首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several plutonic alkaline complexes have been reported from the high-grade Eastern Ghats belt, India and these are thought to have been derived from the mantle. The field features of the syenite complex around Rairakhol in Orissa indicate progressive deformation during emplacement and could be related to the latest deformation/folding in the host granulitic country rocks. Presence of some mafic granulite xenoliths could suggest a crustal source for this syenite complex.Negative epsilon value is a strong indication of crustal source. The long crustal residence ages and 143Nd/144Nd values less than 0.5120, definitely indicate a crustal source.  相似文献   

2.
The alkaline complex of Koraput, Orissa, India, is one of several bodies in the high-grade Eastern Ghats belt, but this one is an integral part of the high-grade belt and remote from the western boundary against the Bastar craton. The Koraput complex forms a lozenge-shaped intrusion into the metapelitic granulites and is bounded by shear zones. The combined effect of movement along these shear zones, is a northeasterly elongated sygmoidal cavity with maximum width along the northwesterly trending Reidel shear. Thus the Koraput alkaline complex can be considered to have been emplaced in a pull-apart structure, developed in the granulitic country rocks. Moreover, in view of the fact that the western margin of the high-grade Eastern Ghats belt bears clear evidence of collisional features, rather than that of rifting or break-up, the rift-valley model for the alkaline magmatism in this high-grade belt appears untenable.  相似文献   

3.
The Koraput Alkaline Complex in the high-grade Eastern Ghats Belt, India, is synkinematically emplaced in a pull-apart structure and far from the Bastar cratonic margin. The suite comprises four distinct members, namely, mafic syenite, felsic syenite, nepheline syenite and perthite syenite. Fe-rich orthopyroxene rims on olivine in mafic syenite indicate iron-enrichment in the early stage of differentiation. With plagioclase of andesine composition it could be described as alkali-norite, the plutonic equivalent of hawiite. Felsic syenite with both alkali-feldspars and plagioclase of oligoclase composition could be described as two-feldspar syenite, the plutonic equivalent of mugearite. Albitic rims on nepheline indicates subsolvus reaction. Chemical trends in amphiboles and plagioclase feldspars, progressively more ferroan and more sodic respectively, are strong indications of mineral fractionation in the Koraput suite. Chemical trends in the variation diagrams are compatible with feldspar fractionation in the Koraput suite. A weak Fe-enrichment trend in the early stage of differentiation, as observed in the AFM diagram, is compatible with that of the alkali-basalt series. Nb anomalies, both positive and negative, are indicative of crustal contamination as expected in synkinematic plutons. In terms of Gondwana assembly and break up, the alkaline complexes are supposed to represent rift-related magmatism along the continental margin. In spite of petrological evidence of the magmatic character of the Koraput Complex, anorogenic setting is contra-indicated by mesoscopic and microscopic fabrics, more akin to synkinematic intrusion during F 2 folding in the host country rocks. The Proterozoic alkaline complexes in the Eastern Ghats Belt, could alternatively trace the path of moving Gondwana continent over mantle plumes.  相似文献   

4.
《Gondwana Research》2006,9(4):596-602
The Koraput Alkaline Complex in the high-grade Eastern Ghats Belt, India, is synkinematically emplaced in a pull-apart structure and far from the Bastar cratonic margin. The suite comprises four distinct members, namely, mafic syenite, felsic syenite, nepheline syenite and perthite syenite. Fe-rich orthopyroxene rims on olivine in mafic syenite indicate iron-enrichment in the early stage of differentiation. With plagioclase of andesine composition it could be described as alkali-norite, the plutonic equivalent of hawiite. Felsic syenite with both alkali-feldspars and plagioclase of oligoclase composition could be described as two-feldspar syenite, the plutonic equivalent of mugearite. Albitic rims on nepheline indicates subsolvus reaction. Chemical trends in amphiboles and plagioclase feldspars, progressively more ferroan and more sodic respectively, are strong indications of mineral fractionation in the Koraput suite. Chemical trends in the variation diagrams are compatible with feldspar fractionation in the Koraput suite. A weak Fe-enrichment trend in the early stage of differentiation, as observed in the AFM diagram, is compatible with that of the alkali-basalt series. Nb anomalies, both positive and negative, are indicative of crustal contamination as expected in synkinematic plutons. In terms of Gondwana assembly and break up, the alkaline complexes are supposed to represent rift-related magmatism along the continental margin. In spite of petrological evidence of the magmatic character of the Koraput Complex, anorogenic setting is contra-indicated by mesoscopic and microscopic fabrics, more akin to synkinematic intrusion during F 2 folding in the host country rocks. The Proterozoic alkaline complexes in the Eastern Ghats Belt, could alternatively trace the path of moving Gondwana continent over mantle plumes.  相似文献   

