首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
Yasuto  Itoh  Toshiyasu  Miyazaki  Seiji  Nishizaki 《Island Arc》2007,16(3):457-464
Abstract   Neotectonic crustal deformation in central Japan near a triple-junction of plates is investigated on the basis of paleomagnetic data. The progressive thermal demagnetization test isolated characteristic remanent magnetization from 18 sites of the early Quaternary Eboshidake volcanic rocks erupted around the termination of active strike-slip faults. The site-mean directions show considerably large scatter in declinations, and easterly deflection in average (Dm = −161.7°). On the basis of inclination statistics, measured inclinations (Im = −48.9°, δI = 6.6°) are concordant with an expected value from latitude of the study area. Because the sampling was planned to cover a wide stratigraphic range and eliminate the effect of geomagnetic secular variation, an easterly deflection is attributed to clockwise rotation around vertical axis. Together with previous paleomagnetic data, the present study indicates that clockwise-rotated areas in central Japan are aligned on a northeast–southwest recent shear zone delineated through geodetic survey. Deflection and scatter of paleomagnetic declinations of the Eboshidake volcanic rocks are much greater than those extrapolated from a recent strain rate, and might be explained by complicated motion anticipated at fault terminations and/or enhanced crustal rotation under elevated temperatures around a Quaternary volcanic province.  相似文献   

2.
Superimposed on a regional pattern of oroclinal bending in the Aegean and west Anatolian regions, the coastal region of western Anatolia, shows a complex and chaotic pattern of coexisting clockwise and counterclockwise rotations. Here, we report new palaeomagnetic data from the eastern Aegean island of Chios, to test whether this fits the regional palaeomagnetic pattern associated with the Aegean orocline, or should be included in the narrow zone of chaotic palaeomagnetic directions. Therefore, a combined palaeomagnetic study of Miocene sediments and volcanic rocks has been carried out. Thermal and AF demagnetization of a 130-m thick Middle Miocene succession from the Michalos claypit allowed a stable component of both polarities to be isolated while rock magnetic experiments showed that the main magnetic carrier is magnetite. When compared with the Eurasian reference, the mean declination of 348 ± 5.1° implies 15° of counterclockwise rotation since Middle Miocene times. The obtained shallow inclination of 38 ± 6.7° was corrected to 61.8 ± 3.9°, by applying the elongation/inclination correction method for inclination shallowing. This result is similar to the expected inclination of 58° for the latitude of Chios. The palaeomagnetic analysis (demagnetization treatment and corresponding rock magnetic measurements) of the volcanic rocks identify a stable, predominantly normal, ChRM with poorly constrained mean declination of about 290 ± 19.8° based on five successfully resolved components. The significantly different palaeomagnetic results obtained from an island as small as Chios (and a very short distance), and the relatively large rotation amounts do not fit the regional palaeomagnetic direction of Lesbos and basins in northwestern Turkey which show little or no significant rotation. We thus prefer to include Chios in the coastal zone of chaotic rotations, which may represent a previously inferred tectonic transfer zone that accommodates lateral differences in extensional strain within the Aegean back-arc.  相似文献   

3.
The main objective of this work is to compare directional (declination and inclination) volcanic and archaeomagnetic data for the last four centuries (~1600–1990) with the historical geomagnetic predictions given by the GUFM1 model which spans from 1590 to 1990. The results show statistical agreement between archaeomagnetic data and directions given by the geomagnetic field model. However, when comparing the volcanic data with the model predictions, marked inclination shallowing is observed. This systematically lower inclination has already been observed in local palaeomagnetic studies (Italy, Mexico and Hawaii) for the 20th century, by comparing recent lava flows with the International Reference Geomagnetic Field (IGRF) model. Here, we show how this inclination shallowing is statistically present at worldwide scale for the last 400 years with mean inclination deviation around 3° lower than the historical geomagnetic field model predictions.  相似文献   

