首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Deciphering the contribution of crustal materials to A-type granites is critical to understanding their petrogenesis. Abundant alkaline syenitic and granitic intrusions distributed in Tarim Large Igneous Province, NW China, offer a good opportunity to address relevant issues. This paper presents new zircon Hf-O isotopic data and U-Pb dates on these intrusions, together with whole-rock geochemical compositions, to constrain crustal melting processes associated with a mantle plume. The ∼280 Ma Xiaohaizi quartz syenite porphyry and syenite exhibit identical zircon δ18O values of 4.40 ± 0.34‰ (2σ) and 4.48 ± 0.28‰ (2σ), respectively, corresponding to whole-rock δ18O values of 5.6‰ and 6.0‰, respectively. These values are similar to mantle value and suggest an origin of closed-system fractional crystallization from Tarim plume-derived melts. In contrast, the ∼275 Ma Halajun A-type granites have higher δ18O values (8.82–9.26‰) than the mantle. Together with their whole-rock εNd(t) (−2.0–+0.6) and zircon εHf(t) (−0.6–+1.5) values, they were derived from mixing between crust- and mantle-derived melts. These felsic rocks thus record crustal melting above the Tarim mantle plume. At ∼280–275 Ma, melts derived from decompression melting of Tarim mantle plume were emplaced into the crust, where fractional crystallization of a common parental magma generated mafic-ultramafic complex, syenite, and quartz syenite porphyry as exemplified in the Xiaohaizi region. Meanwhile, partial melting of upper crustal materials would occur in response to basaltic magma underplating. The resultant partial melts mixed with Tarim plume-derived basaltic magmas coupled with fractional crystallization led to formation of the Halajun A-type granites.  相似文献   

2.
A. Dini  G. Gianelli  M. Puxeddu  G. Ruggieri   《Lithos》2005,81(1-4):1-31
Extensive, mainly acidic peraluminous magmatism affected the Tuscan Archipelago and the Tuscan mainland since late Miocene, building up the Tuscan Magmatic Province (TMP) as the Northern Apennine fold belt was progressively thinned, heated and intruded by mafic magmas. Between 3.8 and 1.3 Ma an intrusive complex was built on Larderello area (Tuscan mainland) by emplacement of multiple intrusions of isotopically and geochemically distinct granite magmas. Geochemical and isotopic investigations were carried out on granites cored during drilling exploration activity on the Larderello geothermal field. With respect to the other TMP granites the Larderello intrusives can be classified as two-mica granites due to the ubiquitous presence of small to moderate amounts of F-rich magmatic muscovite. They closely resemble the almost pure crustal TMP acidic rocks and do not show any of the typical petrographic features commonly observed in the TMP hybrid granites (enclaves, patchy zoning of plagioclase, amphibole clots). On the basis of major and trace elements, as well as REE patterns, two groups of granites were proposed: LAR-1 granites (3.8–2.3 Ma) originated by biotite-muscovite breakdown, and LAR-2 granites (2.3–1.3 Ma) generated by muscovite breakdown. At least three main crustal sources (at 14–23 km depth), characterized by distinct εNd(t) and 87Sr/86Sr values, were involved at different times, and the magmas produced were randomly emplaced at shallow levels (3–6 km depth) throughout the entire field. The partial melting of a biotite-muscovite-rich source with low εNd(t) value (about −10.5) produced the oldest intrusions (about 3.8–2.5 Ma). Afterwards (2.5–2.3 Ma), new magmas were generated by another biotite-rich source having a distinctly higher εNd(t) value (−7.9). Finally, a muscovite-rich source with high εNd(t) (about −8.9) gave origin to the younger group of granites (2.3–1.0 Ma). The significant Sr isotope disequilibrium recorded by granites belonging to the same intrusion is interpreted, as due to the short residence time of magmas in the source region followed by their rapid transfer to the emplacement level. Partial melting was probably triggered by multiple, small-sized mafic intrusions, distributed over the last 3.8 Ma that allowed temporary overstepping of biotite- and muscovite-dehydration melting reactions into an already pre-heated crust. Dilution in time of the magmatic activity probably prevented melt mingling and homogenization at depth, as well as the formation of a single, homogeneous, hybrid pluton at the emplacement level. Moreover the high concentrations of fluxing elements (B, F, Li) estimated for the LAR granites modified melt properties by reducing solidus temperatures, decreasing viscosity and increasing H2O solubility in granite melts. The consequences were a more efficient, fast, magma extraction and transfer from the source, and a prolonged time of crystallization at the emplacement level. These key factors explain the long-lived hydrothermal activity recorded in this area by both fossil (Plio-Quaternary ore deposits) and active (Larderello geothermal field) systems.  相似文献   

