首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Deposits and transport processes resulting from the resedimentation of cold, unconsolidated ignimbrite into water were simulated by flume experiments. The ignimbrite sample used was poorly sorted (σ = 2·4–3), fine ash‐rich (< 63 μm, 17–30 wt%) and included both dense lithic clasts (> 2000 kg m?3) and pumice (500 to ca 1300 kg m?3). As a result of the binding forces of the ash matrix, the experiments involved resedimentation from a steep front onto the floor (with or without an initial ramp) of the water‐filled tank under both still and wave‐generated conditions. Larger discrete collapse events were induced by oversteepening the sample front and by undercutting from wave action. The mass of the collapse and proportion of pore–space water strongly influenced the style of resedimentation and the deposits. Initial collapse events were from the top of the steep front and fell onto the floor. The largest, densest clasts were deposited as a lithic lag in a proximal sediment wedge or rolled down to a break‐in‐slope. Fine ash was transported in dilute turbidity currents, and coarse unsaturated pumice clasts floated off. Moderate collapse events generated high‐density turbidity currents, trapping pumice in the flow, causing them to saturate. These low‐density pumice clasts were easily remobilized by wave activity and passing currents and accumulated on the gentle slope at the bottom of the resedimented deposit. Large collapse events slumped, producing poorly sorted mounds similar in texture to the original starting material. As the matrix of the ignimbrite sample became saturated with water, moderate and large collapse events generated debrisflows and slurries that deposited massive, poorly sorted deposits. Furthermore, once more gentle slopes were established between the sample and deposit, small cascading grainflows deposited lithic clasts on the upper slopes and levees of pumice at the terminus of low‐relief, ash channels. The experiments show that, excluding large collapse events and debrisflows, resedimenting ignimbrite in water is effective at segregating low‐density pumice clasts from dense lithic clasts and fine ash. Experiments using fine‐ash poor ignimbrite and well‐sorted quartz sand for comparison formed an inherently unstable initial steep front that immediately collapsed by continuous grain avalanches. The grainflow deposits had textures similar to the fines‐poor starting material.  相似文献   

2.
Summary ¶Large-scale volcanic plumes, either generated by discharge of material directly from a vent or developed from the top of pyroclastic flows, produce laterally spreading umbrella-shaped clouds that disperse pyroclastic material over large areas. During plinian eruptions followed by pyroclastic flows, an enormous quantity of ash particles produced both by sustained plumes and by the buoyant portion of pyroclastic flows settle far from the source and form widespread fall deposits. To fully evaluate the magnitude of the plinian phase for this kind of eruptions is fundamental for distinguishing between the different sources of fine ash. In this paper we demonstrate that the plinian and ignimbrite contribution to the distal ash fall can be discriminated based on thickness versus distance relationships. The Campanian Ignimbrite eruption (CI; 39,000 yr B.P.) in southern Italy, provides an important case study. This was a huge ignimbrite-forming explosive event preceded by a plinian outburst. We present a new distribution of the thick, stratified pumice fall deposit formed immediately before the emplacement of the ignimbrite and reconstruct the distribution of the CI-correlated tephra fall dispersed in eastern Europe and in the eastern Mediterranean Sea over an area exceeding 3×106km2. The volumes calculated for the proximal plinian, co-plinian and co-ignimbrite deposits of the CI eruption are respectively: 4km3, 16km3 and almost 100km3.Received March 3, 2002; revised version accepted June 4, 2003  相似文献   

