首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ANSYS在煤矿开采数值模拟中应用研究   总被引:4,自引:2,他引:4  
唐巨鹏  潘一山 《岩土力学》2004,25(Z2):329-332
以典型矿井山东华丰矿、阜新五龙矿和北京大台井为例,利用ANSYS有限元软件,对煤矿开采引起的地表沉陷、冲击地压危险区域确定和俯伪斜采煤法参数优化进行了数值模拟分析.分别针对所处的地质条件和赋煤状况,建立了二维或三维有限元模型,模拟计算了地表沉陷曲线和最大沉陷位置,指出山东华丰矿随开采推进沉陷位移和影响范围将逐渐扩大,最大沉陷位移逐步向开采方向前移的规律,当开采800 m时出现最大下沉速度3.5 mm/d,最大沉陷位移为3.7 m.五龙矿311面当开采100m和400 m时分别由于火成岩墙和应力集中区贯通导致顶板易断裂而极易发生冲击地压事故;大台井俯伪斜采煤法煤层倾角只有在60°~67° 时,推采距离才对煤层顶板法向最大压应力具有明显影响,且顶底板法向最大位移规律为上部位移大于中部位移,西中部位移又大于下部位移,在煤层倾角70°时,工作面超前支撑压力作用范围最小为30 m,而下巷道支撑压力作用范围最大为25 m,巷道数为3时,顶板下巷道超前支撑压力峰值位置为5.3 m.ANSYS计算结果表明,该数值模拟是合理的,与实际情况基本吻合,说明ANSYS在煤矿开采领域是一种有效的数值模拟工具.  相似文献   

2.
为解决红阳二矿西三下部采区村下压煤问题,保证村下采区稳定安全,实现矿区可持续开采,以该采区压煤开采地质条件和煤层赋存情况为研究基础,应用轴向力作用下岩层稳定性极限平衡分析法进行理论分析,结合采煤沉陷预计软件对地表移动变形进行预计,利用数值模拟对理论分析和沉陷预计的结果进行合理性验证,综合以上研究过程得到如下结论:(1)村下压煤条采,沿采空区倾向,顶板位移从两边到中间呈增大趋势,且在采区中间位置达到最大位移值979.3 mm;(2)从采空区顶板至地表,沿采区垂向,岩层位移值呈减小趋势,在地表处达到最小位移值3.45 mm;(3)在采深760 m时,村下采空区上覆岩层应力分布重新达到平衡,可保持稳定大约10年,采深达到815 m时,采空区及上覆岩层逐渐趋于稳定并维持大约5.6年;(4)采煤沉陷预计地表最大沉降值W=720 mm;最大曲率值K=0.005×10~(-3)/m;最大水平变形值ε=0.45 mm/m;(5)数值模拟分析结果与极限分析法、采煤沉陷预计结果一致,可为村下压煤开采提供稳定性判据,避免了采区采动损害引发地表塌陷灾害。  相似文献   

3.
为了保障山西郭庄煤矿铁路专用线的安全运营,通过建立岩移观测站,在收集整理监测数据的基础上,对铁路专用线经过的山西常村煤矿S3-13工作面采动引起的地表移动变形规律进行了分析。研究结果表明:综放开采条件下,地表移动变形剧烈,下沉值大,但下沉速度相对较小;地表下沉系数较大(0.76),主要影响角正切tanβ偏大(2.78),最大下沉角较大(89°);地表移动总持续时间长,活跃期时间占比58.7%,活跃期下沉量占总下沉量的89%,活跃期变形剧烈且集中。研究成果旨在为后期工作面开采过程中铁路的变形预测及维修防治提供理论依据。   相似文献   

4.
多年冻土区青藏公路路基边界温度及计算模型研究   总被引:1,自引:1,他引:0  
易鑫  胡达  喻文兵  刘伟博 《冰川冻土》2017,39(2):336-342
温度边界是冻土工程模拟中重要的边界条件之一。依据青藏公路多年冻土段不同走向路基断面表层温度的连续观测数据,分析了青藏工程走廊内路基实测的边界温度特征。结果表明:走向为W8° S的断面阴阳坡温差最大为5.81 ℃,走向为W34°S的断面坡面温差为5.68 ℃,走向为W86° S度的断面坡面温差为1.38 ℃,说明高原上无论路基走向如何,路基两侧坡面都存在温度差异,因此,两侧必须采取差异设计,以减少路基温度的不对称。同时,根据路基接收太阳能辐射反演路面及边坡表面温度,提出了工程热边界的简化计算模型,并将模型计算结果与实测数据进行对比,两者吻合较好。  相似文献   

