首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.  相似文献   

2.
A higher-order closure model was developed to simulate airflow within and above vegetative environments. The model consists of equations for the mean wind, turbulent kinetic energy (TKE) components, tangential stress and simplified equations for the third-order transport terms that appear in the second-order equations. The model in general successfully simulated wind speed profiles within and above maize, been, soybeen, wheat, orange and spruce canopies. Profiles of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37EC!\[\overline {u'^2 } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG3bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37EE!\[\overline {w'^2 } \] for the maize canopy were overestimated near the top of the canopy where both shear and wake production of TKE are high. These errors are believed to be caused by incorrect parameterizations for either the dissipation rate of TKE and/or the pressure-velocity correlations in the budget equations for the second moments.  相似文献   

3.
Data from a convective internal boundary layer (IBL) are analyzed by focusing on the instantaneousstructure of the top of the IBL instead of the time-average structure.A conditional averaging technique is developed todiscriminate between air from above the IBL and air from below the IBL , which alternately invade some instrument levels due tosubstantial variation of the top of the convective IBL.Sensitivity to the conditional sampling criteria is examined.Inside the IBL , buoyant and mechanicalproduction and dissipation dominate the turbulent kinetic energy budget.The horizontal advection and turbulent transport terms are smaller, but not negligible. The inferred pressure correlation term is negligible.Above the IBL , buoyant production and dissipation, although weak,dominate the turbulent kinetic energy budget. Shear generation andturbulent transport are smaller but significant.  相似文献   

4.
建立了一个农林复合带地区一维非静力大气边界层能量闭合模式,对1000m以下的大气边界层内的风、温、湿作了24h的预报,并对下垫面3种不同参数化方案(农作物、森林、无植被)的输出结果与实测值进行了分析和比较;同时通过敏感性试验,突出比较了农作物和森林下垫面对大气边界层垂直流场,湍流垂直交换和湍能的影响。结果表明,本模式能改善边界层风速、位温和湿度预报的模拟效果,下垫面植被对边界层气象要素大小和分布有显著的作用,对湍能垂直分布有一定影响。  相似文献   

5.
Local Imbalance of Turbulent Kinetic Energy in the Surface Layer   总被引:1,自引:1,他引:0  
We utilize experimental data collected in 2002 over an open field in Hanford, Washington, USA, to investigate the turbulent kinetic energy (TKE) budget in the atmospheric surface layer. The von Kármán constant was determined from the near-neutral wind profiles to be 0.36 ± 0.02 rather than the classical value of 0.4. The TKE budget was normalized and all terms were parameterized as functions of a stability parameter z/L, where z is the distance from the ground and L is the Obukhov length. The shear production followed the Businger–Dyer relation for −2 < z/L < 1. Contrary to the traditional Monin–Obukhov similarity theory (MOST), the shear, buoyancy and dissipation terms were found to be imbalanced due to a non-zero vertical transport over all stabilities. Motivated by this local imbalance, modified parameterizations of the dissipation and the turbulent transport were attempted and generated good agreement with the experimental data. Assuming stationarity and horizontal homogeneity, the pressure transport was estimated from the residual of the TKE budget.  相似文献   

6.
Large eddy simulation and study of the urban boundary layer   总被引:7,自引:1,他引:6  
  相似文献   

7.
We analyse single-point velocity statistics obtained in a wind tunnel within and above a model of a waving wheat crop, consisting of nylon stalks 47 mm high and 0.25 mm wide in a square array with frontal area index 0.47. The variability of turbulence measurements in the wind tunnel is illustrated by using a set of 71 vertical traverses made in different locations, all in the horizontally-homogeneous (above-canopy) part of the boundary layer. Ensemble-averaged profiles of the statistical moments up to the fourth order and profiles of Eulerian length scales are presented and discussed. They are consistent with other similar experiments and reveal the existence of large-scale turbulent coherent structures in the flow. The drag coefficient in this canopy as well as in other reported experiments is shown to exhibit a characteristic height-dependency, for which we propose an interpretation. The velocity spectra are analysed in detail; within and just above the canopy, a scaling based on fixed length and velocity scales (canopy height and mean horizontal wind speed at canopy top) is proposed. Examination of the turbulent kinetic energy and shear stress budgets confirms the role of turbulent transport in the region around the canopy top, and indicates that pressure transport may be significant in both cases. The results obtained here show that near the top of the canopy, the turbulence properties are more reminiscent of a plane mixing layer than a wall boundary layer.  相似文献   