4.
Machiko  Tamaki  Yasuto  Itoh 《Island Arc》2008,17(2):270-284
Abstract   Paleomagnetic studies provide constraints on the geometric configuration of the eastern Eurasian margin on geological time scales. Characteristic remanent magnetization components were isolated from eight sites by progressive demagnetization executed on samples from 25 sites in the Oyubari area, central Hokkaido where the Late Cretaceous Yezo Group is distributed. After tilt-correction, all sites show normal polarity site-mean directions, and well-clustered directions pass a positive fold test and a correlation test. Planktonic foraminifera indicate an age range of Cenomanian to Turonian, and the studied section is correlated to the geomagnetic polarity chron C34n. Reliable formation-mean directions that have been corrected for post-depositional shallowing (D = 7.5°, I = 65.9°, α95 = 6.6°) are characterized by inclination data indicative of no significant latitudinal translation since the Late Cretaceous. Central Hokkaido has, therefore, been situated adjacent to easternmost Mongolia including Sikhote Alin around the present latitude since the Late Cretaceous. Declination data require significant differential rotation between Hokkaido and the eastern Asian margin, which may be indicative of rearrangement of crustal blocks along the continental margin.  相似文献   

5.
Measurement of the remanent magnetization of a 6.88-m oriented core of soft sediments and tephras from Fargher Lake near Mount St. Helens in southwestern Washington State shows that no significant geomagnetic reversals were recorded in the sediments of the lake. Radiocarbon and palynological dating of the tephra layers from the lake bed indicates deposition during the interval 17, 000–34, 000 years B.P. although geochemical correlation of a prominent tephra layer in the core with tephra set C of Mount St. Helens could mean that the maximum age of the sediments may be at least 36, 000 years B.P. The core was divided into specimens 0.02 m long, each representing approximately 55 years of deposition assuming a constant rate of sedimentation. Pilot alternating field demagnetization studies of every tenth specimen indicated a strong, stable remanence with median destructive field of 15 mT, and the remaining specimens were subsequently demagnetized in fields of this strength. The mean inclination for all specimens exclusive of the unstably magnetized muck and peat from near the surface is 56.1° which is 8° shallower than the present axial dipole field at this site, perhaps because of inclination error in the detrital remanent magnetization of the sediments, although because of the variability in the data, this departure from the axial dipole field may not be significant. The ranges of inclination and declination are comparable to those of normal secular variation at northern latitudes. Although three isolated specimens have remanence with negative inclination, these anomalous directions are due to sampling and depositional effects. Measurement of a second core of 6.86 m length also revealed only normal magnetic polarity, but this result is of little stratigraphic value as this core failed to penetrate the distinctive tephra found near the base of the former core.Studies of a concentrate of the magnetic minerals in the sediments by optical microscopy and X-ray diffraction indicate that the primary magnetic constituent is an essentially pure magnetite of detrital origin. The magnetite occurs in a wide range of grain sizes with much of it of sub-multidomain size (< 15 μm).As a whole, this study provides substantial evidence against the existence of large-scale worldwide geomagnetic reversals during the time interval of Fargher Lake sedimentation, a segment of geological time for which many excursions and reversals have been reported elsewhere.  相似文献   

6.
Masaki  Takahashi Kazuo  Saito 《Island Arc》1997,6(2):168-182
Abstract Recent paleomagnetic studies are reviewed in an effort to clarify the relationship between the intra-arc deformation of central Japan and the collision tectonics of the Izu-Bonin Arc. The cusp structure of the pre-Neogene terranes of central Japan, called the Kanto Syntaxis, suggests a collisional origin with the Izu-Bonin Arc. The paleomagnetic results and newly obtained radiometric ages of the Kanto Mountains revealed the Miocene rotational history of the east wing of the Kanto Syntaxis. More than 90° clockwise rotation of the Kanto Mountains took place after deposition of the Miocene Chichibu Basin (planktonic foraminiferal zone of N.8: 16.6–15.2 Ma). After synthesizing the paleomagnetic data of the Japanese Islands and collision tectonics of central Japan, it appears that approximately a half rotation (40–50°) probably occurred at ca 15 Ma in association with the rapid rotation of Southwest Japan. The remainder (50-40°) continued until 6 Ma, resulting in the sharp bent structure of the pre-Neogene accretionary complexes (Kanto Syntaxis). The latter rotation seems to have been caused by the collision of the Izu-Bonin Arc on the northwestward migrating Philippine Sea Plate.  相似文献   

