major, trace and rare earth elements of glass shards, heavy mineral content, refractive indices of orthopyroxene and paleomagnetic polarity. On the basis of these properties, Hkd–Ku was identified in Oga and Boso Peninsulas and Osaka Plain, 830 km southwest of the source. Stratigraphic positions in Boso Peninsula and Osaka Plain within marine sediments that have a reliable chronology based on oxygen‐isotope, and litho‐, bio‐, magneto‐ and tephrostratigraphy indicate that the age of Hkd–Ku is ca 760 ka, positioned in the transition between marine oxygen‐isotope stages 19.1 and 18.4. The widespread occurrence of Hkd–Ku providing a tie line between many different Pleistocene sections over a distance of 800 km is a key marker horizon in the early part of the Middle Pleistocene. This tephra gives a time control point of ca 760 ka to marine sediments in the Oga Peninsula – where no datum plane exists between the Brunhes–Matuyama chron boundary and oxygen‐isotope stage 12 – and to the volcanostratigraphy of the Hakkoda Caldera. The distribution of Hkd–Ku showing emplacement of coignimbrite ash‐fall deposits in the area 830 km southwest of the source emphasizes the upwind transport direction, relative to the prevailing westerly winds, typical of other coignimbrite ash‐fall deposits in the Japanese islands.  相似文献   

2.
An extremely large magnitude eruption of the Ebisutoge-Fukuda tephra, close to the Plio-Pleistocene boundary, central Japan, spread volcanic materials widely more than 290,000 km2 reaching more than 300 km from the probable source. Characteristics of the distal air-fall ash (>150 km away from the vent) and proximal pyroclastic deposits are clarified to constrain the eruptive style, history, and magnitude of the Ebisutoge-Fukuda eruption.Eruptive history had five phases. Phase 1 is phreatoplinian eruption producing >105 km3 of volcanic materials. Phases 2 and 3 are plinian eruption and transition to pyroclastic flow. Plinian activity also occurred in phase 4, which ejected conspicuous obsidian fragments to the distal locations. In phase 5, collapse of eruption column triggered by phase 4, generated large pyroclastic flow in all directions and resulted in more than 250–350 km3 of deposits. Thus, the total volume of this tephra amounts over 380–490 km3. This indicates that the Volcanic Explosivity Index (VEI) of the Ebisutoge-Fukuda tephra is greater than 7. The huge thickness of reworked volcaniclastic deposits overlying the fall units also attests to the tremendous volume of eruptive materials of this tephra.Numerous ancient tephra layers with large volume have been reported worldwide, but sources and eruptive history are often unknown and difficult to determine. Comparison of distal air-fall ashes with proximal pyroclastic deposits revealed eruption style, history and magnitude of the Ebisutoge-Fukuda tephra. Hence, recognition of the Ebisutoge-Fukuda tephra, is useful for understanding the volcanic activity during the Pliocene to Pleistocene, is important as a boundary marker bed, and can be used to interpret the global environmental and climatic impact of large magnitude eruptions in the past.  相似文献   

3.
In volcanic risk assessment it is necessary to determine the appropriate level of sophistication for a given predictive model within the contexts of multiple sources of uncertainty and coupling between models. A component of volcanic risk assessment for the proposed radioactive waste repository at Yucca Mountain (Nevada, USA) involves prediction of dispersal of contaminated tephra during violent Strombolian eruptions and the subsequent transport of that tephra toward a hypothetical individual via surface processes. We test the suitability of a simplified model for volcanic plume transport and fallout tephra deposition (ASHPLUME) coupled to a surface sediment-transport model (FAR) that calculates the redistribution of tephra, and in light of inherent uncertainties in the system. The study focuses on two simplifying assumptions in the ASHPLUME model: 1) constant eruptive column height and 2) constant wind speed and direction during an eruption. Variations in tephra dispersal resulting from unsteady column height and wind conditions produced variations up to a factor of two in the concentration of tephra in sediment transported to the control population. However, the effects of watershed geometry and terrain, which control local remobilization of tephra, overprint sensitivities to eruption parameters. Because the combination of models used here shows limited sensitivity to the actual details of ash fall, a simple fall model suffices to estimate tephra mass delivered to the hypothetical individual.  相似文献   