8.
The Budget of Turbulent Kinetic Energy in the Urban Roughness Sublayer   总被引:4,自引:4,他引:0  
Full-scale observations from two urban sites in Basel, Switzerland were analysed to identify the magnitude of different processes that create, relocate, and dissipate turbulent kinetic energy (TKE) in the urban atmosphere. Two towers equipped with a profile of six ultrasonic anemometers each sampled the flow in the urban roughness sublayer, i.e. from street canyon base up to roughly 2.5 times the mean building height. This observational study suggests a conceptual division of the urban roughness sublayer into three layers: (1) the layer above the highest roofs, where local buoyancy production and local shear production of TKE are counterbalanced by local viscous dissipation rate and scaled turbulence statistics are close to to surface-layer values; (2) the layer around mean building height with a distinct inflexional mean wind profile, a strong shear and wake production of TKE, a more efficient turbulent exchange of momentum, and a notable export of TKE by transport processes; (3) the lower street canyon with imported TKE by transport processes and negligible local production. Averaged integral velocity variances vary significantly with height in the urban roughness sublayer and reflect the driving processes that create or relocate TKE at a particular height. The observed profiles of the terms of the TKE budget and the velocity variances show many similarities to observations within and above vegetation canopies.  相似文献   

9.
This is the first of a series of three papers describing experiments on the dispersion of trace heat from elevated line and plane sources within a model plant canopy in a wind tunnel. Here we consider the wind field and turbulence structure. The model canopy consisted of bluff elements 60 mm high and 10 mm wide in a diamond array with frontal area index 0.23; streamwise and vertical velocity components were measured with a special three-hot-wire anemometer designed for optimum performance in flows of high turbulence intensity. We found that:
  1. The momentum flux due to spatial correlations between time-averaged streamwise and vertical velocity components (the dispersive flux) was negligible, at heights near and above the top of the canopy.
  2. In the turbulent energy budget, turbulent transport was a major loss (of about one-third of local production) near the top of the canopy, and was the principal gain mechanism lower down. Wake production was greater than shear production throughout the canopy. Pressure transport just above the canopy, inferred by difference, appeared to be a gain in approximate balance with the turbulent transport loss.
  3. In the shear stress budget, wake production was negligible. The role of turbulent transport was equivalent to that in the turbulent energy budget, though smaller.
  4. Velocity spectra above and within the canopy showed the dominance of large eddies occupying much of the boundary layer and moving downstream with a height-independent convection velocity. Within the canopy, much of the vertical but relatively little of the streamwise variance occurred at frequencies characteristic of wake turbulence.
  5. Quadrant analysis of the shear stress showed only a slight excess of sweeps over ejections near the top of the canopy, in contrast with previous studies. This is a result of improved measurement techniques; it suggests some reappraisal of inferences previously drawn from quadrant analysis.
  相似文献   

