首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The El Sibai area of the Central Eastern Desert (CED) of Egypt consists of an ophiolitic association of arc metavolcanics, ophiolitic rocks, mélange, metasediments and minor mafic intrusions; and a gneissic association of amphibolite, gneissic diorite, tonalite, granodiorite and granite. Previous studies of the El Sibai area have identified the gneissic association as a lower crustal infrastructure in sheared contact with upper crustal ophiolitic association suprastructure, and have presented it as an example of a metamorphic or magmatic core complex. Detailed structural remapping of the El Sibai area reveals that the gneissic association rocks are not infrastructural but form a unit within the ophiolitic association nappes. Furthermore, the El Sibai structure is not domal in shape, and is not antiformal. The main gneissic association rocks are tabular intrusions roughly concordant with the shears dividing the ophiolitic association into nappes, and are syn-kinematic with the nappe stacking event (∼700–650 Ma). The gneissic granite tabular intrusions and their ophiolitic host were later folded about upright NW–SE trending mainly open folds during a NE–SW directed shortening event (∼625–590 Ma). Subsequently, NW–SE regional extension effects became evident including low angle normal ductile shear zones and mylonites. The latest gneissic red granites are syn-kinematic with respect to these shear zones. Probably continuing from the low-angle shearing event were steep normal faults, and sinistral WNW and N–S trending transcurrent faults (∼590–570 Ma). The normal faults mark the southeastern and maybe also the northwestern limits of the El Sibai gneissic association rocks. The El Sibai complex is not a core complex, but exemplifies the overlap of NW–SE folding and NW–SE extensional which is a significant theme of CED regional structure.  相似文献   

2.
During Eocene to Early Quaternary period, three compressive tectonic phases are recognized in Northeast Tunisia: a NW–SE to north–south phase during the Late Eocene, a N120-to-N140 phase in the Late Miocene, and a NW–SE to north–south phase in the Plio-Early Quaternary. The first Eocene phase has built NE–SW folds and remobilised east–west-to-N120 and NE–SW faults with a reverse component. The second Miocene phase is characterized by east–west-to-N120 faults with a normal component and NE–SW folds. The third phase occurred during the Plio-Early Quaternary has edified NE–SW folds associated with east–west-to-N120 dextral reverse strike-slip faults and NE–SW faults with a reverse component. To cite this article: H. Mzali, H. Zouari, C. R. Geoscience 338 (2006).  相似文献   

3.
The present study aims mainly to delineate and outline the regional subsurface structural and tectonic framework of the buried basement rocks of Abu El Gharadig Basin, Northern Western Desert, Egypt. The potential field data (Bouguer gravity and total intensity aeromagnetic maps) carried out in the Abu El Gharadig Basin had been analyzed together with other geophysical and geological studies. The execution of this study is initiated by transformation of the total intensity aeromagnetic data to the reduced to pole (RTP) magnetic map. This is followed by applying several transformation techniques and various filtering processes through qualitative and quantitative analyses on both of the gravity and magnetic data. These techniques include the qualitative interpretation of gravity, total intensity magnetic and RTP magnetic maps. Regional–residual separation is carried out using the power spectrum. Also, the analytic signal and second vertical derivative techniques are applied to delineate the hidden anomalies. Aeromagnetic anomalies in the area reflect significant features on the basement tectonics, on the deep-seated structures and on the shallow-seated ones. Major faults and intrusions in the area are indicated to be mainly along the NE–SW, NW–SE, ENE–WSW and E–W directions. The Bouguer gravity map indicates major basement fracturing, as well as variations in the sedimentary basins and ridges and subsequent tectonic disturbances. The most obvious anomalous trends on the gravity map, based on their frequencies and amplitudes, are along the NE–SW, ENE–WSW, E–W and NW–SE trends. The main of Abu EL Gharadig Basin depositional center does not show sharp variations, because of the homogeneity of the marine rocks and the great basement depths.  相似文献   