3.
西准噶尔谢米斯台花岗岩研究程度偏低, 运用锆石LA-ICP-MS U-Pb年代学、地球化学及锆石Lu-Hf同位素方法研究西准谢米斯台西段地区花岗岩, 结果表明: 谢米斯台岩体(427.6±2.3 Ma)和哈勒盖特希岩体(428.6±2.5 Ma)均形成于中志留世; 谢米斯台碱长花岗岩地球化学特征类似于Ⅰ型花岗岩, 哈勒盖特希碱长花岗岩地球化学特征类似于A型花岗岩; 锆石Hf同位素组成较均一, εHf(t)=12.4~14.5, 二阶段模式年龄tDM2变化范围在497~603 Ma之间, Ⅰ型花岗岩和A2型花岗岩可能形成于后碰撞阶段的挤压-伸展转变期, 是中志留世额尔齐斯-斋桑洋壳向南俯冲至波谢库尔-成吉斯火山弧底部, 俯冲板片与岛弧底部岩石圈之间剪切带的物质发生变形、变质及部分熔融作用, 使得由亏损地幔形成不久的年轻地壳(由洋壳和岛弧组成)发生部分熔融形成的长英质岩浆经进一步分离结晶作用形成分异Ⅰ型花岗岩和高温、缺水A2型花岗岩, A2型花岗岩较Ⅰ型花岗岩分离结晶程度高.   相似文献   

4.
新疆东准噶尔北缘位于西伯利亚板块和哈萨克斯坦-准噶尔板块的结合部位,是中亚造山带的重要组成部分,也是新疆北部最重要的成矿带之一。老山口碱性花岗岩和乔夏哈拉碱性花岗岩即位于该区域,LA-ICP-MS锆石U-Pb年龄显示其结晶年龄分别为330.5±3.5 Ma和331.1±3.1 Ma。结合区域内存在的多处近同时期的碱性花岗岩(布尔根碱性花岗岩、哈腊苏碱性花岗斑岩、乌图布拉克碱性花岗岩),指示东准噶尔北缘存在一期重要的早石炭世碱性花岗岩岩浆活动,并大致可分为东、中、西三段。这些早石炭世碱性花岗岩具有高硅(SiO_2=67.14%~83.02%)、富碱(Na_2O+K_2O=5.37%~10.73%)、低钛(TiO_2=0.04%~0.23%)、贫钙(CaO=0.04%~1.19%)的特征,与典型A型花岗岩特征相类似,成因类型上属A1型花岗岩,个别具有A2-A1型花岗岩过渡性质。微量元素组成具有富集大离子亲石元素K、Rb及高场强元素Nb、Zr、Hf、Th,亏损Ba、Sr、P、Eu、Ti的特征。轻稀土元素明显富集(LREE/HREE=3.42~8.11),具强烈的负Eu异常(δEu=0.03~0.74),稀土元素配分模式呈右倾海鸥型。岩石具有较高的ε_(Hf)(t)(7.6~12.4)和ε_(Nd)(t)值(5.4~6.9)。上述特征表明,这些碱性岩的母岩浆具有复杂的成因,推测为幔源岩浆底侵到下地壳,促使下地壳先存的富Nb玄武岩部分熔融,并发生岩浆混合,经过一定程度的分离结晶形成。综合本文数据及地质事实,我们认为东准噶尔北缘在358 Ma部分地区开始进入板内后造山伸展环境,即板内早期环境,但早石炭世(360~327 Ma)整体处于由后碰撞向板内后造山环境转化的过渡阶段。东准噶尔北缘东、中、西段进入板内环境的时间不尽相同,可能与其多俯冲岛弧系统拼贴增生时代的不均一性有关。  相似文献   