7.
An extremely large magnitude eruption of the Ebisutoge-Fukuda tephra, close to the Plio-Pleistocene boundary, central Japan, spread volcanic materials widely more than 290,000 km2 reaching more than 300 km from the probable source. Characteristics of the distal air-fall ash (>150 km away from the vent) and proximal pyroclastic deposits are clarified to constrain the eruptive style, history, and magnitude of the Ebisutoge-Fukuda eruption.Eruptive history had five phases. Phase 1 is phreatoplinian eruption producing >105 km3 of volcanic materials. Phases 2 and 3 are plinian eruption and transition to pyroclastic flow. Plinian activity also occurred in phase 4, which ejected conspicuous obsidian fragments to the distal locations. In phase 5, collapse of eruption column triggered by phase 4, generated large pyroclastic flow in all directions and resulted in more than 250–350 km3 of deposits. Thus, the total volume of this tephra amounts over 380–490 km3. This indicates that the Volcanic Explosivity Index (VEI) of the Ebisutoge-Fukuda tephra is greater than 7. The huge thickness of reworked volcaniclastic deposits overlying the fall units also attests to the tremendous volume of eruptive materials of this tephra.Numerous ancient tephra layers with large volume have been reported worldwide, but sources and eruptive history are often unknown and difficult to determine. Comparison of distal air-fall ashes with proximal pyroclastic deposits revealed eruption style, history and magnitude of the Ebisutoge-Fukuda tephra. Hence, recognition of the Ebisutoge-Fukuda tephra, is useful for understanding the volcanic activity during the Pliocene to Pleistocene, is important as a boundary marker bed, and can be used to interpret the global environmental and climatic impact of large magnitude eruptions in the past.  相似文献   

8.
The rock magnetic and paleomagnetic results from the Upper Paleozoic sedimentary sequences composing the isles of the Novaya Zemlya Archipelago are presented. The recorded temperature dependences of the magnetic susceptibility, the magnetic hysteresis parameters, and the results of the first-order reversal curve (FORC) measurements suggest the presence of single-domain or pseudo-single-domain magnetite and hematite grains in the rocks. The Upper Paleozoic deposits overall are promising for unraveling the tectonic evolution of the Barents–Kara region. Together with the rock magnetic data, the positive fold and reversal tests testify to the primary origin of the indentified magnetization components. However, the interpretation of the paleomagnetic data should take into account the probable inclination shallowing. New substantiation is offered for the paleomagnetic poles for Early Devonian and Late Permian. For the first time, paleomagnetic constraints are obtained for the Late Carboniferous boundary. It is shown that the Early Cimmerian deformation stage within the Paikhoi–Novaya Zemlya region is associated with the sinistral strike slip displacement along the Baidaratskii suture during which the internal structure of the Southern Novaya Zemlya segment could undergo shear in addition to the nappe-thrust transformations. The Northern Novaya Zemlya segment, which is shifted northwest with respect to the Southern segment, was deformed in the thrusting mode with an overall clockwise rotation of this segment relative to the East European Craton.  相似文献   