4.
Two well-developed mesoscopic folds, D_2 and D_3, which postdate the middle amphibolite metamorphism, were recognized in the western hinterland zone of Pakistan. NW–SE trending D_2 folds developed during NE–SW horizontal bulk shortening followed by NE–SW trending D_3 folds, which developed during SE–NW shortening. Micro- to mesoscopically the NW–SE trending S2 crenulation cleavage, boudins and mineral stretching lineations are overprinted by D_3. The newly established NW–SE trending micro- to mesoscopic structures in Munda termed D_2, which postdated F_1/F_2, is synchronously developed with F3 structures in the western hinterland zone of Pakistan. We interpret that D_2 and D_3 folds are counterclockwise rotated in the tectonic event that has evolved the Hazara Kashmir Syntaxis after the main phase Indian plate and Kohistan Island Arc collision. Chlorite replacement by biotite in the main matrix crenulation cleavages indicates prograde metamorphism related with D_2. The inclusion of muscovite and biotite in garnet porphyroblasts and the presence of staurolite in these rocks indicate that the Barrovian metamorphic conditions predate D_2 and D_3. We interpret that garnet, staurolite and calcite porphyroblasts grew before D_2 because the well developed S2 crenulation cleavage wraps around these porphyroblasts.  相似文献   

5.
At the western end of the Hatta Zone (the Jebel Rawdha area), Northern Oman Mountains, the neoautochthonous Late Cretaceous–Early Tertiary sequence (“cover”) lies with an angular unconformity on the obducted Semail ophiolite, Haybi Complex and Sumeini Group (“basement”). Structural analysis of the faults in both the basement and cover sequences has shown that they are similar in type and configuration to those that develop in a transpressional left-lateral strike-slip deformational regime (a restraining bend) that is characterised by the dominance of the dip-slip component over the strike-slip component. The WNW–ESE (Po) faults together with the linking NW–SE (P) faults have divided the basement into elongated blocks. These blocks, in turn, are subdivided by transverse normal faults into horst and graben sub-blocks. The cover sequence is gently folded into a generally WNW–ESE-trending ‘Main’ folds and NE–SW-trending ‘Cross’ folds superimposed on them. These folds appear to be dominantly forced folds that developed as a result of repeated uplift and depression of basement blocks. Their trends correspond to the trends of the subjacent basement blocks. Hence, the Jebel Rawdha folds trend differently from other post-obduction major folds in the foreland region of the Northern Oman Mountains, such as the Hafit and Jebel Faiyah folds. Differences in stratigraphic thicknesses and lateral facies changes of the cover sequence within the blocks and sub-blocks indicate that the earliest differential movement of the blocks must have occurred during the early Maastrichtian, and the latest movement in post-mid-Eocene. Thus, pushing back the initiation of the post-obduction deformation in the Northern Oman Mountains to the early Maastrichtian.  相似文献   

6.
The Santi Petri dome (western Betics, southern Spain) shows a core-complex-like structure, where migmatitic gneisses and schists outcrop below low-grade slates and phyllites, all of which form the basement of the Neogene Málaga basin. The migmatites and schists suffered a coaxial-flattening event during isothermal decompression and were later exhumed by ductile ESE non-coaxial stretching. Further exhumation was achieved by W- to SW-transport brittle low-angle normal faulting. Subsequently these extensional structures were gently folded in the core of a NE/SW-oriented antiform during the Tortonian. Finally the Santi Petri domal geometry was accentuated by the interference of orthogonal high-angle faults with ENE–WSW and NNW–SSE orientation. This core-complex-like structure, formed by superposition of extensional and compressive tectonic events, does not represent a classical, purely extensional core complex, which shows that metamorphic structure and geometry are not decisive criteria to define a core-complex.  相似文献   

7.
Rheological heterogeneities in the upper-crust have a close relationship with the fold position where rigid bodies could constitute initial perturbations that allow the nucleation of folds. Consequently, establish the position and geometry of anomalous rocks located in the upper-crust by geophysical studies help to understand the folded structure observed on surface. New geological observations in the field, along with gravity, magnetic, magnetotelluric and seismicity data, reveal the subsurface structure in the Sierra de Los Filabres–Sierra de Las Estancias folded region part of the Alpine belt in southern Spain. The geometry of the upper crust is determined by geological field data, 2D gravity models, 2D magnetic models and 2D MT resistivity model, while seismicity evidences the location of the deep active structures. These results allow us to propose that a basic rock body at 4 to 9 km depth has determined the nucleation and development of the Sierra de Los Filabres kilometric antiform. N-vergent large late folds are subjected to a variable present-day stress field. Earthquake focal mechanisms suggest the presence in depth of a regional NW–SE compressive stress field. However, most of the seismogenetic structures do not extend up to the surface, where NW–SE and WNW–ESE outcropping active normal faults are observed, thus indicating a NE–SW extension in the upper crust simultaneous to orthogonal NW–SE compression related to reverse faults and minor folds developed in the Eastern Almanzora Corridor and in the nearby Huércal–Overa Basin. The recent and active tectonic studies of cordilleras hinterland subjected to late folding greatly benefits from the integration of surface observations together with geophysical data.  相似文献   