4.
Abstract   A single layer of widespread tephra deposits possibly can provide an instantaneous record of the past geomagnetic field and potentially can indicate even a small-scale tectonic rotation compared to a range of geomagnetic secular variations. We report paleomagnetic data of the Ebisutoge–Fukuda tephra, which is dated at approximately 1.8 Ma and is distributed in central Japan between the Osaka–Kyoto area and the Boso Peninsula. The Fukuda volcanic ash layer and its correlative ash deposits in the Osaka–Kyoto area, near Lake Biwa and in the Mie and Niigata areas yield identical site mean declinations of approximately −170° after tilt correction, whereas moderate inclination shallowing is observed in the upper unit at several localities. Anisotropy measurements both of low-field magnetic susceptibility and of anhysteretic remanent magnetization suggest that the inclination shallowing results from the biased alignment of magnetic grains, which were deposited in the fluvial environment. The source volcanic unit, Ebisutoge pyroclastic deposits in the Takayama area, yields a mean declination of approximately −155°, showing clockwise deflection from the magnetic directions of the correlative tephra deposits. These results suggest that no significant rotation occurred between the Osaka–Kyoto, Mie and Niigata areas, but that the Takayama area suffered a clockwise rotation in respect to the other areas during the Quaternary. This rotation might have been caused under an east–west stress field associated with the collision of the Okhotsk Plate with the Eurasia Plate.  相似文献   

5.
Tephra, usually produced by explosive eruptions, is deposited rapidly, hence, it can serve as a distinctive and widespread synchronous marker horizon correlating terrestrial, marine and ice core records. The tephra from Changbaishan Millennium eruption, a widely distributed tephra, is an important marker bed across the Japan Sea, Japan Islands and even in the Greenland ice cores 9000km away from volcanic vent. In this study, a discrete tephra was identified in the Quanyang peat~45km northeast to the Changbaishan volcano. Radiocarbon 14 C dating on the plant remains constrains an age of 886-1013calAD(95.4%)to the tephra layer, which can correspond to the Millennium eruption of Changbaishan in time. In addition, there was no similar volcanic eruption in the surrounding areas except Changbaishan at the same time. This tephra shows rhyolitic glass shards major element compositions similar to those rhyolitic tephra from Millennium eruption. This study illustrates that tephra from Millennium eruption has been transported to Quanyang peat~45km northwest to the Changbaishan volcano. Additionally, the diameter of the pumice lapilli is up to 0.3cm, implying that the tephra must be transported more distal away from Quanyang peat and formed a widely distributed isochronic layer. Glass geochemistry of the Quanyang tephra, different from the distal tephra recorded at Sihailongwan, Japan, and Greenland ice, shows a close affinity to the pyroclastic flow deposits of the Millennium eruption while not from fall deposits. This may indicate that distribution of the Millennium eruption of Changbaishanin in different directions may be controlled by different stages of eruption. This layer with well-defined annual results can be used to optimize the chronological framework of the corresponding sedimentary environment, thus facilitating more accurate discussion of corresponding environmental changes, which can achieve the contrast of the ancient climate records in the whole Northeast China-Japan and arctic regions.  相似文献   