5.
The hypabyssal rocks of the Omgon Range, western Kamchatka, that intrude Upper Albian-Lower Campanian deposits of the Eurasian continental margin belong to three coeval (62.5–63.0 Ma) associations: (1) ilmenite gabbro-dolerites, (2) titanomagnetite gabbro-dolerites and quartz microdiorites, and (3) porphyritic biotite granites and granite-aplites. The Early Paleocene age of the ilmenite gabbro-dolerites and biotite granites was confirmed by zircon and apatite fission-track dating. The ilmenite and titanomagnetite gabbro-dolerites were produced by the multilevel fractional crystallization of basaltic melts with, respectively, moderate and high Fe-Ti contents and the contamination of these melts with rhyolitic melts of different compositions. The moderate-and high-Fe-Ti basaltic melts were derived from mantle spinel peridotite variably depleted and metasomatized by slab-derived fluid prior to melting. The melts were generated at variable depths and different degrees of melting. The biotite granites and granite aplites were produced by the combined fractional crystallization of a crustal rhyolitic melt and its contamination with terrigenous rocks of the Omgon Group. The rhyolitic melts were likely derived from metabasaltic rocks of suprasubduction nature. The Early Paleocene hypabyssal rocks of the Omgon Range were demonstrated to have been formed in an extensional environment, which dominated in the margin of the Eurasian continent from the Late Cretaceous throughout the Early Paleocene. Extension in the Western Kamchatka segment preceded the origin of the Western Koryakian-Kamchatka (Kinkil’) continental-margin volcanic belt in Eocene time. This research was conducted based on original geological, mineralogical, geochemical, and isotopic (Rb-Sr) data obtained by the authors for the rocks.  相似文献   

6.
王艳  马昌前  王连训  刘园园 《地球科学》2020,45(4):1115-1135
赣西北-湘东北地区出露较多晚中生代花岗岩,并与中、下扬子地区晚中生代花岗岩组成一条NEE向岩浆岩带.通过对赣西北小九宫和沙店花岗岩进行系统的岩石学、年代学、元素地球化学、全岩Sr-Nd同位素研究,探讨其岩石成因及其构造意义.小九宫和沙店花岗岩的岩石类型主要为中粗粒斑状黑云二长花岗岩,LA-ICP-MS锆石U-Pb定年结果表明,其形成年龄分别为124±1 Ma和125±1 Ma,均为燕山晚期花岗岩.小九宫和沙店花岗岩均具有高钾、钙碱性、贫铁镁的含量特征,主要为弱过铝质花岗岩.两岩体具有相似的稀土元素分布型式和微量元素特征,表现为轻稀土富集的右倾型式,具有明显的Eu负异常(Eu/Eu*=0.17~0.50),富集K、Rb、Th、U等大离子亲石元素,亏损Ba、Sr、P和高场强元素Nb、Ta、Ti等.主量、微量元素地球化学特征显示,两岩体为高钾钙碱性Ⅰ型花岗岩.小九宫和沙店花岗岩的εNd(t)值分别为-8.06~-6.20、-6.51~-6.08,两阶段模式年龄(TDM2)分别为1.42~1.57 Ga、1.42~1.45 Ga.Sr-Nd同位素组成和地球化学特征表明,两岩体主要来源于下地壳源区,其源岩可能为中元古代中性-基性火成岩.小九宫和沙店花岗岩体通过岩墙扩张作用方式被动侵位,结合区域构造背景,认为两岩体形成于伸展构造环境.地幔物质上涌可能为下地壳火成岩部分熔融提供持续的热源,岩浆在上升过程中经历明显的分离结晶作用.岩体中含有少量微粒包体及围岩捕虏体,反映岩浆在上升过程中可能受到较弱的混染作用.区域对比表明,从燕山早期到燕山晚期,赣西北-湘东北地区花岗质岩浆源区存在压力变小的趋势,可能反映了地壳的明显减薄.   相似文献   