3.
Archean felsic volcanic rocks form a 2000 m thick succession stratigraphically below the Helen Iron Formation in the vicinity of the Helen Mine, Wawa, Ontario. Based on relict textures and structures, lateral and vertical facies changes, and fragment type, size and distribution, the felsic volcanic rocks have been subdivided into (a) lava flows and domes (b) hyalotuffs, (c) bedded pyroclastic flows, (d) massive pyroclastic flows, and (e) block and ash flows.Lava flows and domes are flow-banded, massive, and/or brecciated and occur throughout the stratigraphic succession. Dome/flow complexes are believed to mark the end of explosive eruptive cycles. Deposits interpreted as hyalotuffs are finely bedded and composed dominantly of ash-size material and accretionary lapilli. These deposits are interlayered with bedded pyroclastic flow deposits and probably formed from phreatomagmatic eruptions in a shallow subaqueous environment. Such eruptions led to the formation of tuff cones or rings. If these structures emerged they may have restricted the access of seawater to the eruptive vent(s), thus causing a change in eruptive style from short, explosive pulses to the establishment of an eruption column. Collapse of this column would lead to the accumulation of pyroclastic material within and on the flanks of the cone/ring structure, and to flows which move down the structure and into the sea. Bedded pyroclastic deposits in the Wawa area are thought to have formed in this manner, and are now composed of a thicker, more massive basal unit which is overlain by one or more finely bedded ash units. Based on bed thickness, fragment and crystal size, type and abundance, these deposits are further subdivided into central, proximal and distal facies.Central facies units consist of poorly graded, thick (30–80 m) basal beds composed of 23–60% lithic and 1–8% juvenile fragments. These are overlain by 1–4 thinner ash beds (2–25 cm). Proximal facies basal beds range from 2–35 m in thickness and are composed of 15–35% lithic and 4–16% juvenile fragments. Typically, lithic components are normally graded, whereas juvenile fragments are inversely graded. These basal beds are overlain by ash beds (2–14 in number) which range from 12 cm to 6 m in thickness. Distal basal beds, where present, are thin (1–2 m), and composed of 2–8% lithic and 6–21% juvenile fragments. Overlying ash beds range up to 40 in number.The climax of pyroclastic activity is represented by a thick (1000 m) sequence of massive, poorly sorted, pyroclastic flow deposits which are composed of 5–15% lithic fragments and abundant pumice. These deposits are similar to subaerial ash flows and appear to mark the rapid eruption of large volumes of material. They are overlain by felsic lavas and/or domes. Periodic collapse of the growing domes produced abundant coarse volcanic breccia. The overall volcanic environment is suggestive of caldera formation and late stage dome extrusion.  相似文献   

4.
长白山天池地区全新世以来火山活动及其特征   总被引:10,自引:0,他引:10  
长白山火山全新世规模最大的喷发活动发生在公元1199-1200年,即800年前的大爆发,被确定为普林尼或布里尼(Plinian)式喷发。这次大爆发形成体积巨大的、分布广泛的以空中降落堆积物为主的火山喷发碎屑堆积物,在长白山火山周围,远至日本都留下了地质记录。文章辨认并划分了这次大爆发火山碎屑物的成因类型:火山喷发空中降落堆积物(airfalltephra)、火山碎屑流(pyroclasticflow)状堆积物和火山泥流(lahar)堆积物,并且点、面结合,近、远和国内、国外兼顾,分析了这些火山碎屑物的主要特征、分布和相互关系,进而确定这些火山碎屑物分别属于两次普林尼式爆发。第1次(早期)普林尼式爆发称赤峰期,火山喷发模式为:普林尼式喷发柱(赤峰空落浮岩层)-火山碎屑流(长白山火山碎屑流层),随即主要由火山碎屑流诱发火山泥流(二道白河火山泥流层);第2次(晚期)普林尼式爆发称园池期,喷发模式为:普林尼式喷发柱(园池空落浮岩火山灰层)-火山碎屑流(冰场火山碎屑流层)。在层序上将气象站期碱流岩置于800年前大爆发火山碎屑物之下是正确的,其时代为晚更新世-全新世早期。  相似文献   