8.
More finite strain data has been obtained from autochthonous Permian mudstones of the Alpes Maritimes, S.E. France. These new data were computed from field measurements of green spots on all available sections, deformed mudcracks and from the quantitative correlation between magnetic susceptibility anisotropy and finite strain in these rocks. Previously published finite strain data and the new results are presented on a series of structural maps and cross-sections for the Dôme de Barrot, the Tinée and Vionène region and the Roya region. As in previous studies difficulties arise in explaining the apparently variable extension parallel with the 100°, subhorizontal bedding-cleavage intersection: either this is real or there were large volume changes during the tectonic deformation. Study of quartz fibres, developed in deformed mudcracks in the Tinée valley, suggest that early in the tectonic history incremental stretching directions were parallel with the bedding—cleavage intersection, while later they were down-dip in the 100° trending cleavage. Since these Permian rocks have remained stuck to the Argentera basement they also record displacements and deformations in the basement. The early 100°, subhorizontal stretching is consistent with NW-SE dextral, strike-slip basement faulting, while later, down-dip stretching in the cleavage is consistent with contraction faults in the basement. This information and new palaeomagnetic data on the same samples are combined with recent geophysical evidence and regional tectonic studies, to provide a new precision to the tectonic history of this part of the Western Alpine External Zone.  相似文献   

9.
We relocate the 1990–1991 Potenza (Southern Apennines belt, Italy) sequences and calculate focal mechanisms. This seismicity clusters along an E–W, dextral strike–slip structure. Second-order clusters are also present and reflect the activation of minor shears. The depth distribution of earthquakes evidences a peak between 14 and 20 km, within the basement of the subducting Apulian plate. The analysed seismicity does not mirror that of Southern Apennines, which include NW–SE striking normal faults and earthquakes concentrated within the first 15 km of the crust. We suggest that the E–W faults affecting the foreland region of Apennine propagate up to 25 km of depth. The Potenza earthquakes reflect the reactivation of a deep, preexisting fault system. We conclude that the seismotectonic setting of Apennines is characterized by NW–SE normal faults affecting the upper 15 km of the crust, and by E–W deeper strike–slip faults cutting the crystalline basement of the chain.  相似文献   