9.
对我国西南地区思茅地体中部巍山和五印地区白垩纪地层进行了详细的岩石磁学和古地磁研究,获得了两个地区的高温剩磁分量并通过了褶皱检验.巍山剖面特征剩磁方向为Ds=64.3°,Is=48.5°,k=54.6,α95=4.7°;五印剖面特征剩磁方向为Ds=15.4°,Is=44.8°,k=212.0,α95=4.6°.通过思茅地体磁偏角变化与兰坪-思茅褶皱带构造线迹变化的相关性分析,确定思茅地体内部差异性旋转变形受控于思茅地体弧形构造带的形成和演化.通过青藏高原东南缘走滑断裂带活动年代分析,确定兰坪-思茅褶皱带蜂腰构造部位形成于两期构造事件,早期构造变形与东喜马拉雅构造结北北东向挤压缩进有关,后期构造变形与川滇微地块发生顺时针旋转时南向挤出运动有关.以华南板块稳定区白垩纪古地磁极为参考极,计算得出巍山和五印相对于华南板块分别发生了10.5°±6.0°和3.8°±4.9°的南向运移量.通过选取思茅地体内部构造形态较稳定的巍山和普洱地区白垩纪古地磁极为参考极,计算得出五印相对于巍山和普洱分别发生了3.4°±5.0°和3.1°±5.4°的北向纬向运移,表明五印和和巍山之间自印亚碰撞以来经历了较大规模的北向地壳缩短变形作用.  相似文献   

10.
Longgang volcano cluster is 150km away from the Tianchi volcano, located in Jingyu and Huinan Counties, Jilin Province, China. It had a long active history and produced hundreds of volcanoes. The latest and largest eruption occurred between 1 500 and 1 600 years ago by Jinlongdingzi(JLDZ)volcano which had several eruptions in the history. This paper discusses the volcanic hazard types, and using the numerical simulations of lava flow obtained with the Volcflow model, proposes the hazard zonation of JLDZ volcano area. JLDZ volcano eruption type is sub-plinian, which produced a great mass of tephra fallout, covering an area of 260km2. The major types of volcanic hazards in JLDZ area are lava flow, tephra fallout and spatter deposits. Volcflow is developed by Kelfoun for the simulation of volcanic flows. The result of Volcflow shows that the flows are on the both sides of the previous lava flows which are low-lying areas now. According to the physical parameters of historical eruption and Volcflow, we propose the preliminary volcanic hazard zonation in JLDZ area. The air fall deposits are the most dangerous product in JLDZ. The highly dangerous region of spatter deposits is limited to a radius of about 2km around the volcano. The high risk area of tephra fallout is between 2km to 9km around the volcano, and between 9km to 14km is the moderate risk area. Out of 14km, it is the low risk area. Lava flow is controlled by topography. From Jinchuan Town to Houhe Village near the volcano is the low-lying area. If the volcano erupts, these areas will be in danger.  相似文献   

11.
12.
A 400,000 year record of the paleomagnetic field has been acquired from 22 meters of middle to late Pleistocene fine-grained sediments from Summer Lake in south-central Oregon and Double Hot Springs in northwestern Nevada. The stratigraphy is based on 55 tephra layers, nine of which have been correlated with tephra layers from other localities on the basis of their distinct major- and trace-element geochemistry and their distinct petrography. The paleomagnetic samples carry a strong and stable magnetization that does not appear to have been affected by the inclination error commonly associated with the magnetization of sediments. The samples have accurately recorded the declination and inclination of the geomagnetic field at or near the time of deposition except for errors arising from rotations of discrete blocks of sediment predominantly about vertical axes. Errors introduced by this type of rotation were corrected by using paleomagnetic directions associated with correlated tephra layers. The Summer Lake paleomagnetic record suggests that secular variations occurred throughout the middle and late Pleistocene often maintaining the same waveform through several oscillations. The amplitudes of these variations were similar to those of Holocene variations, and the periods ranged from 15,000 years to greater than 100,000 years.  相似文献   

