首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
An ecological transfer function based on the distribution of planktonic foraminifera in 66 Mediterranean and 8 North Atlantic surface-sediment samples is used to estimate sea-surface temperatures and salinities for the eastern Mediterranean during the last glacial maximum (18,000 yr B.P.). The present-day distribution of planktonic foraminifera can be explained by four faunal assemblages, each of which has diagnostic environmental preferences. Factor 1 is a tropical-subtropical assemblage; factor 2 is a transitional assemblage; factor 3 is a low-salinity assemblage; and factor 4 is a subpolar assemblage. The geographic distribution of these faunal assemblages reflect the variation in overlying hydrographic conditions. The 18,000-yr B.P. samples were selected based on total faunal stratigraphy, oxygen-isotope stratigraphy, and previously determined radiometric dates for eastern Mediterranean volcanic ash layers. Estimated temperature and salinity patterns show that the greatest change between present-day and 18,000-yr B.P. sea-surface conditions existed in the Aegean Sea and immediately south of Crete. The winter temperature anomaly (18,000 yr B.P.-present) within the Aegean Sea is 6°C cooler than present. In contrast to this, the maximum summer temperature anomaly exists to the south of Crete, where sea-surface temperatures were 4°C cooler than present. Estimated sea-surface salinities also show that the greatest change took place within the Aegean Sea, being 5‰ less saline than present. The estimated temperature and salinity patterns seem to reflect changing drainage patterns during glacial times and the diversion of cool, low-salinity water into the Aegean Sea. The source of this glacial runoff appears to be large freshwater lakes that existed during this time over parts of eastern Europe and western Siberia.  相似文献   

2.
The varved sediments of the Santa Barbara Basin off southern California, offer a unique opportunity to study the changes in oceanographic conditions of this nearshore area during the last 8000 yr. Quantitative analysis of Radiolaria found in recent surface sediment samples from the eastern North Pacific allows the identification of four “assemblages” which can be related to the physical oceanography of the California Current. Two assemblages are associated with the southerly flowing California Current, one with the main stream of the current (California Current Assemblage) and the other with the offshore flow along northern California (Central Assemblage). The two other assemblages are associated with the subtropical region of the eastern North Pacific (Subtropical Assemblage) and one found mostly off the coast of Baja California (Baja Assemblage). Analysis of the Radiolaria found in the varved sediments of a core from the Santa Barbara Basin give an 8000-yr continuous record of these four assemblages. The California and Baja Assemblages show only minor fluctuations in their importance in the sediments of the Santa Barbara Basin. The California Assemblage, however, shows a steady increase during this time period. Prior to 5400 yr B.P. the Radiolaria were predominately subtropical in character, whereas after 5400 yr B.P. the Central Assemblage becomes more important. Since 5400 yr B.P. most of the changes in the radiolarian fauna consist of fluctuations in the importance of these two assemblages. Past sea-surface temperatures for the month of February were calculated using the transfer function technique of J. Imbrie and N. G. Kipp (1971, In “The Late Cenozore Glacial Ages” L. K. Turekian, Ed.), (Chap. 5, Yale Univ. Press, New Haven, Conn.). The time series of paleotemperature estimates show major changes in the average February temperature of Santa Barbara Basin waters. The range of estimated temperatures (12°C) exceeds that of the historical observations of February temperatures in the Santa Barbara Basin but does not exceed the observed range for the California Current region. The intervals from 800 to 1800 yr B.P. 3600 to 3800 yr B.P. and 5400 to the end of the record appear to have been generally warmer than today. Comparison of the Holocene record of alpine glacial advances with the radiolarian assemblage and paleotemperature time series shows that the initiations of advances was coincident with a decrease in sea-surface temperatures and an increase in the importance of the Central Assemblage in the Santa Barbara Basin. The terminations of these advances were not marked by any consistent characteristic in the Santa Barbara Basin time series.  相似文献   

3.
Temperature estimates produced by a radiolarian-based transfer function, factor distributions of radiolarian assemblages, and variations in calcium carbonate were used to reconstruct the oceanographic conditions in the South Atlantic during the last glacial maximum (18,000 yr B.P.). This study suggests that while the position of the Subtropical Convergence at 18,000 yr B.P. was very similar to its present position, the Antarctic Polar Front shifted northward 1° to 3° of latitude in the eastern South Atlantic and 3° to 5° of latitude in the western South Atlantic. The largest temperature changes occurred in the subantarctic region and along the eastern portion of the Subtropical Gyre.  相似文献   