5.
RALF GERTISSER 《Sedimentology》2011,58(6):1573-1612
The internal architecture of the 2006 block‐and‐ash flow deposits of Merapi volcano (Java, Indonesia) was investigated using data collected from 27 stratigraphic sections measured immediately after flow emplacement, and after one and two rainy seasons of erosion. Identification of different depositional units and their longitudinal and lateral facies variations provide detailed information about: (i) the distribution, volumes and sedimentological characteristics of the different units; (ii) flow types and mobility as inferred from associated deposits; and (iii) changes in the dynamics of the different flows and their material during emplacement. Two main types of block‐and‐ash flows (short‐runout to medium‐runout block‐and‐ash flows and long‐runout block‐and‐ash flows) are defined based on flow generation mechanism, flow volume, travel distance, deposit morphology, distribution, lithology and grain‐size distribution. Conceptual models for the transport and depositional mechanisms of these two types of block‐and‐ash flows are presented. Variations in the runout distances observed for short‐runout to medium‐runout block‐and‐ash flows are linked directly to different initial flow volumes, degree of fragmentation and material properties of the moving mass during transport, with the largest and finer grained flows having the greatest mobility. Deposition occurs only over a narrow range of basal inclinations close to the angle of repose for pyroclastic material, indicating that such flows behave in a similar way to granular‐free surface flows on unconfined planes. The flow mechanisms of long‐runout block‐and‐ash flows at Merapi are interpreted to be similar, in many respects, to unsteady, cohesionless grain flows with an inertial flow regime where collisional forces largely overcome frictional forces. Flow unsteadiness causes the main body to be segmented into different pulses that run closer to each other as the flow moves downslope. Deposition occurs stepwise, with rapid aggradation of stacked sub‐units from different parts of the major flow pulses. In such a model, the arrival of each flow pulse front at selected sites in the main river valley controls the generation and development of highly mobile, unconfined pyroclastic flows outside valley regions and their associated overbank deposits.  相似文献   

6.
The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the carbonate beds and palaeosols. Microbial carbonate clasts, silicified and silica-permineralized tree trunks, log stumps and other plant remains such as small branches and small roots inside pieces of wood (interpreted as fragments of nurse logs) are commonly found embedded within the ignimbrites. The study of the carbonate and volcanic rocks of the San Ignacio Fm allows the authors to propose a facies model that increases our understanding of lacustrine environments that developed in volcanic settings.  相似文献   

7.
Emplacement of small‐volume (<0·1 km3) pyroclastic flows is significantly influenced by topography. The Arico ignimbrite on Tenerife (Canary Islands) is a characteristic small‐volume pyroclastic flow deposit emplaced on high relief topography. The pyroclastic flow flowed down pre‐existing valleys on the southern slopes of the island. In proximal areas deep (up to 100 m) valleys acted as efficient conduits for the pyroclastic flow, which was mostly channelled; in this particular area the ignimbrite corresponds to a homogeneous, moderately welded deposit, consisting of flattened pumices in an abundant ashy matrix with a relatively low lithic fragment content. In intermediate zones significant changes occur in the steepness of the slope and, although still channelled, here the pyroclastic flow was influenced by hydraulic jumps. In this area, two different units can be clearly distinguished in the ignimbrite: the lower unit is composed of a lithic‐rich ground‐layer deposit that formed at the turbulent, highly concentrated head of the flow; the upper unit consists of a well welded pumice‐rich deposit that occasionally reveals a basal layer formed by shearing with the lower part. This division into two units is maintained as far as distal areas near the present‐day coastline, where the slope is very gentle or null and the ignimbrite is not channelled. The ground layer is not found in distal areas. The ignimbrite here only consists of the upper unit, which is occasionally repeated due to a surging process provoked by the lower flow speed, as the pyroclastic flow spread out of the channelled zone. A theoretical model on how topography controlled the deposition of the Arico ignimbrite is derived by interpreting the observed lithological and sedimentological variations in terms of changes in topography and bedrock morphology. This new model is of general applicability and will help to explain other deposits of similar characteristics.  相似文献   

8.
Pyroclastic flow is defined as the flow of high-temperature, essential, fragmental materials. This is synonymous with the nuée ardente in the broad sense. Three modes of emplacement of high-temperature, essential, solid (or liquid) materials after the ejection from the crater may be recognized: 1) Projection of fragments from the crater by explosive expansion of gas within the crater; 2) descent of fragments or liquid magma from the crater caused only by the action of gravity; and 3) swift downflow of the mixture of gas and fragments. This last is intermediate between the first two and corresponds to pyroclastic flow.

A new classification of pyroclastic flows is proposed based upon viscosity of the materials, which ls inferred from the nature of the deposit. The volume of the deposit increases as the viscosity decreases.