5.
The Elchuru alkaline complex in the Prakasam igneous province represents one occurrence of several alkaline bodies within the craton–Eastern Ghats Belt contact zone in Peninsular India. Nepheline syenites and associated mafic rocks intruded the cratonic crust at ≈1321 Ma and were deformed–metamorphosed to amphibolite facies condition during Pan-African times. Trace element compositions and Sr, Nd and Pb isotopic systematics indicate that the alkaline magma was derived from an enriched mantle source in the sub-continental lithosphere. The adjacent crusts of the Eastern Dharwar craton and the Eastern Ghats Belt were not involved either as source or as contaminants. The enriched mantle source was at least 1.9–2.1 Ga old as seen from the depleted mantle model ages of the rocks. The primary parent magma was a basanitic liquid that fractionated ferrokaersutite and clinopyroxene in the mantle, lowering the density sufficiently for the residual melt to intrude the crust. Magmatic differentiation in the suite can be explained by a two stage fractional crystallization model involving the removal of amphibole, clinopyroxene, allanite, titanite, apatite and zircon. The rift-related intra-continental setting of the complex indicates that alkaline magmatism represents the manifestation of a Mesoproterozoic continental breakup. Rifting along the cratonic margin may have led to the formation of several cratogenic basins (e.g., Chattisgarh basin, Indravati basin etc.) where stable shelf-type sediments could have been deposited on the passive margin during the Proterozoic. It could also have opened an ocean where some of the sediments of the Eastern Ghats Province may have been deposited.  相似文献   

6.
Linear domains of deformed alkaline rocks and carbonatites have recently been identified as representing sites of ancient suture zones. In peninsular India, the western margin of the Proterozoic Eastern Ghats Belt (EGB) is characterized by a series of alkaline plutons that are aligned close to the contact with the Archaean Craton. Most of the complexes were deformed and metamorphosed during a subsequent orogenic event. Unlike other plutons in the belt, the alkaline complex at Koraput reportedly escaped deformation and granulite facies metamorphism forming an anomalous entity within the zone. Multiply-deformed country rocks hosting this complex underwent syn-D1CR granulite facies metamorphism followed by D2CR thrusting, with pervasive shearing along a NE-SW trending foliation. A second granulite facies event followed localized D3CR shearing. Within the Koraput Complex, strain partitioning was responsible for preserving igneous textures in the gabbroic core, but aligned magmatic amphibole needles and plagioclase laths occasionally define a S1AC fabric. Along the margins, S1AC is rotated parallel to a NE-trending, east-dipping S2AC fabric in the gabbro, fringing syenodiorite and nepheline syenite bands. Locally, D3AC shearing follows D2AC deformation; S2AC and S3AC parallel S2CR and S3CR in the country rocks. High-grade metamorphism represented by recrystallization of amphibole and plagioclase, and breakdown of amphibole and biotite to garnet, pyroxene and K-feldspar in the complex follows D3AC. Unlike earlier reports, therefore, the Koraput body is also deformed and metamorphosed. The aligned alkaline complexes in the EGB probably represent deformed alkaline rocks and carbonatites formed by rifting related to an earlier episode of continental break-up that were deformed during subsequent juxtaposition of the EGB with the Archaean Craton. This supports the contention that the western margin of the EGB and its contact with the Archaean Craton is a suture zone related to the Indo-Antarctica collision event.  相似文献   