4.
Mutual Climatic Range (MCR) analysis was applied to 20 fossil beetle assemblages from 11 sites dating from 14,500 to 400 yr B.P. The fossil sites represent a transect of the Rocky Mountain region from northern Montana to central Colorado. The analyses yielded estimates of mean July and mean January temperatures. The oldest assemblage (14,500 yr B.P.) yielded mean July values of 10–11°C colder than present and mean January values 26–30°C colder than present. Postglacial summer warming was rapid, as indicated by an assemblage dating 13,200 yr B.P., with mean July values only 3–4°C cooler than modern. By 10,000 yr B.P., several assemblages indicate warmer-than-modern mean summer and winter values. By 9000 yr B.P., MCR reconstructions indicate that both summer and winter temperatures were already declining from an early Holocene peak. Mean July values remained above modern levels and mean January values remained below modern levels until 3000 yr B.P. A series of small-scale oscillations followed.  相似文献   

5.
A new approach is proposed to obtain quantitative temperature reconstructions from Early and Middle Pleistocene pollen and megafloral records. Utilizing the indicator species concept pioneered by Iversen (1944, Geologiska Föreningen Förhandlingar Stockholm 66, 463–483), the new methodology overcomes the problem of non-analogue plant communities by only taking into account the presence/absence of taxa rather than their relative abundances. Based on the present day thermal tolerances of the taxa from a fossil assemblage, the temperature interval in which all taxa from this assemblage can coexist is determined. A databank containing the climate tolerances of 85 taxa from European pollen records was established. To increase the temperature resolution of the method, procedures were developed to assess the most likely intervals for the actual temperatures within the calculated common thermospheres and the routine evaluation of the mean temperatures of the warmest and coldest months (MTW and MTC). After calibrating the approach on modern assemblages, it was applied to Tiglian and Holsteinian pollen sequences from Lieth (northern Germany) and Lac du Bourget (northern French Alps). For both records the method yields detailed temperature reconstructions of temperate and cold episodes. During the coldest episode of the Lieth section, the MTC may have been as low as −16°C. Corresponding MTW values range from 14.5 to 21°C, thus testifying to a strong continentality at that time. During the warmest period reconstructed for the Lieth section, the MTC was similar to the value as measured in the area today (1.5°C), whereas the MTW was probably higher than at present (20.1°C). For the coldest interval from the Lac du Bourget pollen sequence, the reconstructed MTC values reach a minimum of −15°C. Corresponding MTW values range from 15 to 22°C, again implying a strong continentality. For the warmest period our approach yields MTC values between −2 and 2°C and MTW values between 16.5 and 22°C. For both records, the resolution for the MTW and MTC reaches 1.5 and 2.5°C, respectively.  相似文献   

6.
A seasonal reconstruction of the Indian Ocean during the last glacial maximum (18,000 yr B.P.) reveals that its surface circulation and sea surface temperature patterns were significantly different from the modern Indian Ocean. This reconstruction is based on the planktonic foraminiferal biogeography and estimated sea surface temperatures in 42 Indian Ocean samples. Compared to modern conditions, the polar front was 5° to 10° latitude further north during the last glacial maximum; the Subtropical Convergence was 2° to 5° latitude further north. The West Australian Current was more intense as part of the West Wind Drift was deflected northward along the coast of Australia. The Agulhas Current was cooler and weaker during the summer and more saline and subtropical during the winter. In general, the low latitudes underwent little temperature change. The western Arabian Sea was warmer which implies less upwelling and a weaker Southwest Monsoon. On the average, the Indian Ocean was 1.9°C cooler in February and 1.7°C cooler in August during the last glacial maximum.  相似文献   