6.
 A discontinuous pumiceous sand, a few centimeters to tens of centimeters thick, is located up to 15 m above mean high tide within Holocene peat along the northern Bristol Bay coastline of Alaska. The bed consists of fine-to-coarse, poorly to moderately well-sorted, pumice-bearing sand near the top of a 2-m-thick peat sequence. The sand bed contains rip-up clasts of peat and tephra and is unique in the peat sequence. Major element compositions of juvenile glass from the deposit and radiocarbon dating of enclosing peat support correlation of the pumiceous sand with the caldera-forming eruption of Aniakchak Volcano. The distribution of the sand and its sedimentary characteristics are consistent with emplacement by tsunami. The pumiceous sand most likely represents redeposition by tsunami of climactic fallout tephra and beach sand during the approximately 3.5 ka Aniakchak caldera-forming eruption on the Alaska Peninsula. We propose that a tsunami was generated by the sudden entrance of a rapidly moving, voluminous pyroclastic flow from Aniakchak into Bristol Bay. A seismic trigger for the tsunami is unlikely, because tectonic structures suitable for tsunami generation are present only south of the Alaska Peninsula. The pumiceous sand in coastal peat of northern Bristol Bay is the first documented geologic evidence of a tsunami initiated by a volcanic eruption in Alaska. Received: 3 December 1997 / Accepted: 11 April 1998  相似文献   

7.
 Pliocene–Recent volcanic outcrops at Seal Nunataks and Beethoven Peninsula (Antarctic Peninsula) are remnants of several monogenetic volcanoes formed by eruption of vesiculating basaltic magma into shallow water, in an englacial environment. The diversity of sedimentary and volcanic lithofacies present in the Antarctic Peninsula outcrops provides a clear illustration of the wide range of eruptive, transportational and depositional processes which are associated with englacial Surtseyan volcanism. Early-formed pillow lava and glassy breccia, representing a pillow volcano stage of construction, are draped by tephra erupted explosively during a tuff cone stage. The tephra was resedimented around the volcano flanks, mainly by coarse-grained sediment gravity flows. Fine-grained lithofacies are rare, and fine material probably bypassed the main volcanic edifice, accumulating in the surrounding englacial basin. The pattern of sedimentation records variations in eruption dynamics. Products of continuous-uprush eruptions are thought to be represented by stacks of poorly bedded gravelly sandstone, whereas better bedded, lithologically more diverse sequences accumulated during periods of quiescence or effusive activity. Evidence for volcano flank failure is common. In Seal Nunataks, subaerial lithofacies (mainly lavas and cinder cone deposits) are volumetrically minor and occur at a similar stratigraphical position to pillow lava, suggesting that glacial lake drainage may have occurred prior to or during deposition of the subaerial lithofacies. By contrast, voluminous subaerial effusion in Beethoven Peninsula led to the development of laterally extensive stratified glassy breccias representing progradation of hyaloclastite deltas. Received: 5 February 1996 / Accepted: 17 January 1997  相似文献   

8.
The eruption of Novarupta within the Katmai Volcanic Cluster, south-west Alaska, in June 1912 was the most voluminous eruption of the twentieth century but the distal distribution of tephra deposition is inadequately quantified. We present new syntheses of published tephrostratigraphic studies and a large quantity of previously un-investigated historical records. For the first time, we apply a geostatistical technique, indicator kriging, to integrate and interpolate such data. Our results show evidence for tephra deposition across much of Alaska, Yukon, the northern Pacific, western British Columbia and northwestern Washington. The most distal tephra deposition was observed around 2,500?km downwind from the volcano. Associated with tephra deposition are many accounts of acid deposition and consequent impacts on vegetation and human health. Kriging offers several advantages as a means to integrate and present such data. Future eruptions of a scale similar to the 1912 event have the potential to cause widespread disruption. Historical records of tephra deposition extend far beyond the limit of deposition constrained by tephrostratigraphic records. The distal portion of tephra fallout deposits is rarely adequately mapped by tephrostratigraphy alone; contemporaneous reports of fallout can provide important constraints on the extent of impacts following large explosive eruptions.  相似文献   