5.
湖南官山冲煤矿主采三叠系安源组5、6、7煤层,采用走向长壁式采煤法.根据采动过程采深采厚比、最大地表移动、变形、倾斜极值的计算分析认为,5、6.7煤层联合开采后,地表最大下沉值为754mm,最大水平移动值为241mm,矿区范围内地面变形较强烈,地面塌陷、地裂缝的数量及规模较大,下山方向地表变形比上山方向明显;但随着开采水平向深部延伸,地面变形逐渐减弱,对地面建筑物破坏等级将逐渐降低.利用”大井”法圈出疏排水影响范围,运用地下水均衡理论和补偿理论证明由于周期性的排泄和恢复,矿山开采对地下水资源的扰动不大,不会造成区域地下水失衡,对周边水资源环境影响不大.  相似文献   

6.
王帅  吴盾  刘桂建 《中国煤炭地质》2013,25(2):48-51,59
淮南丁集矿井1262(1)工作面为该矿-826m水平西一采区首采工作面,地质条件特殊(如深厚松散含水层和大采深),且地表移动变形规律研究得较少。因此,为了研究该矿地表移动变形规律,在1262(1)工作面建立地表移动观测站。以实测数据为基础,结合概率积分法获得了在该地质采矿条件下地表移动的相关参数。结果表明:地表下沉系数为1.16;起动距为1/7~1/6倍的平均采深;超前影响距为380m。在此基础上,计算出该矿的地表最大下沉速度及最大下沉速度滞后角分别为Vmax=21.9 mm/d和φ后=77.2°,表明在该地质采矿条件下,该矿的地表移动剧烈、地表下沉速度较快、起动距偏小等特点。在对综合移动角理论公式推导的基础上,获得了矿区综合移动角的误差值,并得出了矿区综合移动角经验值,对指导矿山开采具有一定的实际意义。  相似文献   

7.
我国西部矿区普遍具有资源储量大、埋藏浅、覆岩结构简单等特点,采矿活动对地表影响明显。为研究神东矿区地表移动参数变化规律,首先基于大柳塔矿22201工作面实测数据分析其地表动态变形规律,再采用神东矿区18个工作面的实测数据,获得地表移动参数与地质采矿条件之间的对应关系,并分析地质采矿条件对地表移动参数的影响机理。研究表明:神东矿区煤层开采地表沉陷速度快、衰退期短,最大下沉速度达643.3 mm/d,活跃期下沉量占总下沉量的99.05%;下沉系数与松散层采深比呈先增大后减小的二次函数关系,水平移动系数、主要影响角正切分别与(采高×开采速度)/(宽深比×基岩厚度)、基岩厚度×开采速度/(采深×采高)呈先减小后增大的二次函数关系;边界角、裂缝角与松散层采深比呈正线性关系,移动角与基岩采深比成正比,与采高、开采速度成反比;基岩承载松散层荷载及松散层拱效应的变化是导致地表移动参数变化的根本原因。研究成果对西部矿区地表破坏控制与治理、矿井生产安全保障及生态环境修复具有工程实用价值。   相似文献   

8.
为了掌握厚松散层覆盖地区地表在采动过程中的动态移动变形情况,以地表移动观测站实测数据为基础,获得厚松散层开采地表动态移动参数在开采过程中的变化规律,以及走向主断面方向上任意时刻、任意点的下沉速度预计公式。结果表明:当工作面推过最大下沉点170 m左右时,该点的下沉速度达到最大值,其值为22.85 mm/d;地表点最大下沉速度值及其滞后距随工作面开采距离的增大而增加,当工作面推进距离达到600 m左右后,两者增加的幅度逐渐减小,并分别达到稳定值22.00 mm/d和150 m,认为此后的采动过程是地表点下沉速度曲线以固定形状与工作面保持一定的滞后距随开采不断向前移动;参考国内松散层下开采案例,通过多元线性回归分析得到地表动态移动变形参数与地质及开采技术参数之间的关系式;最后根据动态移动参数在采动过程中的变化规律,建立了走向断面上任意时刻、任意点的下沉速度预测公式,通过预测值与实测值的对比,认为预测结果能够满足工程实践需要。  相似文献   