7.
Five Neotoma spp. (packrat) middens are analyzed from Sand Canyon Alcove, Dinosaur National Monument, Colorado. Plant remains in middens dated at approximately 9870, 9050, 8460, 3000, and 0 14C yr B.P. are used to estimate Holocene seasonal temperature and precipitation values based on modern plant tolerances published by Thompson et al. (1999a, 1999b). Early Holocene vegetation at the alcove shows a transition from a cool/mesic to a warmer, more xeric community between 9050 and 8460 14C yr B.P. Picea pungens, Pinus flexilis, and Juniperus communis exhibit an average minimum elevational displacement of 215 m. Picea pungens and Pinus flexilis are no longer found in the monument.Estimates based on modern plant parameters (Thompson et al., 1999a) suggest that average temperatures at 9870 14C yr B.P. may have been at least 1° to 3°C colder in January and no greater than 3° to 10°C colder in July than modern at this site. Precipitation during this time may have been at least 2 times modern in January and 2 to 3 times modern in July. Discrepancies in estimated temperature and precipitation tolerances between last occurrence and first occurrence taxa in the midden record suggest that midden assemblages may include persisting relict vegetation.  相似文献   

8.
Snail assemblages are used to estimate February and August temperatures during the past 10,000 years in western Europe. We find that a strong warming occurred after the Younger Dryas event, followed by several rapid cooling and warming events. These observations are in agreement with insect and pollen proxy data from the European continent and with estimates of sea-surface temperature from the North Atlantic Ocean as well as with fluctuations of glaciers in western Norway. This study also confirms that terrestrial molluscs can provide reliable climatic data in conjunction with other proxy data.  相似文献   

9.
Two independent data sets are used to develop a model for reconstructing sea-surface temperature and dynamic height anomaly distributions for the California Current during the last 8000 years. The first data set, all hydrographic data available for the California Current region, was used to determine the statistical relationships between the historical record of sea-surface conditions in the Santa Barbara Basin and all one-degree-square grid points of the California Current area. Given these relationships and the second data set, an 8000-year record of sea-surface temperatures and dynamic height anomalies from the Santa Barbara Basin, past sea-surface conditions throughout the California Current can be estimated for times before historical observations. The 8000-year record of sea-surface conditions was estimated by analysis of the radiolarian fauna found in a varved sediment core from the Santa Barbara Basin (Pisias, N. G., 1978, Quaternary Research 10, 366–384). The reconstructions of sea-surface temperature and dynamic height anomalies indicate that at times of cold sea-surface conditions in the Santa Barbara Basin, the flow of the California Current was much stronger than it is today or was during the times of the warmest sea-surface conditions during the last 8000 years. The atmospheric circulation during the winter of 1950, the period of the coldest recorded sea-surface temperatures in the Santa Barbara Basin based on the historical data set, contained a strong northerly component in the winds which is consistent with the inferred increase in the California Current at times of cold sea-surface temperatures. Times of warm sea-surface temperatures in the Santa Barbara Basin are characterized by decreased southward flow of the California Current and a marked increase in northward flow into the Santa Barbara Basin itself. In the historical record, times of warm sea-surface temperatures are often associated with high precipitation in southern California. The atmospheric circulation during the winter of 1968–1969 is characterized by strong eastward flow over southern California and a northward transport of warm humid air from the tropics into the region of southern California producing the high rainfall observed. The persistence of this atmospheric circulation could produce the more zonal flow predicted for the California Current during times of warmer average conditions in the Santa Barbara Basin.  相似文献   

10.
Amino acid enantiomeric (D/L) ratios in the mollusk Mercenaria are compared with recently published biostratigraphic and/or U-series solitary coral data from 22 Quaternary localities on the central and southern Atlantic Coastal Plain. In all cases, local relative aminostratigraphic sequences are consistent with relative ages inferred from U-series or biostratigraphic data, although occasionally more depositional events are recognized by aminostratigraphic than biostratigraphic methods. However, if the U-series data are used as age calibrations for the D/L values, latitudinal trends of “isochronous” D/L values are highly variable and conflict with trends expected from the present temperature gradient, which is smooth and nearly linear between 45° and 25° N. Age estimation can be performed independently of the U-series data using a kinetic model that relies on the assumption that Pleistocene temperature gradients have also been smooth functions of latitude, although significantly steeper than the present temperature gradient. Within the uncertainties of this assumption, kinetic model age estimates for localities in the coastal plain fall into the following groups: 70,000–130,000 yr, 200–250,000 yr, 300,000–400,000 yr, 500,000–600,000 yr, 700,000–800,000 yr, and > 1,000,000 yr. Major conflicts between these model age estimates are observed for localities near Charleston, South Carolina and in central Virginia. These conflicts could indicate that the basic temperature assumptions of aminostratigraphy are incorrect, and that apparent local aminostratigraphic sequences (clusters of different D/L values) could be due to factors other than age difference. Alternatively, some of the U-series dates may be only minimum ages for these localities.  相似文献   