13.
Split Butte is a volcanic crater of Quaternary age consisting of a tephra ring which at one time retained a lava lake. The tephra is thinly bedded and is composed of partially palagonitized sideromelane clasts and subordinate lithic fragments. The beds typically dip radially away from the center of the crater, but locally dip toward the crater center. The tephra ring resulted from phreatomagmatic eruptions as a result of interaction of groundwater with rising basaltic magma, evidenced by glassy and granulated pyroclastic debris, the presence of abundant palagonite and other secondary minerals, numerous armored lapilli, and plastically deformed ash layers below ejecta blocks. Statistical analysis of the grain size distribution of the ash also indicates a phreatomagmatic origin of Split Butte tephra. In addition, the analysis reveals that the stratigraphically lowest tephra was deposited primarily by pyroclastic flow mechanisms while the upper tephra layers, comprising the bulk of the deposits, were deposited dominantly by airfall and pyroclastic surge. The lava lake and four en echelon basalt dikes were emplaced when phreatomagmatic activity at the vent ceased. Subsequent collapse caused a broad, shallow pit crater to form in the laval lake, and minor spattering occurred at one point along the pit crater scarp. Partial erosion of the tephra, deposition of aeolian sediments and encroachment of the Butte by later lava flows completed the development of Split Butte.  相似文献   

14.
 Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the "Akutan tephra," is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity. Received: 31 August 1998 / Accepted: 30 January 1999  相似文献   

15.
The results of detailed paleomagnetic studies in seven Upper Permian and Lower Triassic reference sections of East Europe (Middle Volga and Orenburg region) and Central Germany are presented. For each section, the coefficient of inclination shallowing f (King, 1955) is estimated by the Elongation–Inclination (E–I) method (Tauxe and Kent, 2004) and is found to vary from 0.4 to 0.9. The paleomagnetic directions, corrected for the inclination shallowing, are used to calculate the new Late Permian–Early Triassic paleomagnetic pole for the East European Platform (N = 7, PLat = 52.1°, PLong = 155.8°, A95 = 6.6°). Based on this pole, the geocentric axial dipole hypothesis close to the Paleozoic/Mesozoic boundary is tested by the single plate method. The absence of the statistically significant distinction between the obtained pole and the average Permian–Triassic (P–Tr) paleomagnetic pole of the Siberian Platform and the coeval pole of the North American Platform corrected for the opening of the Atlantic (Shatsillo et al., 2006) is interpreted by us as evidence that ~250 Ma the configuration of the magnetic field of the Earth was predominantly dipolar; i.e., the contribution of nondipole components was at most 10% of the main magnetic field. In our opinion, the hypothesis of the nondipolity of the geomagnetic field at the P–Tr boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), resulted from disregarding the effect of inclination shallowing in the paleomagnetic determinations from sedimentary rocks of “stable” Europe (the East European platform and West European plate).  相似文献   

16.
中国地区地磁场的球冠谐和分析   总被引:12,自引:11,他引:12  
本文根据中国及其邻近地区的地磁三分量绝对测量资料,利用球冠谐和分析方法,计算出中国地区地磁剩余场的冠谐模型,地磁剩余场△X,△Y,△Z的模型均方根偏差分别为106.9,89.7,137.6 nT.提出由地磁场的国际参考地磁场和地磁剩余场的冠谐模型组成的联合模型作为中国参考地磁场的模型,它能较好地表示中国地磁场的分布.以地磁场的联合模型为正常背景场,计算出三分量磁异常的冠谐模型,并分析了磁异常的基本特征,它将为深入研究中国岩石层结构提供新证据.  相似文献   

17.
长白山地区火山碎屑粒度特征研究   总被引:6,自引:2,他引:4       下载免费PDF全文
长白山地区全新世火山活动活跃,发育了良好的火山空降、火山碎屑流、火山涌流和火山泥石流堆积物。这些堆积物交错堆积,野外区分较为困难。在火山碎屑地层剖面调查基础上,系统采集了各种类型的火山碎屑堆积物样品。在实验室通过粒度参数和概率累积曲线分析,对堆积物成因类型进行了判别,讨论了火山空降堆积物和火山碎屑流堆积物随着与火口距离变化的规律。首次对研究区内粒度范围为62.5~0.02μm的细火山灰进行了粒度分析,对火山碎屑流和火山碎屑涌流中细火山灰端元分布特征和地质意义进行了分析和讨论  相似文献   