10.
The Aegean Sea area is thought to be an actively extending back-arc region, north of the present day Hellenic volcanic arc and north-dipping subduction zone in the Eastern Mediterranean. The area shows extensive normal faulting, ductile ‘extensional’ shear zones and extensional S-C fabrics throughout the islands that have previously been related to regional Aegean extension associated with slab rollback on the Hellenic Subduction Zone. In this paper, we question this interpretation, and suggest the Cenozoic geodynamic evolution of the Aegean region is associated with a Late Cretaceous–Eocene NE-dipping subduction zone that was responsible for continent-continent collision between Eurasia and Adria-Apulia/Cyclades. Exhumation of eclogite and blueschist facies rocks in the Cyclades and kyanite-sillimanite grade gneisses in the Naxos core complex have pressures that are far greater than could be accounted for purely by lithospheric extension and isostatic uplift. We identify four stages of crustal shortening that affected the region prior to regional lithospheric extension, herein called the Aegean Orogeny. This orogeny followed a classic Wilson cycle from early ophiolite obduction (ca. 74 Ma) onto a previously passive continental margin, to attempted crustal subduction with HP eclogite and blueschist facies metamorphism (ca. 54–45 ?Ma), through crustal thickening and regional kyanite – sillimanite grade Barrovian-type metamorphism (ca. 22–14 ?Ma), to orogenic collapse (<14 ?Ma). At least three periods of ‘extensional’ fabrics relate to: (1) Exhumation of blueschists and eclogite facies rocks showing tight-isoclinal folds and top-NE, base-SW fabrics, recording return flow along a subduction channel in a compressional tectonic setting (ca. 50–35 ?Ma). (2) Extensional fabrics within the core complexes formed by exhumation of kyanite- and sillimanite gneisses showing thrust-related fabrics at the base and ‘extensional’ fabrics along the top (ca. 18.5–14 ?Ma). (3) Regional ductile-brittle ‘extensional’ fabrics and low-angle normal faulting related to the North Cycladic Detachment (NCD) and the South(West) Cycladic Detachment (WCD) during regional extension along the flanks of a major NW–SE anticlinal fold along the middle of the Cyclades. Major low-angle normal faults and ductile shear zones show symmetry about the area, with the NE chain of islands (Andros, Tinos, Mykonos, Ikaria) exposing the NE-dipping NCD with consistent top-NE ductile fabrics along 200 ?km of strike. In contrast, from the Greek mainland (Attica) along the SE chain of islands (Kea, Kythnos, Serifos) a SW-dipping low-angle normal fault and ductile shear zone, the WCD is inferred for at least 100 ?km along strike. Islands in the middle of the Cyclades show deeper structural levels including kyanite- and sillimanite-grade metamorphic core complexes (Naxos, Paros) as well as Variscan basement rocks (Naxos, Ios). The overall structure is an ~100 ?km wavelength NW–SE trending dome with low-angle extensional faults along each flank, dipping away from the anticline axis to the NE and SW. Many individual islands show post-extensional large-scale folding of the low-angle normal faults around the domes (Naxos, Paros, Ios, Sifnos) indicating a post-Miocene late phase of E–W shortening.  相似文献   

11.
The present study was focused to analyze fractures and faults in the Campi Flegrei calderas presently hosting several volcanic edifices, such as lava domes, scoria, and tuff cones. A complex network of fractures and faults affects the volcanic rocks, mostly as planar with highly variable density. Frequently faults appearing as conjugate structures showing normal kinematics often associated with ductile deformation such as drag folds and deflexed layers, suggesting a syn-eruption deformation. However, the most of faults, mainly hosted along the caldera/crater rims, are very steep with dominant normal and secondary reverse movements. The fracture pattern indicates a slight prevalence of NE–SW and NW–SE directions, but N–S and E–W trends also occur. Fractures and faults found in rocks older than 15 ka (Neapolitan Yellow Tuff included), measured in western and eastern sectors of the study area, indicate a rotation of ca. 30° of the main directions among these two sectors. For the faults occurring along the caldera/crater rims, we suggest a kinematic evolution characterized by the reactivation of tensile fractures previously formed in response to both regional extension and locale resurgent dome. Finally, normal faults located in the central sector of caldera, between La Starza and Accademia localities, cutting the youngest volcanic deposits, indicate a constant NNE–SSW extension probably related to the caldera resurgence.  相似文献   

12.
Analysis of fault system in the high-P/T type Sambagawa metamorphic rocks of central Shikoku, southwest Japan, shows that conjugate normal faults pervasively developed in the highest-grade biotite zone (upper structural level) in three study areas (Asemi river, Oriu and Niihama areas). These conjugate normal faults consist of NE–SW to E–W striking and moderately north-dipping (set A), and NNW–SSE striking and moderately east dipping (set B) faults. The fault set A is dominant compared to the fault set B, and hence most of deformation is accommodated by the fault set A, leading to non-coaxial deformation. The sense of shear is inferred to be a top-to-the-WNW to NNW, based on the orientations of striation or quartz slickenfibre and dominant north-side down normal displacement. These transport direction by normal faulting is significantly different from that at D1 penetrative ductile flow (i.e. top-to-the-W to WNW). It has also been found that these conjugate normal faults are openly folded during the D3 phase about the axes trending NW–SE to E–W and plunging west at low-angles or horizontally, indicating that normal faulting occurred at the D2 phase. D2 normal faults, along which actinolite breccia derived from serpentinite by metasomatism sometimes occurs, perhaps formed under subgreenschist conditions (ca. 250 °C) in relation to the final exhumation of Sambagawa metamorphic rocks into the upper crustal level. The pervasive development of D2 normal faults in the upper structural level suggests that the final exhumation of Sambagawa metamorphic rocks could be caused by “distributed extension and normal faulting (removal of overburden)” in the upper crust.  相似文献   