9.
The 1957–1958 eruption of Capelinhos, Faial island, Azores, involved three periods of surtseyan, hydromagmatic activity: two in 1957 and one in 1958. Deposits from this eruption are exposed both in sea cliffs cut into the flanks of the tuff cone and more distally >1 km from the vent. Five lithofacies are identified: lithofacies I is composed of even thickness beds with laterally continuous internal stratigraphy and is interpreted to have been formed by fallout. Lithofacies II consists of beds with internally discontinuous lenses, and has sand-wave structures that increase in abundance toward the outer margins of the tuff cone. This lithofacies is interpreted as having been deposited from pyroclastic surges. Lithofacies III is composed of mantle-bedded deposits with laterally discontinuous internal stratigraphy. This lithofacies is interpreted to have been formed by hybrid processes where fallout of tephra occurred simultaneously with pyroclastic surges. In the outer flanks of the tuff cone, lithofacies III grades laterally into fallout beds of lithofacies I. Lithofacies IV consists of alternating beds of coarse ash aggregates and non-aggregated fine ash, and is particularly well developed in distal regions. Some of this facies was formed by fallout. Alternating beds also occur plastered against obstacles up to 2 km from the vent, indicating an origin from wet pyroclastic surges. The orientation of plastered tephra indicates that the surges were deflected by topography as they decelerated. The distinction between surge and fallout in distal regions is uncertain because wind-drifted fallout and decelerating surge clouds can generate similar deposits. Lithofacies V consists of scoria lapilli beds interpreted to be fallout from hawaiian-style fire-fountaining in the later stages of the eruption. Juvenile pyroclasts within hydromagmatic deposits are predominantly poorly vesicular (25–60% of clasts <30% vesicles). However, on both micro- and macroscopic scales, there is a wide range in clast vesicularity (up to 70% vesicles) indicating that, although fragmentation was predominantly hydromagmatic, vesiculation and magmatic-volatile-driven fragmentation operated simultaneously.  相似文献   

10.
Zircon U–Pb dating using LA-ICP-MS was applied to six Quaternary tephras in Boso Peninsula, central Japan: J1, Ks4, Ks5, Ks10, Ks11, and Ch2 in descending order. Accurate age determination of these tephras is of critical importance because they are widespread tephras in Japan and also relevant to a candidate site for the global boundary stratotype section and point of the early–middle Pleistocene boundary. Twenty grains were dated for each tephra and the following results were obtained. The J1 tephra had only 5 grains that yielded <2 Ma. The obtained age was ∼0.2 m.y. older than the stratigraphic age. No Quaternary ages were obtained from the Ks4 tephra. The Ks5 and Ks10 tephras had 10–12 grains that were ∼0.1–0.3 m.y. older than the stratigraphic age. The Ks11 tephra had 14 grains that yielded a weighted mean age of 0.52 ± 0.04 Ma (error reported as 95% confidence level), which was in agreement with the stratigraphic age. The Ch2 tephra had 16 grains that yielded a weighted mean age of 0.61 ± 0.02 Ma, which was also in agreement with the stratigraphic age. The good agreement between zircon U–Pb ages and the stratigraphy for Ks11 and Ch2 tephras validates the reliability of the established stratigraphy and our dating approach. The other tephras that yielded ∼0.1–0.3 m.y. older ages than the stratigraphy may indicate that the analyzed zircons were antecrysts that crystallized before eruption or they were detrital zircons incorporated during deposition.  相似文献   