18.
We present a detailed rock-magnetic and paleomagnetic survey from Autlan volcanic succession in western Mexico. The principal aim of this study is to extend paleomagnetic data from Autlan lavas in order to confirm vertical-axis rotation observed in reconnaissance study and to evaluate long-term variation of the geomagnetic field strength based on existing and global data. The mean inclination (44.7°) is in agreement with the expected inclination for 60 and 70 Ma, as derived from available reference poles for the North American craton. The declination (333.6°), however, is significantly different from those expected, which suggests a statistically significant counterclockwise tectonic rotation ranging between 10° ± 6° and 14° ± 7°. As a measure of paleosecular variation (PSV), we obtained a geomagnetic field dispersion of 9.6° (upper and lower limits: 7.2°–11.9°) in perfect agreement with the previously published PSV compilation of selected Cretaceous data from lavas. The mean virtual dipole moments available for Autlan lavas are about 65% of the present geomagnetic axial dipole but are in reasonably good agreement with other comparable quality determinations between 5 and 90 Ma. This reinforces the hypothesis that low geomagnetic field strengths persisted for the entire Jurassic extending into the Upper Cretaceous.  相似文献   

19.
The presence of an almost exact 180° change in declination in a piston-core from the continental margin off the west coast of Norway is associated with two distributions of positive inclination of the remanent directions which could have been interpreted to represent an excursion of the geomagnetic field. The over-consolidated top section, defined by anomalously low-inclination directions, reveals a magnetic fabric typical of slurries or deposits affected by water currents, as opposed to an anomalous fabric in the lower section associated with magnetic directions coinciding with the present geomagnetic field. The sampling area reveals seismic features indicative of slumping, erosion and redeposition, which are also reflected by micropalaeontological evidence. It is concluded that the pre-consolidated top-section has been transported by slumping, the anomalously low-dipping directions resulting from processes acting during the initial consolidation.  相似文献   

20.
We present new Middle Miocene paleomagnetic data for the central Japan Arc, and discuss their implications for Miocene rotation. To obtain a refined paleodirection, we made magnetic measurements on basaltic to andesitic lavas and intrusive rocks from 12 sites in the Tsugu volcanic rocks (ca 15 Ma) in the northern part of the Shitara area, Japan. Significant secondary magnetizations in samples with strong magnetic intensities are interpreted as lightning‐induced components. Mean directions carried by magnetite and/or titanomagnetite were determined for all sites. An overall mean direction with a northerly declination was obtained from dual‐polarity site means for nine sites. This direction is indistinguishable from the mean direction for coeval parallel dikes in the northern part of the Shitara area, and also indistinguishable from the Miocene reference direction derived from the paleopole for the North China Block in the Asian continent. These comparisons suggest little or no rotation or latitudinal motion in the study area with respect to the North China Block since 15 Ma. We obtained a refined early Middle Miocene paleodirection (D = 9.7°, I = 52.5°, α95 = 4.8°; 30 sites) and paleopole (82.0°N, 230.8°E, A95 = 5.6°) for Shitara by combining data from the Tsugu volcanic rocks and a coeval dike swarm. An anomalous direction found at three sites could be a record of an extraordinary field during a geomagnetic polarity transition or excursion. Paleomagnetic data from Shitara suggest that: (i) the western wing of the Kanto Syntaxis, a prominent cuspate geologic structure in central Honshu, underwent a counterclockwise rotation with respect to the main part of the southwestern Japan Arc between ca 17.5 Ma and 15 Ma; (ii) collision between the Japan and Izu–Bonin (Ogasawara) Arcs began prior to 15 Ma; and (iii) clockwise rotation of the entire southwestern part of the Japan Arc had ceased by 15 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号