13.
Seven phases of deformation are recognised in Dalradian metasediments within the NW aureole of the Main Donegal Granite. Major NW facing F2 folds (the Aghla Anticline and Errigal Syncline) refold an originally NW facing slaty cleavage, which is usually parallel to bedding. D3 structures cross-cut the major F2 folds and verge and face to the SE on their normal limbs. A fourth phase of deformation intensifies towards the granite contact and is shown to be broadly coeval with intrusion and responsible for a major structure in the aureole. Three later phases are variably developed throughout the aureole. The kinematics of F4 folds in relation to the granite intrusion are briefly discussed.  相似文献   

14.
The Kutai Basin formed in the middle Eocene as a result of extension linked to the opening of the Makassar Straits and Philippine Sea. Seismic profiles across the northern margin of the Kutai Basin show inverted middle Eocene half-graben oriented NNE–SSW and N–S. Field observations, geophysical data and computer modelling elucidate the evolution of one such inversion fold. NW–SE and NE–SW trending fractures and vein sets in the Cretaceous basement have been reactivated during the Tertiary. Offset of middle Eocene carbonate horizons and rapid syn-tectonic thickening of Upper Oligocene sediments on seismic sections indicate Late Oligocene extension on NW–SE trending en-echelon extensional faults. Early middle Miocene (N7–N8) inversion was concentrated on east-facing half-graben and asymmetric inversion anticlines are found on both northern and southern margins of the basin. Slicken-fibre measurements indicate a shortening direction oriented 290°–310°. NE–SW faults were reactivated with a dominantly dextral transpressional sense of displacement. Faults oriented NW–SE were reactivated with both sinistral and dextral senses of movement, leading to the offset of fold axes above basement faults. The presence of dominantly WNW vergent thrusts indicates likely compression from the ESE. Initial extension during the middle Eocene was accommodated on NNE–SSW, N–S and NE–SW trending faults. Renewed extension on NW–SE trending faults during the late Oligocene occurred under a different kinematic regime, indicating a rotation of the extension direction by between 45° and 90°. Miocene collisions with the margins of northern and eastern Sundaland triggered the punctuated inversion of the basin. Inversion was concentrated in the weak continental crust underlying both the Kutai Basin and various Tertiary basins in Sulawesi whereas the stronger oceanic crust, or attenuated continental crust, underlying the Makassar Straits, acted as a passive conduit for compressional stresses.  相似文献   

15.
Hanza Mountain in Urmia–Dokhtar Magmatic Arc, southeast of Iran, consists of monocline of Eocene volcanic rocks into which the Oligocene granitoid rocks have been intruded. This area has excellent potential for economic porphyry copper deposits with Bondar Hanza, Daralu, and Sarmesk deposits among them. Hanza Mountain is located between NW–SE horsetail thrust faults derived from the Gowk and Sabzevaran strike-slip faults. The analysis of the kinematics of these strike-slip faults shows that they were not the cause of the formation of the pull-apart basin; thus they have not directly played any effective role in localizing the final emplacement of porphyries responsible for the formation of these copper deposits, but the Cu mineralization occurred mainly within a set of normal and thrust faults in the region. The alteration types and faults in Bondar Hanza were distinguished using detailed local geology, including distribution of known mineralization, supported by remote sensing (ASTER), airborne geophysics, and topography; the relationship between mineralization and faults was examined using Rose diagrams and Fry Analysis. This investigation of Bondar Hanza deposit has revealed that the trend of faults and dykes, as well as the distribution of copper analyses within drill cores, is aligned with the main trend of mineralization. The NW–SE trending faults in the Urmia–Dokhtar Magmatic Arc are effective in localizing the emplacement of porphyry copper ore deposits and those that trend between N125°–N145° are key to further exploration.  相似文献   