11.
Records of Toba eruptions in the South China Sea   总被引:1,自引:0,他引:1  
Three layers of volcanic tephra, sampled from ODP 1143 Site in the South China Sea, were observed at the mcd depth of 5.55 m, 42.66 m, and 48.25 m, and named, in this paper, layers of A, B, and C, respectively. All of these tephra layers have an average thickness of ca. 2 cm. They were constrained in age of ca. 0.070 Ma, ca. 0.80 Ma, and ca. 1.00 Ma, respectively, by the microbiostratigraphy data. These tephra layers were predominated by volcanic glass shards with a median grain size of 70–75 μm in diameter. Major chemical compositions analyzed by EMPA and comparison with the previous data from other scatter areas suggest that these three layers of tephra can correspond to the three layers of Toba tephra, YTT, OTT, and HDT, respectively, erupting during the Quaternary. The occurrence of these tephra layers in the South China Sea implies that the Toba eruptions often occurred in the summer monsoon seasons of the South China Sea during the Quaternary, and that the strength of eruptions was probably stronger than that previously estimated.  相似文献   

12.
Three layers of volcanic tephra, sampled from ODP 1143 Site in the South China Sea,were observed at the mcd depth of 5.55 m, 42.66 m, and 48.25 m, and named, in this paper, lay ers of A, B, and C, respectively. All of these tephra layers have an average thickness of ca. 2 cm.They were constrained in age of ca. 0.070 Ma, ca. 0.80 Ma, and ca. 1.00 Ma, respectively, by the microbiostratigraphy data. These tephra layers were predominated by volcanic glass shards with a median grain size of 70-75 μm in diameter. Major chemical compositions analyzed by EMPA and comparison with the previous data from other scatter areas suggest that these three layers of tephra can correspond to the three layers of Toba tephra, YTT, OTT, and HDT, respectively, erupt ing during the Quaternary. The occurrence of these tephra layers in the South China Sea implies that the Toba eruptions often occurred in the summer monsoon seasons of the South China Sea during the Quaternary, and that the strength of eruptions was probably stronger than that previously estimated.  相似文献   

13.
The tephra fallout from the 12–15 August 1991 explosive eruption of Hudson volcano (Cordillera de los Andes, 45°54 S-72°58 W; Chile) was dispersed on a narrow, elongated ESE sector of Patagonia, covering an area (on land) of more than 100 000 km2. The elongated shape of the deposit, together with the relatively coarse mean and median values of the particles at a considerable distance from the vent, were the result of strong winds blowing to the southeast during the eruption. The thickness of the fall deposit decreases up to 250 km ESE from Hudson volcano, where it begins to thicken again. Secondary maxima are well developed at approximately 500 km from the vent. Secondary maxima, together with grainsize bimodality in individual layers and in the bulk deposit suggest that particle aggregation played an important role in tephra sedimentation. The fallout deposit is well stratified, with alternating fine-grained and coarsegrained layers, which is probably a result of strong eruptive pulses followed by relatively calm periods and/or changes in the eruptive style from plinian to phreatoplinian. The tephra is mostly composed of juvenile material: the coarse mode (mostly pumice) shifts to finer sizes with distance from the volcano; the fine mode (mostly glass shards) is always about 5/6 phi. Glass shards and pumice are mostly light gray to colorless. However, considerable amounts of dark, poorly vesiculated, blocky shards, suggest a hydromagmatic component in the eruption. A land-based tephra volume of 4.35 km3 was estimated, and a total volume of 7.6 km3 arose from an extrapolation, which took into account the probable volume sedimented in the sea. Bulk density ranges from 0.9 to 1.10 gr/cm3 (beyond 110 km from the vent). Rather uniform density values measured in crushed samples (2.45–2.50 gr/cm3 at all distances from the vent) reveal a relatively homogeneous composition. Mean and median sizes decrease rapidly up to 270 km from the vent; beyond that point they are more or less constant, whereas the maximum size (1 phi) shows a steady decrease up to 550 km. A concomitant improvement in sorting is observed. This is attributed to sorting due to wind transport combined with particle aggregation at different times and distances from the vent. The Hudson tephra fallout shares some strikingly similar features with the Mount St. Helens (18 May 1980) and Quizapu (1932) eruptions.  相似文献   