7.
华北燕山带:构造、埃达克质岩浆活动与地壳演化(英文)   总被引:19,自引:6,他引:19  
埃达克质火成岩在中国东部,包括燕山带是很常见的,一般认为它们是下地壳不均匀的镁铁质岩石及/或富集的上地幔岩石在高压(≥1.5 GPa)下部分熔融的结果。在燕山带内埃达克岩浆的形成有一个很长的时间(约190~80 Ma),然而岩浆活动的峰期却与约170~130 Ma间有基底岩石卷入的陆壳收缩期相一致。尽管埃达克质岩浆活动的历史很长,但那种把岩浆活动与岩石圈的拆沉效应相联系的模式似乎是不适当的。在该带内,埃达克质与非埃达克质岩浆活动有一部分是同时的,而且在地理分布上也是相间的,这说明了在下地壳和上地幔岩石的部分熔融中成分是相当不均匀的。侏罗纪及白垩纪熔融作用的热源应当是与古太平洋板块俯冲相关的中生代板底垫托的玄武岩浆。除了局部例外,在燕山带,埃达克质岩浆活动的终结和碱性岩浆活动的开始约在130~120 Ma,在此时期收缩作用使东亚大达200万km~2以上的地区发生了NW—SE向的区域性伸展作用。强烈的地壳伸展仅局限于华北克拉通北缘分布的少数几个变质核杂岩中。陆壳的伸展减薄合理地解释了130~120 Ma间发生高压埃达克质熔融条件的终结,尽管还有局部年轻的埃达克火山活动(约120~80Ma)可以在伸展规模有限而厚的地壳依然存在的地区继续出现。燕山区早白垩世的碱性侵入体中的锆石不存在前寒武纪?  相似文献   

8.
An assemblage of predominantly metasedimentary rocks in the Eastern Ghats Province, India, underwent granulite facies metamorphism and deformation in early Neoproterozoic times, and was subsequently intruded by the Koraput alkaline complex. The intrusion was earlier believed to be syn- to late tectonic. The gabbroic core of the complex hosts nepheline-bearing syenitic dykes and veins. Following emplacement, magmatic amphibole within the syenites, and early orthopyroxene in feldspathic gneisses within the country rocks were retrogressed to biotite during pervasive solid-state deformation. Subsequent prograde metamorphism resulted in the formation of anhydrous assemblages at the expense of relict magmatic amphibole within the syenites, and metamorphic biotite in both the complex and the country rocks. Reactions reconstructed from textural observations indicate breakdown of biotite and amphibole to garnet + clinopyroxene ± orthopyroxene-bearing assemblages. Schreinemakers’ analysis on the relevant mineral associations suggests that heating was followed by loading of the region. This indicates thermal rejuvenation of the complex and the host granulites during an intracrustal orogeny that post-dates emplacement and cooling of the pluton. Available ages suggest that this event occurred in the mid-Neoproterozoic, and is probably unrelated to the amalgamation of the granulite belt with the Archaean Bastar/Dharwar craton.  相似文献   

9.
Regional mapping of a section across the Eastern Ghats Mobile Belt (EGMB) north of the Godavari graben in Eastern Peninsular India by using Landsat Thematic Mapper data enables recognition of a number of shear zones, lineaments, and structural domes and basins. A conspicuous megashear occurs at the western boundary of the granulite facies rocks of the EGMB adjacent to the Archean granite-greenstone craton. The confinement of a suite of alkaline igneous rocks to this shear zone is a notable feature. The strike extensions of this shear belt extend through to the Elchuru alkaline complex, Prakasam District, Andhra Pradesh, and the syenite plutons of Koraput district, Orissa. The contrasting lithologies, metamorphism and structural history on either side of the shear zone suggests that it might be a Precambrian suture zone. The mesoscopic structural features in the EGMB include prominent foliation with moderate to steep dips, folds, faults/shears, S-C fabrics, pinch and swell structures and other linear fabric elements. These observations favour the consideration of drastic crustal shortening and thickening and a complex deformational sequence. The major rock units in this part of EGMB comprise garnetiferous sillimanite gneisses, quartzites and calc-granulites forming the khondalitic suite of rocks and a wide variety of charnockitic rocks. The contact of the two rock units is generally sheared and often migmatised. The structural fabric suggests two major tectonic events: an essentially horizontal tectonic regime resulting in thrust systems and associated structures, subsequently followed by strike-slip tectonics characterized by high shear strains. Features such as westward-verging thrusts, large-scale recumbent folds, major shear zones, structural domes and basins, indications of tectonic crustal shortening, extensive calc-alkali magmatism and widespread migmatization in the region are attributed to collisional processes during Proterozoic times. The spatial disposition of the EGMB and its linkage with the distribution of similar rock units during the late Precambrian time in a global tectonic scenario are discussed.  相似文献   