7.
Postorogenic granitoids of the Litsk-Araguba Complex compose a chain of intrusive bodies around 850 km2 in area, which are confined to the NE-trending deep-seated fault zone. Results of U-Pb zircon dating indicate that the formation of granitoids of the Litsk-Araguba Complex lasted 28 ± 9 Ma. Note that the rocks of the first-fourth phases have similar age within (1774–1762 Ma), while quartz syenites of the fifth phase were formed much later (1746 ± 8 Ma). The study of Sm-Nd isotopic system revealed that the quartz syenites plot in the field of the Nd isotopic evolution of the lower crust represented mainly by the Paleoproterozoic garnet granulites with model ages TNd(DM) = 2.4–2.7 Ga and ?Nd(T) from ?5.6 to ?6.3. It was found that the near-contact syenites of the Litsk Massif contain composite zircons with an age of 1758 ± 9Ma. They differ from zircons in coeval porphyraceous granites in lowered U and Th concentrations, which are close to those in zircons from the lower crustal garnet granulites of this region. These data in combination with internal structure of the crystals determine xenogenic lower-crustal origin of zircons from syenites and confirm geochemical data on the lower crustal input in the formation of granitoid melts.  相似文献   

8.
Dolerite dykes intruding Variscan plutonites were studied in terms of mineralogy, petrology, geochemistry and geochronology. The main mineral constituents were studied and the sequence of crystallization has been derived. The geochemical characteristic indicate mantle origin of the dolerites and magma sources different from the hosting granitoids. From SHRIMP analyses of five spots on four different zircon crystals, resulted a 292.0±4.1 Ma age that is interpreted as the time of crystallization of the dolerite. The hosting granitoids are probably the result of mixing between two possible end-members: enriched mantle and acid metaigneous or lower crustal metasediments.

The Variscan age of the dolerites, in combination with the geochemical characteristics, indicated that the enriched mantle basaltic material should be the source of the dolerite veins. These mantle-derived basaltic melts may represent the underplated material, which probably provided the necessary thermal input to the dehydration melting in the lower crust. The dolerites should have intruded the newly formed batholiths before or at the first stages of their uplift, recording the last events of the Variscan subduction.  相似文献   


9.
The Tormes dome consists of S-type granites that intruded into Ordovician augen gneisses and Neoproterozoic–Lower Cambrian metapelites/metagreywackes at different extents of migmatization. S-type granites are mainly equigranular two-mica granites, occurring as: (1) enclave-laden subvertical feeder dykes, (2) small external sill-like bodies with size and shape relations indicative for self-similar pluton growth, and (3) as large pluton bodies, emplaced at higher levels than the external ones. These magmas were highly mobile as it is inferred from the high contents of fluxing components, the disintegration and alignment of pelitic xenoliths in feeder dykes and at the bottom of some sill-like bodies. Field relations relate this 311?Ma magmatism (U–Pb monazite) to the regional shearing of the D3 Variscan event. Partial melting modeling and the relatively high estimated liquidus temperatures indicate biotite-dehydration partial melting (800–840°C and 400–650?MPa) rather than water-fluxed melting, implying that there was no partial melting triggered by externally derived fluids in the shear zones. Instead, the subvertical shear zones favored extraction of melts that formed during the regional migmatization event around 320?Ma. Nd isotope variation among the granites might reflect disequilibrium partial melting or different protoliths. Mass-balance and trace element partial melting modeling strongly suggest two kinds of fertile crustal protoliths: augen gneisses and metapelites. Slight compositional variation among the leucogranites does not reflect different extent of protolith melting but is related to a small amount of fractional crystallization (<13% for the equigranular granites), which is generally more pronounced in shallower batholitic leucogranites than in the small and homogeneous sill-like bodies. The lower extent of fractional crystallization and the higher-pressure emplacement conditions of the sill-like bodies support a more restricted movement through the crust than for batholitic leucogranites.  相似文献   