11.
The distribution and abundance of planktonic Foraminifera from the Indian Ocean are used to illustrate geographic variations in faunal assemblages in the plankton and on the seabed caused by sedimentary and postdepositional processes and to analyze the effect of these variations on paleoecological reconstruction. Principal components analysis of these data describes the composition and distribution of faunal assemblages in plankton-tow samples, low-dissolution core-top samples, and high-dissolution core-top samples. Factor-comparison analysis describes the relationships among these three sets of assemblages: The species composition of low-dissolution faunal assemblages may be accurately described as a simple linear mixing of plankton assemblages. The geographical distributions of the faunal assemblages in the sediments, however, are often displaced equatorward of their counterparts in the plankton. Dissolution causes complex changes in the composition of faunal assemblages and produces an equatorward displacement of several high-dissolution assemblages relative to their counterparts in low-dissolution sediments. Three transfer functions, or equations, are derived using plankton, low-dissolution, and high-dissolution data. Numerical experiments indicate that transfer functions lose accuracy when applied to discordant data sets: The plankton transfer function often underestimates temperatures in core-top sediments, and the low-dissolution transfer function underestimates temperatures in high-dissolution sediments. These systematic differences in temperature estimates are illustrated by applying the three transfer functions to downcore samples representing conditions 18,000 years ago. Other experiments indicate that these distortions can be reduced by using larger size fractions and calibrating transfer functions with both low- and high-dissolution core-top samples.  相似文献   

12.
基于前人山西榆社盆地张村植物大化石和花粉组合资料,运用分布区叠加分析法,初步重建了山西张村上新世气候参数值和古海拔高度。研究结果表明,由不同数据来源计算的张村古气候参数数值变化范围大多落在今天的暖温带到北亚热带区间;依据原地埋藏的植物大化石组合推出上新世时山西张村地区存在植被垂直分带,周围为山地地形,由此估测的古湖海拔高程范围在400~1 000 m,明显低于今天约1 043 m的海拔高度,表明在上新世之后位于黄土高原东缘的张村地区还有抬升;支持前人关于更新世以来晋东南地区的整体缓慢抬升的推测。  相似文献   

13.
Palaeobotanical studies of the brown coal deposits of the Latrobe Valley have contributed significantly towards an understanding of the age of the deposits, existing climatic conditions and detailed depositional environments. This paper re-assesses some past reconstructions for the Early to Mid Miocene coals using recent information on plant distributions and their bioclimatic significance and on a marine incursion model for coal lithotype formation.The brown coal flora is composed overwhelmingly of rainforest taxa that presently cover a range of different environments within the Australasian region. The application of a bioclimatic prediction model to these taxa allows the construction of consistent and quantitative estimates of climates during coal-forming phases. It is considered that rainfall in the area was more than twice the 850 mm received today, with significant seasonal variation. The mean annual temperature estimate of about 19°C, indicating a mesothermal or subtropical environment, is some 2–5C higher than present and higher than previous estimates. It does, however, correspond with sea-surface temperature estimates for the Southern Ocean at this time.The original model of lithotype formation, which suggests that lithotypes conform to a successional sequence from open water in the lightest coloured lithotypes to raised bog in the darkest lithotypes, is considered to be inconsistent with the evidence for lightening upwards sequences within the coals, a central feature of the proposed marine incursion model of coal formation. The two models are reconciled to some degree by a reinterpretation of the palaeobotanical data and by the postulation of climatic rather than autogenic successional control over lithotype formation.  相似文献   