10.
The suture zone between the Bhandara craton and the granulite-facies rocks of the Eastern Ghats Province in SE India contains a number of deformed alkaline and tholeiitic intrusives. The Khariar alkaline complex is one of the several occurrences which intruded in the Mesoproterozoic (1,480±17 Ma, 2σ) and was deformed during the Pan-African tectonothermal event. The geochemical signatures indicate a rift-related setting for the magmatic activity. The nepheline syenite parent magma may have been produced by in-mantle fractionation of clinopyroxene and Ti-rich amphibole from a basanitic primary magma derived from an enriched spinel lherzolite mantle source in the sub-continental lithosphere. Geochemical variations in the Khariar alkaline suite can be modeled by the fractionation of clinopyroxene, amphibole, titanite, zircon, apatite and allanite. The Mesoproterozoic alkaline magmatism at Khariar marks the initiation of a NE-SW rift which formed several craton margin basins and opened an ocean towards the south. The sediments of the cratogenic basins and the Eastern Ghats Province were deposited in these rift-related basins. A K-Ar age of 1,330±53 Ma from glauconites in sandstone suggests that the NW-SE trending Godavari–Pranhita graben formed at approximately the same time as the rift at the craton margin. If the two are related, the Godavari–Pranhita graben may represent the failed arm of a rift system in which the NE-SW arm was the active segment. The granulite-facies deformation and metamorphism of the Eastern Ghats Province sediments may be related to an episode of Grenvillian basin inversion. The Mesoproterozoic rifting and Grenvillian basin closure may thus represent two well-defined parts of a Wilson cycle i.e. the opening and closure of an ocean. The Khariar and other alkaline bodies were, however, deformed during a Pan-African collisional event associated with the westward thrusting of the Eastern Ghats Province granulites over the cratonic foreland.  相似文献   

11.
Structural mapping of the Pasupugallu pluton, an elliptical intrusive gabbro-anorthosite body, emplaced into the western contact zone between the Eastern Ghats Mobile Belt and the Archaean East Dharwar Craton, along the east coast of India, reveals concentric, helicoidal and inward dipping magmatic and/or tectonic foliations. We identify a <1 km-wide structural aureole characterized by pronounced deflection of regional structures into margin parallel direction, mylonitic foliations with S-C fabrics, sigmoidal clasts, moderately plunging stretching lineations, non-cylindrical intrafolial folds, and stretched elliptical mafic enclaves in the aureole rocks. Our results suggest that the pluton emplacement is syn-tectonic with respect to the regional ductile deformation associated with the terrane boundary shear zone at the western margin of the Eastern Ghats. We present a tectonic model for the emplacement of the pluton invoking shear-related ductile deformation, rotation and a minor component of lateral expansion of magma. The intrusive activity (1450-800 Ma) along the western margin of the Eastern Ghats can be correlated with the significant event of recurring mafic, alkaline and granitic magmatism throughout the global Grenvillian orogens associated with the continent-continent collision tectonics possibly related to the amalgamation and the breakup of the supercontinent Rodinia.  相似文献   

12.
The evolution of Late Paleozoic granitoid magmatism in Transbaikalia shows a general tendency for an increase in the alkalinity of successively forming intrusive complexes: from high-K calc-alkaline granites of the Barguzin complex (Angara–Vitim batholith) at the early stage through transitional from calc-alkaline to alkaline granites and quartz syenites (Zaza complex) at the intermediate stage to peralkaline granitoids (Early Kunalei complex) at the last stage. This evolution trend is complicated by the synchronous development of granitoid complexes with different sets and geochemical compositions of rocks. The compositional changes were accompanied by the decrease in the scales of granitoid magmatism occurrence with time. Crustal metaterrigenous protoliths, possibly of different compositions and ages, were the source of granitoids of the Angara–Vitim batholith. The isotopic composition of all following granitoid complexes points to their mixed mantle–crustal genesis. The mechanisms of granitoid formation are different. Some granitoids formed through the mixing of mantle and crustal magmas; others resulted from the fractional crystallization of hybrid melts; and the rest originated from the fractional crystallization of mantle products or the melting of metabasic sources with the varying but subordinate contribution of crustal protoliths. Synplutonic basic intrusions, combined dikes, and mafic inclusions, specific for the post-Barguzin granitoids, are direct geologic evidence for the synchronous occurrence of crustal and mantle magmatism. The geodynamic setting of the Late Paleozoic magmatism in the Baikal folded area is still debatable. Three possible models are proposed: (1) mantle plume impact, (2) active continental margin, and (3) postcollisional rifting. The latter model agrees with the absence of mafic rocks from the Angara–Vitim batholith structure and with the post-Barguzin age of peralkaline rocks of the Vitim province.  相似文献   