10.
Four magma series are distinguished in the northeastern TroodosExtrusive Series: (A) a Lower Low-Ti Series (Lo-LTS) of basalticandesites, (B) a High-Ti Series (HTS) of basaltic andesitesto rhyodacites, (C) a Low-Ti Series(DLTS), the last two beingof basaltic andesite. Trace-element characteristics vary systematicallyfrom Series A to D and are interpreted in terms of a variablecontribution of three major source components (SCs). LILE-enrichedwater-rich fluids (SCI) derived from dehydration of a subductedlithosphere slab were continuously added to the overlying mantlewedge. Increasing LILE/HFSE and LILE/REE ratios and decreasingabsolute HFSE and REE concentrations from Series A to Dindicateprogressive depletion of the actual mantle source (SCII). Anegative Ta anomaly in the lavas decreases from Series A toD and is interpreted to have resulted from partial melting ofthe lower crust (SCII) where Ta-Nb-Ti may be fractionated byTi-rich accessory phases. The contribution of SCIII decreaseswhen the eruptive sites successively move away from the centralaxial zone and the temperature of the lower crust decreases,preventing partial melting of the lower crust. Chemical compositionsof fresh glass separates and phenocrysts indicate a change ofmajor petrogenetic processes from series A to D. Lo-LTS andIITS lavas are intrepreted to be directly related by open-systemfractional crystallization in crustal magma chambers. Removalof observed phenocryst phases clinopyroxene, orthopyroxene,plagioclase, and magnetite, and repeated subsequent mixing ofdacitc to rhyodacitic magmas with batches of replenshing basalticandesites are the major processes, possibly induced by vesicleformation in the mafic layer after a period of some crystallization.LTS and DLTS magmas were directly fed to the surface withoutstagnating at crustal levels, with feeder dykes positioned marginalto the central rift zone and thus by-passing the central magmachambers. These magmas apparently experienced only limited fractionalcrystallization of 10–15 wt.% olivine+clinopyroxene+chromite,probably at the mantle-crust boundary.  相似文献   

11.
长白山上新世以来玄武岩成分演变规律及其成因   总被引:4,自引:2,他引:2  
郭文峰  刘嘉麒  郭正府 《岩石学报》2014,30(12):3595-3611
火山岩成分的多样性是岩浆物理和化学过程在其产生、运移、存储和喷发过程中的综合反映。长白山火山区自上新世以来喷发了大量的玄武质火山岩,其成分变化范围较大(Mg O 3.2%~7.8%)。以往研究认为其成分的变化主要受地幔不均一、部分熔融程度和分离结晶的影响,没有明显地壳混染。本研究发现这些玄武岩经历了不同程度的上、下地壳的混染。同时,结合火山岩的年龄发现玄武岩地球化学成分和同位素比值随时间呈现脉动式的变化。根据87Sr/86Sr和Mg O的突变点可以分为3段:5~2Ma,2~1Ma,1~0Ma。通过定性和定量的模拟发现地幔不均一性和部分熔融程度差异造成玄武岩成分的变化有限,而分离结晶、地壳混染和岩浆补给的岩浆作用是形成玄武岩成分随时间脉动变化的主要原因。并结合能量约束-补给-混染-分离结晶算法(ECRAFC)模拟得出以下结论:天池和望天鹅喷发中心的玄武质岩浆最初都存储于同一下地壳岩浆房,可能由于上地壳构造差异导致岩浆迁移路径和存储区不同;长白山岩浆房迁移有从5~2Ma阶段由下地壳向上地壳逐渐变浅,2~1Ma阶段由上地壳向下地壳快速变深的规律,而1~0Ma阶段的玄武岩由岩浆从下地壳直接快速喷出地表形成;长白山玄武质岩浆的活动与本区的构造断裂活动密切的关系,5Ma以来,火山岩成分随时间的周期性波动可能与本区构造应力的周期性的强拉张-弱拉张过程有关。  相似文献   

12.
赵硕  许文良  唐杰  李宇  郭鹏 《地球科学》2016,41(11):1803-1829
对额尔古纳地块新元古代花岗岩进行了锆石LA-ICP-MS U-Pb年代学、岩石地球化学和锆石Hf同位素研究,以便对其新元古代岩浆作用历史与微陆块构造属性给予制约.所测花岗质岩石中锆石的CL图像特征和Th/U比值(0.17~1.46) 显示其为岩浆成因.测年结果并结合前人定年结果,可以判定额尔古纳地块上至少存在~929 Ma、~887 Ma、~850 Ma、~819 Ma、~792 Ma、~764 Ma和~738 Ma岩浆事件.岩石地球化学特征显示,~887 Ma花岗岩为一套后碰撞花岗岩类;而850~737 Ma花岗质岩石整体上属于A-型花岗岩,也有部分岩体(漠河、阿木尔、碧水和室韦岩体)显示I-型花岗岩特征.锆石Hf同位素特征反映这些花岗岩的源区既有中-新元古代(TDM2=884~1 563 Ma)新增生地壳物质的部分熔融,同时伴有少量古老地壳物质的混染,也有残留的古老中基性下地壳物质的部分熔融.综合研究区新元古代侵入岩的地球化学特征,同时对比新元古代全球构造热事件,认为额尔古纳地块上新元古代岩浆活动记录了Rodinia超大陆形成和演化过程中的地壳响应:927~880 Ma的岩浆作用应是Rodinia超大陆汇聚造山的产物;而850~737 Ma的岩浆作用应是对Rodinia超大陆快速裂解的记录.通过岩浆事件对比发现,额尔古纳地块与邻近的西伯利亚南缘微陆块(如中蒙古地块和图瓦地块)具有亲缘性,而与塔里木板块和华南板块至少在新元古代岩浆活动上具有一定的相似性,而明显区别于华北板块和西伯利亚板块.   相似文献   