16.
The Jriba trough is an Upper Miocene graben located within the Tunisian offshore Gulf of Hammamet area, east of the Atlas front. This distensive structure suffered a compressive event during the Early Quaternary (Villafranchian). The Jriba structure was previously interpreted as ‘flower structure’, which possibly complicated by halokinetics movements. A new analysis of a set of seismic lines crossing the Jriba trough allows us to propose a new tectonic model where the Villafranchian deformation is characterized by (1) occurrence of a decollement level cutting Messinian to Pliocene layers; and (2) the growth of fault-related folds (fault-propagation fold). The NE–SW Miocene, inherited normal faults, locate the position of the ramps and folds whereas the NW–SE inherited normal faults are reactivated as tear faults. These NW–SE tear faults define various domains of different shortening values (one kilometre at maximum). To cite this article: M. Ben Romdhane et al., C. R. Geoscience 338 (2006).  相似文献   

17.
The Bentong‐Raub Suture Zone (BRSZ) of Peninsular Malaysia is one of the major structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana‐derived Sibumasu terrane in the west and Sukhothai Arc in the east. The BRSZ is genetically related to the sediment‐hosted/orogenic gold deposits associated with the major lineaments in the Central Gold Belt of Peninsular Malaysia. In this investigation, the Phased Array type L‐band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to map major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and curvilinear structures in the BRSZ, as well as their implication for sediment‐hosted/orogenic gold exploration in tropical environments. Major structural lineaments such as the Bentong‐Raub Suture Zone (BRSZ) and Lebir Fault Zone, ductile deformation related to crustal shortening, brittle disjunctive structures (faults and fractures) and collisional mountain range (Main Range granites) were detected and mapped at regional scale using PALSAR ScanSAR data. The major geological structure directions of the BRSZ were N–S, NNE–SSW, NE–SW and NW–SE, which derived from directional filtering analysis to PALSAR fine and polarimetric data. The pervasive array of N–S faults in the Central Gold Belt and surrounding terrain is mainly linked to the N–S trending of the Suture Zone. N–S striking lineaments are often cut by younger NE–SW and NW–SE‐trending lineaments. Gold mineralized trend lineaments are associated with the intersection of N–S, NE–SW, NNW–SSE and ESE–WNW faults and curvilinear features in shearing and alteration zones. Compressional tectonic structures such as the NW–SE trending thrust, ENE–WSW oriented faults in mylonite and phyllite, recumbent folds and asymmetric anticlines in argillite are high potential zones for gold prospecting in the Central Gold Belt. Three generations of folding events in Peninsular Malaysia have been recognized from remote sensing structural interpretation. Consequently, PALSAR satellite remote sensing data is a useful tool for mapping major geological structural features and detailed structural analysis of fault systems and deformation areas with high potential for sediment‐hosted/orogenic gold deposits and polymetallic vein‐type mineralization along margins of Precambrian blocks, especially for inaccessible regions in tropical environments.  相似文献   

18.
The Gafsa and Chotts intracratonic basins in south-central Tunisia are transitional zones between the Atlasic domain to the north and the Saharan platform to the south. The principal aim of this paper is to unravel the geodynamic evolution of these basins following an integrated approach including seismic, well log and gravity data. These data are used to highlight the tectonic control on the deposition of Jurassic and Lower Cretaceous series and to discuss the role of the main faults that controlled the basin architecture and Cretaceous–Tertiary inversion. The horizontal gravity gradient map of the study area highlights the pattern of discontinuities within the two basins and reveals the presence of deep E–W basement faults. Primary attention is given to the role played by the E–W faults system and that of the NW–SE Gafsa fault which was previously considered active since the Jurassic. Facies and thickness analyses based on new seismic interpretation and well data suggest that the E–W-oriented faults controlled the subsidence distribution especially during the Jurassic. The NW–SE faults seem to be key structures that controlled the basins paleogeography during Late Cretaceous–Cenozoic time. The upper Triassic evaporite bodies, which locally outline the main NW–SE Gafsa fault, are regarded as intrusive salt bodies rather than early diapiric extrusions as previously interpreted since they are rare and occurred only along main strike-slip faults. In addition, seismic lines show that Triassic rocks are deep and do not exhibit true diapiric features.  相似文献   