13.
扬子块体西缘新元古代岩浆活动非常强烈 ,其成因对研究Rodinia超级大陆的演化有重要意义。目前对这些岩浆岩的成因和形成的构造背景存在地幔柱和岛弧两种截然不同的观点。文中对康定地区的冷碛辉长岩进行了SHRIMP锆石UPb、元素和Nd同位素研究 ,结果表明辉长岩结晶年龄为 (80 8± 12 )Ma ,与康定花岗质杂岩在时空上密切共生。虽然辉长岩浆在上升过程中受到富集岩石圈地幔和 /或基性下地壳物质的混染 ,但其元素和Nd同位素特征总体上与苏雄碱性玄武岩 (典型的板内型玄武岩 )相似 ,形成于板内裂谷环境。与玄武质岩石相反 ,扬子西缘新元古代花岗质岩石地球化学特征没有明确的构造岩石组合关系。目前的研究资料表明扬子块体西北缘在约 95 0~ 90 0Ma期间可能存在一个近东西向的俯冲带和火山弧 ,但在 86 0~ 75 0Ma期间不存在火山弧 ,这个时期的大规模岩浆活动很可能与Rodinia超级大陆下的一个超级地幔柱活动有关。  相似文献   

14.
The paper reports geological, chemical, and geochronological data on the Early Paleozoic granitoid and gabbro-granite associations, which compose the Kozhukhovskii and Dudetskii batholiths in the northern part of the Kuznetsk Alatau. The Kozhukhovskii batholith located in the Alatau volcanoplutonic belt is made up of tholeiitic, calc-alkaline, and subalkaline rocks that were formed in two stages. The first stage corresponded to the formation of granitoids of the Tylinskii quartz diorite-tonalite-plagiogranite complex (~530 Ma, Tylinskii Massif, tholeiitic type) in an island arc setting. The second stage (~500 Ma) produced the Martaiga quartz diorite-tonalite-plagiogranite complex (Kozhukhovskii Massif, calc-alkaline type) and the Krasnokamenskii monzodiorite-syenite-granosyenite complex (Krasnokamenskii Massif, subalkaline type) in an accretionary-collisional setting. The Dudetskii batholith is situated in the Altai-Kuznetsk volcanoplutonic belt and contains widespread subalkaline intrusive rocks (Malodudetskii monzogabbro-monzodiorite-syenite and Karnayul’skii granosyenite-leucogranite complexes) and less abundant alkaline rocks (Verkhnepetropavlovskii carbonatite-bearing alkaline-gabbroid complex), which were formed within the age range of 500–485 Ma. Our Nd isotopic studies suggest mainly a subduction source of the rocks of the Kozhukhovskii batholith (εNd from + 4.8 to + 4.2). Subalkaline rocks of the Dudetskii batholith exhibit wide isotopic variations. The Nd isotopic composition of monzodiorites and monzogabbro of the Malodudetskii Complex (εNd = + 6.6), in association with the elevated alkalinity and high Nb and Ta contents of these rocks, testifies to the predominant contribution of an enriched mantle source at the participation of a depleted mantle source. The lower εNd (from + 3.2 to + 1.9) in its syenites possibly indicates their generation through melting of metabasic rocks derived from enriched mantle protolith. The rocks of the Karnayul’skii Complex have lower Nb and Ta contents at similar εNd (+3.6), which suggests some crustal contribution to their formation.  相似文献   

15.
《Gondwana Research》2000,3(1):39-53
Alkaline magmatism during the late Proterozoic is an important event in the northern part of the South Indian granulite terrain. A number of alkaline plutons comprising saturated syenite and ultramafic rocks often associated with carbonatite are found localized along NEHYPHEN;SW trending lineaments, which are considered as deep crustal fractures. Along one such lineament, the alkaline complexes of Yelagiri, Sevattur and Samalpatti have intruded into the country rocks comprising epidote hornblende gneiss. The isotope characteristics and geochemistry of Yelagiri and Sevattur plutons are examined in this paper. Whole rock Rbhyphen;Sr isochron ages of the Yelagiri and Sevattur syenites are 757±32 Ma and 756±11 Ma respectively. The close spatial relationship, similarities in age, mineralogical and geochemical characteristics of these plutons strongly suggest their close genetic relationship. The initial Sr and Nd isotope ratios of the Sevattur carbonatites suggest their derivation from an alkali metal and LREE enriched mantle source. However, the silicate rocks of the Yelagiri and Sevattur plutons have distinctly different isotopic characteristics from this enriched mantle source. Combined geochemical and isotopic characteristics of these silicate rocks indicate that silicate rocks of both plutons are derived independently from isotopically different sources from those of carbonatites. Moreover, comparison with the isotopic characteristics of Archean crustal rocks in South India indicates that the source regions of both silicate rocks are lowerhyphen;crustal portions, which are deeper than any other crustal portion exposed in South India, or isotopically metasomatized crustal portions by volatile influx from carbonatite.  相似文献   