1) Nuée ardente in the strict sense: Represented by the nuée ardente of Mt. Pelée, Merapi, etc. The fragments are less porous, which indicates the high viscosity. The volume of the deposit is small, generally less than 0.01 km3.

2) Pyroclastic flow of the intermediate type: Represented by certain pyroclastic flows of Asama, Hakone, and Myoko volcanoes. Both viscosity and volume (0.1 - 1 km3) are intermediate between 1) and 3).

3) Pumice flow: Represented by pumice and tuff flows of all sizes, such as those of Crater Lake, Hakone, Katmai, and Aso volcanoes. Low viscosity leads -to full vesiculation into pumice. Many of them are larger in volume ( > 10 km3) than 1) and 2), and calderas of the Krakatau type are often formed after the eruption of larger pumice flows.--Auth. English summ.  相似文献   

9.
火山碎屑密度流是一种危险的火山活动现象,也是一种重要的盆地物源供给方式,对其沉积机制的研究具有灾害预防和油气勘探的双重意义。松辽盆地东南隆起区九台营城煤矿地区白垩系营城组古火山机构保存良好,发育有典型的火山碎屑密度流沉积物。本文在精细刻画火山碎屑岩的岩石结构、沉积构造的基础上,运用薄片观察和沉积物粒度统计的方法,从物质来源、搬运机制和就位方式角度系统地分析了火山碎屑密度流的整个沉积过程,并结合国内外火山学、沉积学的研究进展探讨了不同浓度火山碎屑密度流的沉积机制。研究区内的火山碎屑密度流沉积物可以划分为五种微相:①块状熔结角砾凝灰岩微相;②无序含集块凝灰角砾岩微相;③逆粒序或双粒序角砾凝灰岩微相;④正粒序角砾凝灰岩微相;⑤韵律层理凝灰岩微相。第一种微相具有熔结结构,可能形成于高挥发分岩浆喷发柱的垮塌,火山碎屑密度流的就位温度较高;后四种微相具有正常火山碎屑岩结构,可能形成于火山口的侧向爆炸,火山碎屑密度流的就位温度中等。沉积块状熔结角砾凝灰岩微相的火山碎屑密度流具有黏性碎屑流的流体特征,沉积物整体冻结就位;沉积无序含集块凝灰角砾岩微相和逆粒序或双粒序角砾凝灰岩微相的火山碎屑密度流具有颗粒流的流体特征,沉积物整体冻结就位;沉积正粒序角砾凝灰岩微相和韵律层理凝灰岩微相的火山碎屑密度流具有湍流的流体特征,沉积物连续加积就位。火山碎屑密度流的颗粒浓度是一个连续变量,但流体性质可能会发生突变,稀释的火山碎屑密度流的沉积机制符合下部流动边界模型,稠密的火山碎屑密度流的沉积机制符合层流(碎屑流或颗粒流)模型。  相似文献   

10.
长白山火山历史上最大火山爆发火山碎屑物层序与分布   总被引:11,自引:0,他引:11  
长白山火山历史时期规模最大的火山喷发发生在1199~1200年。这次大爆发分为两次普林尼(Plinian)式喷发:第一次(早期)喷发称赤峰期,第二次(晚期)喷发称园池期。赤峰期喷发模式为:普林尼式喷发柱(赤峰空落浮岩层)—火山碎屑流(长白火山碎屑流层)—火山泥流(二道白河火山泥流层),主要由火山碎屑流诱发火山泥流;园池期火山喷发模式为:普林尼式喷发柱(园池空落浮岩火山灰层)—火山碎屑流(冰场火山碎屑流层)。两次普林尼式喷发空落火山碎屑物总量约120 km3,长白火山碎屑流层总量约8 km3,冰场火山碎屑流层总量约0.5 km3,火山泥流堆积总量约为2 km3。主要论述了这次大爆发的火山喷发碎屑堆积物的层序和分布。  相似文献   