13.
对蚌埠隆起区庄子里和磨盘山钾长花岗岩进行了系统的年代学和地球化学以及锆石Hf同位素的研究, 以便对其岩石成因进行约束.研究结果表明, 庄子里和磨盘山钾长花岗岩中锆石发育震荡生长环带, 且具有较高的Th/U比值(0.13~1.47), 反映了岩浆成因特征.对庄子里和磨盘山钾长花岗岩中岩浆锆石进行的LA-ICP-MSU-Pb定年结果(上交点年龄) 分别为2104±20Ma和2196±190Ma, 这表明蚌埠隆起区钾长花岗岩的形成时代为古元古代.钾长花岗岩的SiO2和K2O含量分别介于69.65%~77.95%和4.98%~5.17%之间; 该类岩石富集轻稀土元素和Zr、Hf、Rb、Th、U等元素, 明显亏损Ba、Sr、Eu、P和Ti等元素; 它们的εNd(t) 值变化于-3.4~+3.2之间, Nd的模式年龄变化于2.31~2.79Ga之间; 钾长花岗岩中锆石的εHf(t) 值和Hf同位素两阶段模式年龄分别介于-5.1~+7.8和2.26~2.83Ga之间.上述特征表明, 蚌埠隆起区钾长花岗岩的原始岩浆起源于有少量古老地壳物质涉入的新生下地壳的部分熔融.庄子里和磨盘山钾长花岗岩为A型花岗岩, 形成于伸展的构造背景.   相似文献   

14.
New data from a geochemical, geochronological and isotopic study of the Late Precambrian Timna igneous complex suggest the formation of alkali granites from a LIL-enriched, mantle derived, sanukitoid-type monzodiorite (a silica oversaturated rock with Mg# >60). These data also provide new insights into the petrology, timing and regional tectonic control of the transition from the calc-alkaline to the alkaline magmatic activity in the northern Arabian-Nubian Shield (ANS) during the Late Precambrian.

The Timna alkali granite was formed by fractional crystallization from the monzodioritic magma in a quasi-stratified magmatic cell which formed 610 Ma ago in the 625 Ma old calc-alkaline, porphyritic granite crust. These monzodiorites are mantle-derived, as demonstrated by their high Mg# (63), Cr (230 ppm), and Ni (120 ppm). They are characterized by initial 87Sr/86Sr of 0.7034, ε-Nd (610 Ma) = +3.4, and are enriched in K2O (2.9%), Sr (840 ppm), Ba (1290 ppm) and LREE [(La/Lu)n= 10–25]. The chemical characteristics and REE patterns of the monzodiorites and andesitic dykes of Timna are very similar to Dokhan andesites from northeastern Egypt and the Archean sanukitoids from Canada. The isotopic, geochemical and geochronologic data all indicate that Timna monzodiorites are comagmatic with the alkali granite. The alkali granite is a typical post-orogenic, borderline A-type granite. It is enriched in potassium (K2O=4.68–6.64%), has a negative europium anomaly (Eu/Eu*=0.058–0.38) and ε-Nd (610 Ma) of +3.9. The calc-alkaline granite is a typical I-type granite with a small positive europium anomaly (Eu/Eu*=1.02–1.16). Its age and the Sr, Nd and Pb isotopic characteristics with ε-Nd (625 Ma) of +5.6 to +5.9 are significantly different from these of the alkali granite and monzodiorites, and indicate little interaction with the monzodiorite during the formation of the alkali granite.