14.
The Twin Creek Limestone in the footwall of the Absaroka thrust sheet contains three sets of bed-normal syntectonic calcite veins. Vein formation occurred during Cretaceous motion along the Absaroka thrust fault as indicated by (1) crosscutting relationships among these vein sets, (2) a previously dated solution cleavage, and (3) calcite twin analysis. Fluid inclusions in the veins and overburden estimates constrain inclusion entrapment temperatures to be between 175 °C and 328 °C. Results from stable oxygen isotopes indicate that the host and vein fluid compositions were in near isotopic equilibrium. Applying both reasonable geothermal gradients and constraints on overburden temperature yields fluid pressures during vein precipitation that are near hydrostatic. All data taken together suggest both that vein formation within the Twin Creek Formation occurred in a relatively closed system, and that the veins filled near hydrostatic fluid pressure. Because the veins fill precursory cracks, vein filling might not reflect the maximum fluid pressure that existed during the complete vein forming process.  相似文献   

15.
The qualitification of tropical temperatures during the last glacial cycle (0-150 kyr BP) is a controversial issue since different proxies seem to provide conflicting informations. To obtain a complementary point of view, we use the alkenone method to estimate sea-surface temperatures and focus our work on deep-sea sediments recovered from the tropical Indian Ocean. We present alkenone data obtained in two cores which cover in detail the last deglaciation and in about twenty cores distributed between 20°S and 20°N that were chosen to evaluate the temperature contrast of the last glacial-interglacial transition. Our results indicate that Indian Ocean tropical temperatures remained an average within 1.5-2.5°C of their present values during the last glaciation. At 10°N the last deglaciation is characterized by two warming steps which is similar to the classical deglacial chronology observed in the North Atlantic area. At 20°S the deglacial warming occurred at ca. 15 cal kyr BP, lagging significantly (5-4 kyr) behind the Antarctic warming, but in phase with northern hemisphere time series.  相似文献   

16.
The final effort of the CLIMAP project was a study of the last interglaciation, a time of minimum ice volume some 122,000 yr ago coincident with the Substage 5e oxygen isotopic minimum. Based on detailed oxygen isotope analyses and biotic census counts in 52 cores across the world ocean, last interglacial sea-surface temperatures (SST) were compared with those today. There are small SST departures in the mid-latitude North Atlantic (warmer) and the Gulf of Mexico (cooler). The eastern boundary currents of the South Atlantic and Pacific oceans are marked by large SST anomalies in individual cores, but their interpretations are precluded by no-analog problems and by discordancies among estimates from different biotic groups. In general, the last interglacial ocean was not significantly different from the modern ocean. The relative sequencing of ice decay versus oceanic warming on the Stage 6/5 oxygen isotopic transition and of ice growth versus oceanic cooling on the Stage 5e/5d transition was also studied. In most of the Southern Hemisphere, the oceanic response marked by the biotic census counts preceded (led) the global ice-volume response marked by the oxygen-isotope signal by several thousand years. The reverse pattern is evident in the North Atlantic Ocean and the Gulf of Mexico, where the oceanic response lagged that of global ice volume by several thousand years. As a result, the very warm temperatures associated with the last interglaciation were regionally diachronous by several thousand years. These regional lead-lag relationships agree with those observed on other transitions and in long-term phase relationships; they cannot be explained simply as artifacts of bioturbational translations of the original signals.  相似文献   

17.
Mutual climatic range (MCR) analysis was applied to 15 North American beetle assemblages spanning the interval from > 52 000 to 17 200 yr BP, bracketing a Mid-Wisconsin interstadial interval. The analyses yielded estimates of mean July (TMAX) and mean January (TMIN) temperatures. The oldest assemblage (> 52 ka) yielded TMAX values 7.5–8°C lower than present and TMIN values 15–18°C lower than present. A Mid-Wisconsin interstadial warming dating from 43.5–39 ka was rapid and intense. At the peak of the warming event, about 42 ka, TMAX values were only 1–2°C lower than modern. This level of amelioration apparently lasted only about 2000–3000 yr. By 23.7 ka, TMAX values declined to 11.5–10°C lower than modern, but another, small-scale amelioration is indicated by assemblages dating from 20.5 to 19.7 ka. The interstadial event recorded from the site at Titusville, Pennsylvania closely matches the timing and intensity of the climate change estimated from British beetle faunas in the Upton Warren interstadial. Another warm interval (ca. 31–32.5 ka) has been documented from fossil beetle assemblages in Europe and North America. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
The taxonomic composition of chironomid, cladoceran and diatom assemblages in small lakes in the Alpine region shows a strong relationship with summer temperature. Since fossils of all three organism groups preserve well and remain identifiable in lake sediments, summer temperature transfer-functions can be developed based on the modern distribution of these organisms and applied to fossil records to reconstruct past summer temperature variability. We provide a summary of the chironomid-, cladoceran- and diatom-based transfer functions available from the Swiss Alps and discuss the potential problem of co-variation between summer temperature and lake nutrient conditions for transfer-function development. Whereas the diatom-based summer temperature transfer function remains to be evaluated in down-core reconstructions, the cladoceran- and chironomid-based transfer functions have been used successfully to produce summer temperature records on Lateglacial and Holocene time scales that are in good agreement with other temperature reconstructions in the Alps. Major problems that can be encountered when using fossil assemblages of aquatic organisms for temperature reconstruction in the Alpine region are biases in the inferred temperatures associated with human impact on lakes and parameters other than temperature affecting the fossil assemblages. A multi-proxy approach to palaeoenvironmental reconstruction is recommended to keep a close control on past catchment and within-lake processes during the time interval of interest.  相似文献   