10.
Particle image velocimetry (PIV) data obtained in a wind-tunnel model of a canopy boundary layer is used to examine the characteristics of mean flow and turbulence. The vector spacing varies between 1.7 and 2.5 times the Kolmogorov scales. Conditional sampling based on quadrants, i.e. based on the signs of velocity fluctuations, reveals fundamental differences in flow structure, especially between sweep and ejection events, which dominate the flow. During sweeps, the downward flow generates a narrow, highly turbulent, shear layer containing multiple small-scale vortices just below canopy height. During ejections, the upward flow expands this shear layer and the associated small-scale flow structures to a broad region located above the canopy. Consequently, during sweeps the turbulent kinetic energy (TKE), Reynolds stresses, as well as production and dissipation rates, have distinct narrow peaks just below canopy height, whereas during ejections these variables have broad maxima well above the canopy. Three methods to estimate the dissipation rate are compared, including spectral fits, measured subgrid-scale (SGS) energy fluxes at different scales, and direct measurements of slightly underresolved instantaneous velocity gradients. The SGS energy flux is 40–60% of the gradient-based (direct) estimates for filter sizes inside the inertial range, while decreasing with scale, as expected, within the dissipation range. The spectral fits are within 5–30% of the direct estimates. The spectral fits exceed the direct estimates near canopy height, but are lower well above and below canopy height. The dissipation rate below canopy height increases with velocity magnitude, i.e. it has the highest values during sweep and quadrant 1 events, and is significantly lower during ejection and quadrant 3 events. Well above the canopy, ejections are the most dissipative. Turbulent transport during sweep events acts as a source below the narrow shear layer within the canopy and as a sink above it. Transport during ejection events is a source only well above the canopy. The residual term in the TKE transport equation, representing mostly the effect of pressure–velocity correlations, is substantial only within the canopy, and is dominated by sweeps.  相似文献   

11.
The two-scalar covariance budget is significant within the canopy sublayer (CSL) given its role in modelling scalar flux budgets using higher-order closure principles and in estimating the segregation ratio for chemically reactive species. Despite its importance, an explicit expression describing how the two-scalar covariance is modified by inhomogeneity in the flow statistics and in the vertical variation in scalar emission or uptake rates within the canopy volume remains elusive even for passive scalars. To progress on a narrower version of this problem, an analytical solution to the two-scalar covariance budget in the CSL is proposed for the most idealized flow conditions: a stationary and planar homogeneous flow inside a uniform and dense canopy with a constant leaf area density distribution. The foliage emission (or uptake) source strengths are assumed to vary exponentially with depth while the forest floor emission is represented as a scalar flux. The analytical solution is a superposition of a homogeneous part that describes how the two-scalar covariance at the canopy top is transported and dissipated within the canopy volume, and an inhomogeneous part governed by local production mechanisms of the two-scalar covariance. The homogeneous part is primarily described by the canopy adjustment length scale, and the attenuation coefficients of the turbulent kinetic energy and the mean velocity. Conditions for which the vertical variation of the two-scalar covariance is controlled by the rapid attenuation in the mean velocity and turbulent kinetic energy profiles, vis-à-vis the vertical variation of the scalar source strength, are explicitly established. This model also demonstrates how dissimilarity in the emissions from the ground, even for the extreme binary case with one scalar turned ‘on’ and the other scalar turned ‘off’, modifies the vertical variation of the two-scalar covariance within the CSL. To assess its applicability to field conditions, the analytical model predictions were compared with observations made at two different forest types—a sparse pine forest at the Hyytiälä SMEAR II-station (in Finland) and a dense alpine hardwood forest at Lavarone (in Italy). While the model assumptions do not represent the precise canopy morphology, attenuation properties of the turbulent kinetic energy and the mean velocity, observed mixing length, and scalar source attenuation properties for these two forest types, good agreement was found between measured and modelled two scalar covariances for multiple scalars and for the triple moments at the Hyytiälä site.  相似文献   