14.
The 1 Myr tephra records of IODP (International Ocean Discovery Program) Holes U1436A and U1437B in the Izu‐Bonin fore‐ and reararc were investigated in order to assess provenance and eruptive volumes, respectively. In total, 304 tephra samples were examined and 260 primary tephra layers were identified. Tephra provenance was determined by means of major and trace element compositions of glass shards and distinguished between Japan and Izu‐Bonin arc origin of the tephra layers. A total of 33 marine tephra compositions were correlated to the Japan arc and 227 to the Izu arc. Twenty marine tephra layers were correlated between the two drilling sites. Additionally, we defined eleven correlations of marine tephra deposits to major widespread Japanese eruptions; from the 1.05 Ma Shishimuta‐Pink Tephra to the 30 ka Aira‐Tn Tephra, both from Kyushu Island. These eruptions provide independent time markers within the sediment record and six correlations were used to date tephra layers from Japan in Hole U1436A to establish an alternative age model for this hole. Furthermore, the minimum distal tephra volumes of all detected events were calculated, which enabled the comparison of the tephra volumes that derived from the Japan and the Izu‐Bonin arcs. For some of the major Japanese eruptions these are the first volume estimations that also include distal deposits. All of the Japanese tephras derived from events with eruption magnitude Mv ≥ 5.6 and three of the investigated eruptions reach magnitudes Mv ≥ 7. Volcanic events of the Izu‐Bonin arc have mostly eruption magnitudes Mv ≤ 5.  相似文献   

15.
Volcanic glass compositions and tephra layer age are critical for anchoring their sources and correlating among different sites; however, such work may be imprecise when the tephra has varied compositions. The ash from Changbaishan Millennium eruption (940s AD), a widely distributed tephra layer, has been detected in the far-east areas of Russia, the Korean Peninsula, Japan, and in Greenland ice cores. There are some debates on the presence of this tephra from sedimentary archives to the west of Changbaishan volcano, such as lake and peat sediments in the Longgang volcanic field. In this paper, major element compositions for clinopyroxene and Fe-Ti oxides were performed on proximal tephra from Changbaishan and the Millennium eruption ash record in Lake Sihailongwan. Clinopyroxene and Fe-Ti oxides microlites from Sihailongwan show augite- ferroaugite and titanmagnetite compositions, similar to those from dark pumice in Changbaishan proximal tephra, but different from the light grey pumice, which has ferrohedenbergite and ilmenite microlite compositions. This result implies that the tephra recorded in Sihailongwan was mainly from the trachytic eruptive phase of the Millennium eruption, and the rhyolitic eruptive phase made a relatively small contribution to this area. Analyzing clinopyroxene and Fe-Ti oxides microlites is a new method for correlating tephra layers from Changbaishan Millennium eruption.  相似文献   

16.
Tephra fallout from the A-1 (March 29, 0532 UT), B (April 4, 0135 UT), and C (April 4, 1122 UT) 1982 explosive eruptions of El Chichon produced three tephra fall deposits over southeastern Mexico. Bidirectional spreading of eruption plumes, as documented by satellite images, was due to a combination of tropospheric and stratospheric transport, with heaviest deposition of tephra from the ENE tropospheric lobes. Maximum column heights for the eruptions of 27, 32, and 29 km, respectively, have been determined by comparing maximum lithic-clast dispersal in the deposits with predicted lithic isopleths based on a theoretical model of pyroclast fallout from eruption columns. These column heights suggest peak mass eruption rates of 1.1 × 108, 1.9 × 108, and 1.3 × 108 kg/s. Maximum column heights and mass eruption rates occured early in each event based on the normal size grading of the fall deposits. Sequential satellite images of plume transport and the production of a large stratospheric aerosol plume indicate that the eruption columns were sustained at stratospheric altitudes for a significant portion of their duration. New estimates of tephra fall volume based on integration of isopach area and thickness yield a total volume of 2.19 km3 (1.09 km3 DRE, dense rock equivalent) or roughly twice the amount of the deposit mapped on the ground. Up to one-half of the erupted mass was therefore deposited elsewhere as highly dispersed tephra.  相似文献   