The alkali granites are correlative with the post-collisional extensional granites in Jordan and Egypt while the porphyritic granites can be correlated with the late orogenic types. Crustal thickening associated with orogenic compression resulted in crustal anatexis to form the I-type granitic rocks, whereas crustal thinning associated with extension allowed LIL-enriched mantle melts to rise very near to the surface, where space was available for these to pond and fractionate to alkali granite.  相似文献   


15.
NE China is the easternmost part of the Central Asian Orogenic Belt (CAOB). The area is distinguished by widespread occurrence of Phanerozoic granitic rocks. In the companion paper (Part I), we established the Jurassic ages (184–137 Ma) for three granitic plutons: Xinhuatun, Lamashan and Yiershi. We also used geochemical data to argue that these rocks are highly fractionated I-type granites. In this paper, we present Sr–Nd–O isotope data of the three plutons and 32 additional samples to delineate the nature of their source, to determine the proportion of mantle to crustal components in the generation of the voluminous granitoids and to discuss crustal growth in the Phanerozoic.

Despite their difference in emplacement age, Sr–Nd isotopic analyses reveal that these Jurassic granites have common isotopic characteristics. They all have low initial 87Sr/86Sr ratios (0.7045±0.0015), positive Nd(T) values (+1.3 to +2.8), and young Sm–Nd model ages (720–840 Ma). These characteristics are indicative of juvenile nature for these granites. Other Late Paleozoic to Mesozoic granites in this region also show the same features. Sr–Nd and oxygen isotopic data suggest that the magmatic evolution of the granites can be explained in terms of two-stage processes: (1) formation of parental magmas by melting of a relatively juvenile crust, which is probably a mixed lithology formed by pre-existing lower crust intruded or underplated by mantle-derived basaltic magma, and (2) extensive magmatic differentiation of the parental magmas in a slow cooling environment.

The widespread distribution of juvenile granitoids in NE China indicates a massive transfer of mantle material to the crust in a post-orogenic tectonic setting. Several recent studies have documented that juvenile granitoids of Paleozoic to Mesozoic ages are ubiquitous in the Central Asian Orogenic Belt, hence suggesting a significant growth of the continental crust in the Phanerozoic.  相似文献   


16.
福建梅仙铅锌(银)矿床位于闽中裂谷带,是一大型多金属VMS型块状硫化物矿床。在详细野外地质考察基础上,通过对梅仙铅锌(银)矿区花岗斑岩2个样品的LA-ICP-MS锆石U-Pb年代学研究,确定其为燕山期花岗斑岩((148.9±1.4)Ma,(152.0±2.1) Ma)。全岩地球化学分析结果表明:所研究花岗斑岩具有高硅、富钾、中等含量的铝和全碱以及弱过铝质等特征。其稀土元素配分曲线普遍向右缓倾,且重稀土元素分配曲线比较平坦,富集大离子亲石元素和高强场元素,不具明显的Nb、Ta亏损,是产于碰撞后构造背景之下的高钾钙碱性I型花岗岩,其母岩浆形成后发生了角闪石、黑云母和斜长石等矿物高程度的结晶分异作用。梅仙矿区花岗斑岩在空间上与铅锌硫化物矿体和赋矿层位关系密切,岩浆富含挥发分和大离子亲石元素,分异程度高,表明该燕山中期岩浆活动有利于矿区矽卡岩化成矿作用,并可对早期层控块状硫化物矿体进行强烈的叠加改造。  相似文献   

17.
1 Introduction The South China Block (SCB), located between the Qinling-Dabie and Songma Indosinian sutures, experienced successively two important tectonic movements during the Mesozoic, i.e. the Indosinian movement (early Mesozoic) and the Yanshanian movement (late Mesozoic). Therefore, the generally accepted viewpoint is that the key geological problems during the Mesozoic are essentially the dynamics and material expression of these two tectonic movements in South China (Chen et al.…  相似文献   