12.
Wind-tunnel calibrations of turbulent-pressure sensors usually reveal deviations from ideal response. These deviations are typically reported in dimensional form (e.g., in microbars) or as a fraction of the dynamic pressure. Neither presentation gives a direct indication of the reliability of pressure statistics measured in a turbulent flow.We derive a general response equation for a turbulent-pressure probe. The coefficients in the equation are obtainable from standard wind-tunnel calibration results. The form of the response equation makes it straightforward to relate the errors in measured pressure statistics to the statistics of the turbulence. We demonstrate this by evaluating the reliability of measurements of some important pressure covariances, including the pressure-transport term in the turbulent kinetic energy (TKE) budget in the unstable surface layer. The preliminary finding is that the Nishiyama-Bedard sensor is capable of measuring pressure transport of TKE there to within 10–20%.  相似文献   

13.
Turbulent kinetic energy and its vertical flux were measured at two heights over a paddy field. The vertical transport of turbulent kinetic energy was always downward right above the paddy field and was frequently downward at higher levels within a few metres above the crop. Contributions to the downward transport arise mainly from the turbulent kinetic energy of horizontal wind velocity components. It is shown from the analysis of probability distributions that appreciable transport takes place intermittently in a few large downward bursts and that these downdrafts are efficient for downward energy transport.In the budget of turbulent kinetic energy, the flux divergence term and the energy dissipation term are the main loss terms under unstable conditions. These terms increase in magnitude with increasing instability. Buoyant production is insufficient to balance these losses. The imbalance term involving the pressure-work term is probably one of the main energy sources in unstable conditions.  相似文献   

14.
A one-dimensional grid-level model including longwave radiative transfer and a level-4 second-order turbulent transfer closure which contains prognostic equations for turbulent quantities, is used to study the physics and dynamics of inversion-capped marine stratocumulus clouds.A set of numerical experiments had been performed to examined the role of sea surface temperature, large-scale vertical velocity, wind speed, and vertical wind shear in the formation and the structure of low-level clouds. For a given sea surface and geostrophic wind speed, stratocumulus clouds can grow higher with smaller large-scale subsidence as less dry air entrains into the cloud. Clouds grow higher with higher sea surface temperature for a given geostrophic wind speed and large-scale subsidence as a result of enhanced moist convection. In high wind speeds, the entire cloud deck is lifted up because of larger surface energy flux. In the budget studies of the turbulent kinetic energy (TKE), the buoyancy term is a major source term when the wind speed and the vertical shear are small across the inversion top. When the wind speed and the vertical wind shear across the inversion top become large, the mixed layer is decoupled into a cloud and a subcloud layer. In the TKE budget studies, the shear generation term becomes an important term in the budgets of the TKE and the variance of vertical velocity.  相似文献   

15.
A stochastic trajectory model was used to estimate scalar fluxfootprints in neutral stabilityfor canopies of varying leaf area distributions andleaf area indices. An analytical second-order closure model wasused to predict mean wind speed, second moments and the dissipationrate of turbulent kinetic energy within a forest canopy.The influence of source vertical profile on the flux footprint wasexamined. The fetch is longer for surface sourcesthan for sources at higher levels in the canopy. In order tomeasure all the flux components, and thus the total flux, with adesired accuracy, sources were located at the forest floor in thefootprint function estimation. The footprint functions werecalculated for five observation levels above the canopy top. Itwas found that at low observation heights both canopy density andcanopy structure affect the fetch. The higher abovethe canopy top the flux is measured, the more pronounced is the effectof the canopy structure. The forest fetch for flux measurements isstrongly dependent on the required accuracy: The 90% flux fetchis greater by a factor of two or more compared to the 75% fetch. Theupwind distance contributing 75% of flux is as large as 45 timesthe difference between canopy height and the observation heightabove the canopy top, being even larger for low observationlevels.  相似文献   