17.
18.
于露  赵谊  马宝君  高峰 《地震地质》2007,29(3):535-546
使用我们改进后的Suzuki二维扩散模型,对菲律宾的Pinatubo火山、美国的St.Helens火山和尼加拉瓜的CerroNegro火山的喷发碎屑沉降物的分布特征进行了模拟,把计算结果与实际观测数据进行了对比,使模型的正确性得到了验证。同时对上述3座火山的数值模拟结果进行了横向对比,针对不同喷发类型的火山及其喷发的物理过程的多样性,提出了模型的改进方法,从而使数值模拟结果可以作为政府进行火山减灾决策时的一种科学依据  相似文献   

19.
A tephrostratigraphy for Erebus volcano is presented, including tephra composition, stratigraphy, and eruption mechanism. Tephra from Erebus were collected from glacial ice and firn. Scanning electron microscope images of the ash morphologies help determine their eruption mechanisms The tephra resulted mainly from phreatomagmatic eruptions with fewer from Strombolian eruptions. Tephra having mixed phreatomagmatic–Strombolian origins are common. Two tephra deposited on the East Antarctic ice sheet, ~ 200 km from Erebus, resulted from Plinian and phreatomagmatic eruptions. Glass droplets in some tephra indicate that these shards were produced in both phreatomagmatic and Strombolian eruptions. A budding ash morphology results from small spheres quenched during the process of hydrodynamically splitting off from a parent melt globule. Clustered and rare single xenocrystic analcime crystals, undifferentiated zeolites, and clay are likely accidental clasts entrained from a hydrothermal system present prior to eruption. The phonolite compositions of glass shards confirm Erebus volcano as the eruptive source. The glasses show subtle trends in composition, which correlate with stratigraphic position. Trace element analyses of bulk tephra samples show slight differences that reflect varying feldspar contents.  相似文献   

20.
Volcanic hazard assessment at the restless Campi Flegrei caldera   总被引:1,自引:0,他引:1  
Eruption forecasting and hazard assessments at the restless Campi Flegrei caldera, within the Neapolitan volcanic area, have been performed using stratigraphical, volcanological, structural and petrological data.On the basis of the reconstructed variation of eruption magnitude through time, we hypothesize that the most probable maximum expected event is a medium-magnitude explosive eruption, fed by trachytic magma. Such an eruption could likely occur in the north-eastern sector of the caldera floor that is under a tensile stress regime, when the ongoing deformation will generate mechanical failure of the rocks. A vent could open also in the western sector, at the intersection of two fault systems contemporaneously activated, as happened in the last eruption at Monte Nuovo. The eruption could likely be preceded by precursors apparent to the population, such as ground deformation, seismicity and increase in gas emissions. It will probably alternate between magmatic and phreatomagmatic phases with the generation of tephra fallout, and dilute and turbulent pyroclastic currents. During and/or after the eruption, the re-mobilization of ash by likely heavy rains, could probably generate mud flows.In order to perform a zoning of the territory in relation to the expected volcanic hazards, we have constructed a comprehensive hazard map. On this map are delimited (I) areas of variable probability of opening of a new vent, (II) areas which could be affected by variable load of fallout deposits, and (III) areas over which pyroclastic currents could flow. The areas in which a vent could likely open have been defined on the basis of the dynamics of the ongoing deformation of the caldera floor. To construct the fallout hazard map we have used the frequency of deposition of fallout beds thicker than 10 cm, the frequency of load on the ground by tephra fallout and the direction of dispersal axes of the deposits of the last 5 ka, and the limit load of collapse for the variable types of roof construction. The pyroclastic-current hazard map is based on the areal distribution and frequency of pyroclastic-current deposits of the last 5 ka.Editorial Responsibility: T. Druitt  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号