11.
吉林龙岗火山群火山碎屑基浪堆积特征与成因机理   总被引:9,自引:0,他引:9  
吉林龙岗火山群火山碎屑基浪堆积是中国少数保存较好的、近代喷发的低平火山区之一。基于岩性、岩相与相序的识别与分析,火山碎屑基浪堆积序列由分选性和磨圆度较差的玄武质砂、砾和火山灰构成的毫米级-厘米级厚高频率韵律有序叠置而成,堆积物中发育大量的块状层理、似丘状层理、低角度板状交错层理、槽泊层理、平行层理、冲蚀槽等堆积构造。横向上低平火山由内至外其碎屑粒度、堆积构造、厚度存在着一定规律变化,与易混淆的火山岩区地面流水沉积和火山碎屑流堆积物存在明显的差别。岩浆射汽喷发晚期往往伴随斯通博利式喷发和夏威夷式熔岩流,三者构成一个完整火山活动旋回。  相似文献   

12.
Pyroclastic currents are catastrophic flows of gas and particles triggered by explosive volcanic eruptions. For much of their dynamics, they behave as particulate density currents and share similarities with turbidity currents. Pyroclastic currents occasionally deposit dune bedforms with peculiar lamination patterns, from what is thought to represent the dilute low concentration and fluid‐turbulence supported end member of the pyroclastic currents. This article presents a high resolution dataset of sediment plates (lacquer peels) with several closely spaced lateral profiles representing sections through single pyroclastic bedforms from the August 2006 eruption of Tungurahua (Ecuador). Most of the sedimentary features contain backset bedding and preferential stoss‐face deposition. From the ripple scale (a few centimetres) to the largest dune bedform scale (several metres in length), similar patterns of erosive‐based backset beds are evidenced. Recurrent trains of sub‐vertical truncations on the stoss side of structures reshape and steepen the bedforms. In contrast, sporadic coarse‐grained lenses and lensoidal layers flatten bedforms by filling troughs. The coarsest (clasts up to 10 cm), least sorted and massive structures still exhibit lineation patterns that follow the general backset bedding trend. The stratal architecture exhibits strong lateral variations within tens of centimetres, with very local truncations both in flow‐perpendicular and flow‐parallel directions. This study infers that the sedimentary patterns of bedforms result from four formation mechanisms: (i) differential draping; (ii) slope‐influenced saltation; (iii) truncative bursts; and (iv) granular‐based events. Whereas most of the literature makes a straightforward link between backset bedding and Froude‐supercritical flows, this interpretation is reconsidered here. Indeed, features that would be diagnostic of subcritical dunes, antidunes and ‘chute and pools’ can be found on the same horizon and in a single bedform, only laterally separated by short distances (tens of centimetres). These data stress the influence of the pulsating and highly turbulent nature of the currents and the possible role of coherent flow structures such as Görtler vortices. Backset bedding is interpreted here as a consequence of a very high sedimentation environment of weak and waning currents that interact with the pre‐existing morphology. Quantification of near‐bed flow velocities is made via comparison with wind tunnel experiments. It is estimated that shear velocities of ca 0·30 m.s?1 (equivalent to pure wind velocity of 6 to 8 m.s?1 at 10 cm above the bed) could emplace the constructive bedsets, whereas the truncative phases would result from bursts with impacting wind velocities of at least 30 to 40 m.s?1.  相似文献   

13.
Summary The ∼ 150 km3 (DRE) trachytic Campanian Ignimbrite, which is situated north-west of Naples, Italy, is one of the largest eruptions in the Mediterranean region in the last 200 ky. Despite centuries of investigation, the age and eruptive history of the Campanian Ignimbrite is still debated, as is the chronology of other significant volcanic events of the Campanian Plain within the last 200–300 ky. New 40Ar/39Ar geochronology defines the age of the Campanian Ignimbrite at 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate. Based on the distribution of the Campanian Ignimbrite and associated uppermost proximal lithic and polyclastic breccias, we suggest that the Campanian Ignimbrite magma was emitted from fissures activated along neotectonic Apennine faults rather than from ring fractures defining a Campi Flegrei caldera. Significantly, new volcanological, geochronological, and geochemical data distinguish previously unrecognized ignimbrite deposits in the Campanian Plain, accurately dated between 157 and 205 ka. These ages, coupled with a xenocrystic sanidine component > 315 ka, extend the volcanic history of this region by over 200 ky. Recent work also identifies a pyroclastic deposit, dated at 18.0 ka, outside of the topographic Campi Flegrei basin, expanding the spatial distribution of post-Campanian Ignimbrite deposits. These new discoveries emphasize the importance of continued investigation of the ages, distribution, volumes, and eruption dynamics of volcanic events associated with the Campanian Plain. Such information is critical for accurate assessment of the volcanic hazards associated with potentially large-volume explosive eruptions in close proximity to the densely populated Neapolitan region. Received August 1, 2000; accepted November 2, 2000  相似文献   