16.
The high-grade rocks of the Jianping Complex in Liaoning Provi nce, NE China, belong to the late Archaean to earliest Proterozoic granulite belt of the North China craton. Single zircon ages obtained by the Pb–Pb evaporation method and SHRIMP analyses document an evolutionary history that began with deposition of a cratonic supracrustal sequence some 2522–2551 Ma ago, followed by intrusion of granitoid rocks beginning at 2522 Ma and reaching a peak at about 2500 Ma. This was followed by high-grade metamorphism, transforming the existing rocks into granulites, charnockites and enderbites some 2485–2490 Ma ago. The intrusion of post-tectonic granites at 2472 Ma is associated with widespread metamorphic retrogression and ends the tectono–metamorphic evolution of this terrain. A similar evolutionary sequence has also been recorded in the granulite belt of Eastern Hebei Province. We speculate that the Jianping Complex was part of an active continental margin in the late Archaean that became involved in continental collision and crustal thickening shortly after its formation. There is a remarkable similarity between the 2500 Ma North China granulite belt and the equally old granulite belt of Southern India, suggesting that the two crustal domains could have been part of the same active plate margin in latest Archaean times.  相似文献   

17.
The U/Pb dating of ophiolite and arc complexes in the Caledonides of SW Norway has demonstrated that these spatially associated rocks are also closely related in time. A sequence of tholeiitic island arc volcanics, and an unconformably overlying sequence of calc-alkaline volcanics have been dated as 494 ± 2 Ma (2σ) and 473 ± 2 Ma respectively. Ophiolitic crust formed both prior to, and during the first 10 Ma after the tholeiitic island arc volcanism. Boninitic and island arc tholeiitic dyke swarms intruded the ophiolites soon after they formed and represent a second phase of spreading-related magmatism in the ca 20 Ma period that separated the tholeiitic and the calc-alkaline island arc volcanism. The magmatism ended with the formation of alkaline, ocean island basalt (OIB)-like magmas. Quartz dioritic and S-type granitic plutons, dated to 479 ± 5 Ma and 474 +3/−2 Ma respectively, intruded into the base of the arc crust during and subsequent to the boninitic magmatism, and at the time when calc-alkaline volcanic centres developed. The quartz dioritic and the granitic rocks contain inherited zircons of Precambrian age which prove the involvement of a continental source. This together with the geology of the terrain and the geochemistry of these plutons suggests that the granitic magmas were partly derived from subducted clastic sediments. The Sr and Nd isotope systematics indicate that the same continental source was a component in the boninitic and the calc-alkaline magmas. While the calc-alkaline magmas may have gained this continental component at a crustal level by assimilation, both geology and isotope systematics suggest that the continental component in the boninitic rocks was introduced by source contamination – possibly by a direct interaction between the mantle source and the S-type granitic magmas. A modified mid ocean ridge basalt-like mantle source was the principal source during the earliest and the main crust forming stage. This source became replaced by an OIB-like source during the later stages in the evolution of this ancient arc. Received: 27 June 1994 / Accepted: 16 September 1996  相似文献   