19.
The Asturian Arc was produced in the Early Permian by a large E–W dextral strike–slip fault (North Iberian Megashear) which affected the Cantabrian and Palentian zones of the northeastern Iberian Massif. These two zones had previously been juxtaposed by an earlier Kasimovian NW–SE sinistral strike–slip fault (Covadonga Fault). The occurrence of multiple successive vertical fault sets in this area favoured its rotation around a vertical axis (mille-feuille effect). Along with other parallel faults, the Covadonga Fault became the western margin of a proto-Tethys marine basin, which was filled with turbidities and shallow coal-basin successions of Kasimovian and Gzhelian ages. The Covadonga Fault also displaced the West Asturian Leonese Zone to the northwest, dragging along part of the Cantabrian Zone (the Picos de Europa Unit) and emplacing a largely pelitic succession (Palentian Zone) in what would become the Asturian Arc core. The Picos de Europa Unit was later thrust over the Palentian Zone during clockwise rotation. In late Gzhelian time, two large E–W dextral strike–slip faults developed along the North Iberian Margin (North Iberian Megashear) and south of the Pyrenean Axial Zone (South Pyrenean Fault). The block south of the North Iberian Megashear and the South Pyrenean Fault was bent into a concave, E-facing shape prior to the Late Permian until both arms of the formerly NW–SE-trending Palaeozoic orogen became oriented E–W (in present-day coordinates). Arc rotation caused detachment in the upper crust of the Cantabrian Zone, and the basement Covadonga Fault was later resurrected along the original fault line as a clonic fault (the Ventaniella Fault) after the Arc was completed. Various oblique extensional NW–SE lineaments opened along the North Iberian Megashear due to dextral fault activity, during which numerous granitic bodies intruded and were later bent during arc formation. Palaeomagnetic data indicate that remagnetization episodes might be associated with thermal fluid circulation during faulting. Finally, it is concluded that the two types of late Palaeozoic–Early Permian orogenic evolution existed in the northeastern tip of the Iberian Massif: the first was a shear-and-thrust-dominated tectonic episode from the Late Devonian to the late Moscovian (Variscan Orogeny); it was followed by a fault-dominated, rotational tectonic episode from the early Kasimovian to the Middle Permian (Alleghenian Orogeny). The Alleghenian deformation was active throughout a broad E–W-directed shear zone between the North Iberian Megashear and the South Pyrenean Fault, which created the basement of the Pyrenean and Alpine belts. The southern European area may then be considered as having been built by dispersal of blocks previously separated by NW–SE sinistral megashears and faults of early Stephanian (Kasimovian) age, later cut by E–W Early Permian megashears, faults, and associated pull-apart basins.  相似文献   

20.
Abstract Two varieties of charnockites are recognized in the Dharwar craton of southern India. The style and sequence of structures in one charnockite variety, and related intermediate to basic granulites, are similar to those in the supracrustal rocks of the Dharwar Supergroup and the adjacent Peninsular Gneiss. This style has isoclinal folds with long limbs and sharp hinges with an axial planar fabric in some instances. Additional evidence of flattening is provided by pinch-and-swell and boudinage structures, with basic granulites forming boudins in the more ductile charnockites/enderbites in the limbs of isoclinal folds. These folds are involved in near-coaxial upright folding resulting in the bending of the axial planes of the isoclinal folds and the associated boudins. All these structures are overprinted by non-coaxial upright folds with axial planes striking nearly N–S. The map pattern of charnockites suggests that this sequence of structures is present not only on a mesoscopic scale, but also on a macroscopic scale. Charnockites of this variety provide, in some instances, evidence of having been migmatized to give rise to hornblende–biotite gneiss and biotite gneiss, which form a part of the Peninsular Gneiss terrane.
The second variety comprises charnockite sensu stricto with an entirely different structural style. This type occurs in the tensional domains of the hinge zones of the later buckle folds, in the necks of foliation boudinage, in shear zones and in release joints parallel to the axial planes of the later folds in the Peninsular Gneiss. Because the non-coaxial later folds are associated with a strain pattern different from, and later than, that of the isoclinal folds of the first generation, it follows that charnockites of the Dharwar craton have evolved in at least two distinct phases, separate both in time and in process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号