19.
Detailed textural and chemical data for mineral assemblages on a regional scale are presented for the metaandesitic Eocene-Oligocene Taveyanne greywacke of the Glarus Alps, Eastern Switzerland. Presented data indicate an increase of metamorphic grade from zeolite facies to prehnite-pumpellyite and pumpellyite-actinolite facies. Low-grade outcrops contain laumontite, minor corrensite and pumpellyite (assemblage type 1), whereas outcrops of higher metamorphic grade contain prehnite and two populations of pumpellyite (type 2), prehnite—pumpellyite-(Al)—white mica (type 3), a single outcrop shows pumpellyite-actinolite facies (type 4). From the zeolite to prehnite-pumpellyite/pumpellyite-actinolite facies there are indications for an increase of the chemical equilibrium domain size for the critical paragenesis from a single detrital grain ≤1 mm) in type 1, to a few millimetres in type 2, and to a whole thin section in type 3. Metamorphic P - T conditions were determined by a combination of chlorite thermometry, fluid inclusion and vitrinite reflectance data. Peak temperatures range from 170-190 C for zeolite facies to 270-310 C for prehnite-pumpellyite and pumpellyite-actinolite facies. For the higher temperature range, pressures of 2-3 kbar are derived indicating a geothermal gradient of 24-32 C km-1. The well-constrained temperature estimations derived for the assemblages provide a useful test of the different empirical calibrations of chlorite thermometers recently proposed. The best correspondence to the temperatures determined here is for the Cathelineau calibration. In addition, in the lower grade samples differences in textures and calculated temperatures provide a mean to distinguish between detrital and newly formed chlorites.  相似文献   

20.
Blocks of highly foliated amphibolite are locally embedded within a serpentinite mélange underlying the Yarlung Zangbo ophiolites in the Xigaze area of southern Tibet. The ophiolites are remnants of an Early Cretaceous back-arc basin within the Permo-Cretaceous Tethys Ocean, which are exposed along in the Yarlung Zangbo Suture Zone (YZSZ). These amphibolites are interpreted as fragments of a dismembered dynamothermal sole. Three types of amphibolite are present: (1) common amphibolite with assemblages of Hbl + Pl ± Ep ± Ap ± Ttn, (2) clinopyroxene-bearing amphibolite with Hbl ± Pl ± Cpx ± Ep ± Ttn ± Qtz ± Ap and (3) garnet–clinopyroxene-bearing amphibolite characterized by the assemblages Hbl + Cpx + Grt + Pl ± Rt and Grt + Hbl + Pl (corona assemblage). In all three types, plagioclase is pseudomorphed by late albite–prehnite. Retrograde cataclastic veins containing assemblages of Prh + Ab + Ep ± Chl are also present. P–T estimates indicate that the amphibolites reached peak metamorphic conditions of 13–15 kbar and 750–875 °C. Partial replacement of pyrope-rich (up to 35 mole%) garnet by Al-tschermakite (Al2O3 up to 21 wt%) reflects a high pressure (≈18 kbar, 600 °C) metamorphic event followed by rapid exhumation. Soon after exhumation, the amphibolites were intruded by very fine-grained diabase dykes that were then hydrothermally altered. The field relationships and metamorphic history of the amphibolites indicate formation during inception of subduction within a back-arc basin prior to obduction of the ophiolites onto the Indian passive margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号