14.
Pyroclastic surge is a dilute and turbulent flow of volcanic gas and tephra that is commonly generated during explosive volcanic eruptions and can threaten lives along its flow paths. Assessing its travel distance and delineating future volcanic hazards have therefore been major concerns of volcanologists. Historical eruptions show that most pyroclastic surges travel a few tens of kilometres or less from their sources. Aeolian or aquagene processes have therefore been evoked for the emplacement of supposed surge deposits much beyond this distance. Here we show that a Cretaceous tuff bed in Korea was emplaced by an exceptionally powerful pyroclastic surge that flowed as far as the most powerful pyroclastic flows that formed the low-aspect-ratio ignimbrites (LARI). This has significant implications for interpreting ancient volcanic eruptions and delineating volcanic hazards by pyroclastic surges, and casts intriguing questions on the eruption dynamics and physics of long-runout pyroclastic surges and their distinction from LARI-forming pyroclastic flows.  相似文献   

15.
ABSTRACT
The Puye Formation in north-central New Mexico is a very coarse-grained fanglomerate which was deposited on the eastern flank of the Jemez caldera. Pyroclastic deposits occur within the Puye in the form of airfall pumice beds and the remnant of at least one pyroclastic-surge deposit. This pyroclastic-surge deposit shows the effects of fluidization and soft-sediment deformation in the form of: (1) intrusive sedimentary plumes; (2) upwardly injected gravelly pipes; (3) 'pocket structures' similar to those of Postma (1983), and; (4) oversteepened and deformed cross-stratification.
Fluidization and soft-sediment deformation resulted from a combination of the mechanical instability and high, possibly pressurized, fluid content of the deposit. This metastable condition was a consequence of the nature of the flow which deposited the sediment: a rapidly depositing, high-velocity sediment gravity flow. The fluids in pyroclastic surges may be either gas or liquid. However, because of the coarse grain-size of the fluidized sediment, it is suggested that liquids were responsible for the features described in this paper. Evidence also suggests that locally fluidization, liquefaction, and soft-sediment deformation took place penecontemporaneously with deposition.  相似文献   

16.
黔西南地区卡林型、次生富集型金矿   总被引:3,自引:0,他引:3  
周茂基 《黄金地质》1996,2(4):15-20
黔西南地区卡林型金矿及与其相关的次生富集型金矿,是以海西期峨眉山玄武岩的边缘相火山碎屑岩为矿源层的再造矿床。与其相关的次生富集型金矿,是卡林型金矿或其矿源层的风化淋滤产物。碳酸盐岩与粘土岩的交界面及细粒碎屑岩中的糜棱岩等的半透膜渗析效应,在金矿成矿过程中起了重要的作用  相似文献   

17.
At Santa Maria Volcano (New Hebrides island arc), extensive ash and scoria flow deposits overlie the mainly effusive, pre-caldera cone. Hydromagmatic features characterize these deposits, the composition of juvenile clasts ranges from basalt to acid andesite/dacite (SiO2= 51–63.6%) with a dominant basaltic composition. The stratigraphic position of this pyroclastic series and its spatial distribution around a 8.5 km × 6 km wide caldera provide evidence of a relationship between this series and the caldera formation. In addition, these pyroclastic deposits are co-genetic to parasitic cones and lava flows developed along faults concentric to the caldera. Both series result from a compositionally layered magma reservoir, the subordinate differentiated magmas being the result of fractional crystallization from the basalts. A model of caldera formation which implies a large hydromagmatic eruption at the central vent and minor magma withdrawal by flank eruptions is proposed. This model emphasizes the importance of mafic hydroclastic eruptions in the caldera forming event and contradicts a model implying only quiet subsidence, a process often proposed for the formation of calderas in island are volcanoes of mainly mafic composition.  相似文献   