18.
辽东地区新太古代构成了华北陆块重要结晶基底.以辽吉古元古代裂谷为界,分为南北两个微陆块.北部微陆块由新太古代付家堡子片麻杂岩(U-Pb法2730 Ma)、虎庄片麻岩(U-Pb法2524.85 Ma)、连山关花岗岩(U-Pb法2563 Ma)组成,南部微陆块由得胜片麻杂岩(U-Pb法2519 Ma)组成.北部微陆块岩石地球化学显示钾玄岩系列-钠质钙碱系列,正铕异常-负铕异常轻稀土富集型特征.岩浆演化由钠质钙碱系列→钾质钙碱系列.源区性质为地壳深熔,相当于变质泥岩、变质杂砂岩部分熔融.构造背景为活动大陆边缘,由造山早期构造拉张环境上侵就位(付家堡子片麻杂岩)→造山主期(虎庄片麻岩)和造山晚期(连山关花岗岩)挤压环境同构造上侵就位.地壳演化由造山早期拉张→主造山挤压.南部微陆块岩石地球化学显示高铝、镁特征,与埃达克岩相近,稀土总量低,属负铕异常轻稀土富集型.岩浆具钠质演化趋势.源区性质具板片俯冲重熔特征,相当基性岩部分融熔,为板片俯冲构造背景.南部微陆块埃达克岩存在,暗示2500 Ma年前后,南部微陆块向北俯冲,形成辽东地区太古宙统一大陆.  相似文献   

19.
地处柴达木盆地西南缘的青海祁漫塔格地区不仅是一个特征显著的构造-岩浆岩带,而且也是重要的多金属成矿带。本文对该区中晚三叠世花岗岩开展了详细的年代学、岩石地球化学及Sr-Nd-Pb同位素组成研究,并探讨了成矿意义。结果表明,本区中晚三叠世花岗岩均系准铝质到弱过铝质高钾钙碱性花岗岩类,晚三叠世花岗岩具有更高的K2O/Na2O比值,富集大离子亲石元素(LILE)和轻稀土元素(LREE),明显亏损高场强元素(HFSE),中等初始锶比值和偏负的εNd(t)值表明它们主要源于古老地壳物质的深熔或重熔,并可能有幔源物质的加入;发育闪长质暗色微粒包体的中三叠世花岗岩锆石U-Pb年龄为230~237Ma,大多具斑状或似斑状结构的晚三叠世高分异富钾花岗岩形成于204~228Ma,表明大约240Ma祁漫塔格主造山已由挤压转入伸展并伴有幔源岩浆活动,晚三叠世后演化到后碰撞阶段;中晚三叠世花岗岩与本区密集产出的矽卡岩型和斑岩型多金属矿床的时空与成因关系密切,具有重要找矿指示意义。  相似文献   

20.
Geological studies on saturated to oversaturated and subsolvus aegirine-riebeckite syenite bodies of the Pulikonda alkaline complex and Dancherla alkaline complex were carried out. The REE distribution of the Dancherla syenite shows a high fractionation between LREE and HREE. The absence of Eu anomaly suggests source from garnet peridotite. The Pulikonda syenite shows moderate fractionation between LREE and HREE as reflected by enrichment of HREE and moderate enrichment of LREE. The negative Eu anomaly indicates role of plagioclase fractionation.Three distinct co-eval primary magmas i.e. mafic syenite-, felsic syenite- and alkali basalt magmas — all derived from low-degrees of partial melting of mantle differentiates and enriched metasomatised lower crust played a major role in the genesis and emplacement of the syenites into overlying crust along deep seated regional scale trans-lithospheric strike-slip faults and shear zones following immediately after late-Archaean calc-alkaline arc magmatism at different time-space episodes i.e. initially at craton margin and later on into the thickened interior of the Eastern Dharwar craton. The ductile sheared and folded Pulikonda alkaline complex was evolved dominantly from the magmas derived from partial melting of lower crust and minor juvenile magmas from mantle. Differentiation and fractionation by liquid immiscibility of mafic magma and commingling-mixing of intermediate and felsic magmas followed by fractionational crystallisation under extensional tectonics during waning stages of calc-alkaline arc magmatism nearer to the craton margin were attributed as the main processes for the genesis of Pulikonda syenite complex. Commingling and limited mixing of independent mantle derived mafic and felsic syenitic magmas and accompanying fractionation resulting into soda rich and potash rich syenite variants was tentatively deduced mechanism for the origin of Dancherla, Danduvaripalle, Reddypalle syenites and other bodies belonging to Dancherla alkaline complex at the craton interior. The Peddavaduguru syenite was formed by differentiation of alkali mafic magma (gabbro to diorite) and it’s simultaneous mingling with fractionated felsic syenitic magma under incipient rift. Vannedoddi and Yeguvapalli syenites were derived due to desilicification and accompanying alkali feldspar mestasomatism of younger potash rich granites along Guntakal-Gooty fault and along Singanamala shear zone respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号