16.
MM5模式中城市冠层参数化方案的设计及其数值试验   总被引:15,自引:5,他引:15  
文中在综合国外一些较先进的中尺度模式城市作用参数化方案的基础上 ,从城市下垫面结构对城市边界层大气作用的物理机制及实际应用两方面出发 ,对城市下垫面结构和人为活动等因素对边界层结构的影响及中尺度模式中城市化作用的合理体现等问题进行了较全面的考虑 ,改进和设计出能够较全面、细致地描述城市结构对大气边界层动力、热力结构的影响 ,且适合中尺度模式结构特点的城市冠层参数化方案 (UCP) ,并实现了其与MM5模式的耦合。进行了耦合后的UCP方案及采用原城市作用方案的MM5模式对BECAPEX试验期间北京地区气象条件多重嵌套细尺度进行了模拟试验 ,并与观测结果对比 ,结果表明 :相比于MM 5模式中原有表示城市作用的参数化方案来讲 ,设计的UCP方案在很大程度上提高了MM 5模式对城市边界层热力和动力结构的模拟能力。  相似文献   

17.
Large-eddy simulations of the neutrally-stratified flow over an extended homogeneous forest were used to calibrate a canopy model for the Reynolds-averaged Navier–Stokes (RaNS) method with the $k-\varepsilon $ k - ε turbulence model. It was found that, when modelling the forest as a porous medium, the canopy drag dissipates the turbulent kinetic energy (acts as a sink term). The proposed model was then tested in more complex flows: a finite length forest and a forested hill. In the finite length forest, the destruction of the turbulent kinetic energy by the canopy was overestimated near the edge, for a length approximately twice the tree height. In the forested hill, the model was less accurate inside the recirculation zone and overestimated the turbulent kinetic energy, due to an incorrect prediction of the production term. Nevertheless, the canopy model presented here provided consistent results in both a priori and a posteriori tests and improved the accuracy of RaNS simulations with the $k-\varepsilon $ k - ε model.  相似文献   

18.
The transport of a passive scalar from a continuous point-source release in an urban street network is studied using direct numerical simulation (DNS). Dispersion through the network is characterized by evaluating horizontal fluxes of scalar within and above the urban canopy and vertical exchange fluxes through the canopy top. The relative magnitude and balance of these fluxes are used to distinguish three different regions relative to the source location: a near-field region, a transition region and a far-field region. The partitioning of each of these fluxes into mean and turbulent parts is computed. It is shown that within the canopy the horizontal turbulent flux in the street network is small, whereas above the canopy it comprises a significant fraction of the total flux. Vertical fluxes through the canopy top are predominantly turbulent. The mean and turbulent fluxes are respectively parametrized in terms of an advection velocity and a detrainment velocity and the parametrization incorporated into a simple box-network model. The model treats the coupled dispersion problem within and above the street network in a unified way and predictions of mean concentrations compare well with the DNS data. This demonstrates the usefulness of the box-network approach for process studies and interpretation of results from more detailed numerical simulations.  相似文献   

19.
The budget equations of turbulent kinetic energy and shear stress contain interaction terms of velocity-pressure and velocity-pressure gradient. These terms were estimated in the surface layer using the air pressure observed at the surface and wind velocity components over plant canopies. The magnitude of the pressure interaction terms was significantly large; it was not negligible compared with the production terms in each budget equation. The present results obtained over a rough surface also confirmed previous results that pressure terms play an important role in the turbulent kinetic energy budgets and the shear stress budget. The height dependency of nondimensional pressure terms versus (z - d)/z 0 was not clear.  相似文献   

20.
Turbulent transport processes for momentum and scalar quantities are examined by a joint probability distribution analysis using data observed within and above a deciduous forest. Characteristics of transport processes in the frequency domain were also analyzed using Tukey's procedure. The results confirm that sweep phenomena prevail within and at the top of a tall plant canopy and that downdrafts are more effective for vertical transport of momentum and scalar quantities. On the other hand, updrafts become more efficient for vertical transport in the daytime at levels about twice treetop height. The results show that within the forest, the sweep phenomenon prevails over a wide frequency range, while above the forest, prevalence of the ejection phenomenon is limited to low frequencies. It is again noted that the plant canopy plays an important role in the sweep-ejection cycle as well as in turbulent transport processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号