18.
当代火山喷发碎屑堆积物的研究进展及其主要类型   总被引:6,自引:0,他引:6  
刘祥 《世界地质》1996,15(1):1-6
火山喷发碎屑堆积物主要分为:火山喷发空中降落堆积物、火山碎屑、流状堆积物、火山泥流堆积物和火山基浪堆积物。简述了这些火山碎屑堆积物的成因及主要特征。  相似文献   

19.
Geological and volcanological studies were performed in the Herculaneum excavations, 7 km west of Vesuvius, Italy, to reconstruct the main features of the pyroclastic density currents and the temporal sequence of the ad 79 eruptive events that destroyed and buried the town. The identification of two distinctive marker beds allows correlation of these deposits with the better‐known sequences to the south of Vesuvius, along the dispersal axis of the Plinian fall deposit. Detailed observations from stratigraphic sections show that the pyroclastic density current deposits are characterized by several sedimentary facies, each recording different depositional and emplacement mechanisms. Facies analysis reveals both lateral and vertical variations from massive to stratified deposits, which can be related to the combined effects of flow dynamics and local irregularities of the substratum at centimetre or metre scales. These topographic irregularities enhanced turbulence and allowed rapid transition from non‐turbulent to turbulent transport within the flow. Fabric data from these deposits, both from roof tile orientations and anisotropy magnetic susceptibility (AMS) analyses carried out on some of the pyroclastic deposits, suggest that the pyroclastic density currents were strongly affected by the presence of buildings. These obstacles probably caused deflection and separation of flows into multiple lobes that moved in different directions.  相似文献   

20.
Ambrym is one of the most voluminous active volcanoes in the Melanesian arc. It consists of a 35 by 50 km island elongated east–west, parallel with an active fissure zone. The central part of Ambrym, about 800 m above sea level, contains a 12 kilometre-wide caldera, with two active intra-caldera cone-complexes, Marum and Benbow. These frequently erupting complexes provide large volumes of tephra (lapilli and ash) to fill the surrounding caldera and create an exceptionally large devegetated plateau “ash plain”, as well as sediment-choked fluvial systems leading outward from the summit caldera. Deposits from fall, subordinate base surge and small-volume pyroclastic (scoria) flows dominate the volcaniclastic sequences in near vent regions. Frequent and high-intensity rainfall results in rapid erosion of freshly deposited tephra, forming small-scale debris flow- and modified grain flow-dominated deposits. Box-shaped channel systems are initially deep and narrow on the upper flanks of the composite cones and are filled bank-to-bank with lapilli-dominated debris flow deposits. These units spill out into larger channel systems forming debris aprons of thousands of overlapping and anastomosing long, narrow lobes of poorly sorted lapilli-dominated deposits. These deposits are typically remobilised by hyperconcentrated flows, debris-rich stream flows and rare debris flows that pass down increasingly shallower and broader box-shaped valleys. Lenses and lags of fines and primary fall deposits occur interbedded between the dominantly tabular hyperconcentrated flow deposits of these reaches. Aeolian sedimentation forms elongated sand dunes flanking the western rim of the ash-plain. Outside the caldera, initially steep-sided immature box-canyons are formed again, conveying dominantly hyperconcentrated flow deposits. These gradually pass into broad channels on lesser gradients in coastal areas and terminate at the coast in the form of prograding fans of ash-dominated deposits. The extra-caldera deposits are typically better sorted and contain other bedding features characteristic of more dilute fluvial flows and transitional hyperconcentrated flows. These outer flank volcaniclastics fill valleys to modify restricted portions of the dominantly constructional landscape (lava flows, and satellite cones) of Ambrym. Apparent maturity of the volcanic system has resulted in the subsidence of the present summit caldera at a similar rate to its infill by volcaniclastic deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号