18.
澜沧江南段临沧花岗岩的锆石U-Pb年龄及构造意义   总被引:7,自引:5,他引:2  
王舫  刘福来  刘平华  施建荣  蔡佳 《岩石学报》2014,30(10):3034-3050
临沧花岗岩是滇西地区出露面积最大的复式岩基,它是特提斯构造域的重要组成单元,是研究古特提斯俯冲-碰撞的重要窗口。本文通过对澜沧江南段澜沧-景洪地区广泛出露的临沧花岗岩的岩石学、地球化学以及锆石年代学综合分析,系统阐述该区花岗岩的原岩性质以及其形成的构造背景。临沧花岗岩主要岩石类型为黑云母二长花岗岩和花岗闪长岩。锆石LA-ICP-MS U-Pb年代学结果表明,该区临沧花岗岩侵位时代为217~233Ma。前人在澜沧江北段花岗岩也获得相似的侵位年龄,表明临沧花岗岩的南段与北段在形成时代上具有一致性。继承锆石U-Pb年龄主要峰期集中在2494Ma、1832Ma、1382Ma、959Ma、774Ma、482Ma,指示临沧花岗岩具丰富的物质来源。全岩主微量元素分析结果显示,临沧花岗岩的Na2O/K2O比值低,铝饱和指数(A/NCK值)大于1,属高钾钙碱性系列,过铝质花岗质岩石。轻重稀土分异明显,轻稀土相对富集,具有明显的铕负异常(Eu/Eu*=0.39~0.63);相容元素Cr和Ni含量较低,富集大离子亲石元素Rb和Ba,亏损高场强元素Nb-Ta和Zr-Hf。地球化学特征显示,临沧花岗岩来源于地壳沉积物的部分熔融,属S型花岗岩,形成于古特提斯洋闭合后的构造伸展阶段。  相似文献   

19.
The Aligoodarz granitoid complex (AGC) is located in the Sanandaj-Sirjan Zone (SSZ), western Iran and consists of quartz-diorites, granodiorites and subordinate granites. Whole rock major and trace element data mostly define linear trends on Harker diagrams suggesting a cogenetic origin of the different rock types. (87Sr/86Sr)i and εNdt ratios are in the ranges 0.7074-0.7110 and −3.56 to −5.50, respectively. The trace elements and Sr-Nd isotopic composition suggest that the granitoids from the AGC are similar to crustal derived I-type granitoids of continental arcs. The whole rock suite was produced by assimilation and fractional crystallization starting from a melt with intermediate composition likely possessing a mantle component. In situ zircon U-Pb data on the granites with LA-ICP-MS yield a crystallization age of ∼165 Ma. Inherited grains spanning in age from ∼180 Ma up to 2027 Ma were also found and confirm that assimilation of country rock has occurred.Chemical and chronological data on the AGC were compared with those available for other granitoid complexes of the central SSZ (e.g., Dehno, Boroujerd and Alvand). The comparison reveals that in spite of the different origins that have been proposed, all these granitoid complexes are likely genetically related. They share many chemical features and are derived from crustal melts with minor differences. Alvand granites have the most peculiar compositions most likely related to the presence of abundant pelitic component. All these intrusions are coeval and reveal the presence of an extensive magmatic activity in the central sector of the SSZ during middle Jurassic.  相似文献   

20.
曲水杂岩体位于冈底斯构造-岩浆岩带东段南缘,其岩浆活动与雅鲁藏布江新特提斯洋壳向北俯冲、消减以及印度与欧亚板块碰撞息息相关。本文以曲水县-昌果乡广泛分布的中酸性花岗岩体为研究对象,进行了系统的LA-ICP-MS锆石U-Pb年代学和岩石地球化学研究。结果表明,曲水杂岩体由3期时代和规模不同的花岗质岩体构成,其LA-ICP-MS锆石U-Pb年龄分别为95.2±1.0~88.5±1.0Ma、65.2±0.6Ma和48.5±0.5~43.3±0.7Ma;岩石地球化学研究表明,晚白垩世和古新世花岗岩以中性-中酸性为主,属钙碱性系列,具中铝特征,A/CNK比值小于1.1,属于I型花岗岩,是玄武质下地壳部分熔融产物,指示其形成于特提斯洋壳俯冲过程的岛弧构造环境。始新世花岗岩以高钾钙碱性系列为主,并出现钾玄岩系列,具偏铝-过铝质特征,指示岩浆上侵过程中遭受了不同程度的地壳物质混染,其形成于印度-欧亚板块强烈碰撞的构造环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号