9.
开采倾斜近地表矿体地表及围岩变形陷落的模型试验研究   总被引:4,自引:4,他引:0  
以某铜矿矿山一典型地质剖面为原型,运用物理概化模型试验,采用网格数字摄影测量方法量测模型剖面全场位移,分析了开采倾斜近地表矿体地表及围岩变形陷落随不同开挖步的变化规律。在模型试验中,开挖-75 m~-45 m之间的矿体,围岩扰动范围及地表下沉位移逐渐增大,第7步开挖完成后,采空区上方岩体开始出现离层,第9步开挖完成后,地表1~4测点之间形成一明显沉陷盆地,最大下沉位移达825 mm。模型试验研究的结果与现场及离散元数值计算结果基本吻合。  相似文献   

10.
大水沟碲矿床矿脉特征及包裹体类型   总被引:3,自引:0,他引:3  
大水沟碲矿床产出于志留系通化群含炭泥质条带白云石大理岩夹钙质基性火山岩[1] 。这些岩石经历了晚三叠世末的区域绿片岩相变质作用和滑动剪切作用。矿区内地层走向为 32 0°~ 350° ,倾向 50°~80° ,倾角 10°~ 30°。矿区主要发育三期穿层节理。第一期北北东向和北北西向 ,共轭轴缓倾 ,其中北北东组形成等间距破裂带 ,并且直接控制矿脉的产出。第二期北东向和北西向 ,第三期近南北向和东西向 ,均破坏矿体。矿区内存在以下 4类脉体 :( 1)早期白云石脉产于志留系角闪片岩和角闪石榴片岩地层中 ,走向与地层斜交 (早期白云石脉走向 0°~…  相似文献   

11.
某高速公路下伏煤矿采空区稳定性分析   总被引:10,自引:0,他引:10  
在论述某高速公路下伏砦脖煤矿采空区地质、采矿和工程地质特征的基础上, 进行了稳定性数值模拟分析, 定性与定量地分析与评价了该煤矿采空区的地表变形特征及稳定性。研究结果表明: 该煤矿采空区的变形尚未完成, 对拟建的高速公路将产生很大的危害, 必须采取相应的工程治理措施。   相似文献   

12.
主要阐述了沈北煤田煤炭地下气化原理、条件、煤炭气化开采依据,煤炭气化开采的发展远景及对国民经济发展的重要意义。  相似文献   

13.
李定启 《岩土力学》2014,35(Z1):1-7
为深入探讨硬煤的煤与瓦斯突出机制,对深部硬煤掘进工作面煤与瓦斯突出的相关理论和模型试验进行研究。根据断裂力学、岩石力学及煤与瓦斯突出有关理论,提出深部开采过程中硬煤掘进工作面薄板理论假设,并将该理论应用于深部硬煤掘进工作面煤与瓦斯突出模拟试验研究。对硬煤掘进工作面薄板理论分析,认为工作面尺寸、煤的弹性模量、围岩侧压系数、瓦斯压力等因素对硬煤掘进工作面突出具有较大影响。试验结果表明,在围岩应力、煤的坚固性系数较大的情况下,硬煤突出临界条件主要受围岩应力、煤的弹性模量、围岩侧压系数及工作面尺寸等因素影响,而受瓦斯压力影响相对较小;在围岩应力、试样的坚固性系数较大且煤的弹性模量和侧压系数稳定不变的情况下,发生突出的临界轴向应力随模拟工作面尺寸增大而近似呈线性减小。试验结论基本符合本硬煤突出薄板模型理论公式,在一定程度上验证了硬煤掘进工作面煤薄板模型理论及硬煤掘进工作面突出机制假设。  相似文献   

14.
中国东北地区赋煤构造是在太平洋地球动力学体系影响下形成的一系列NE—NNE向断陷盆地,目前对本区赋煤构造单元划分尚未形成统一认识。根据东北地区含煤岩系赋存特征,将东北赋煤构造单元划分为三级体系,即:东北赋煤构造区—3个赋煤构造亚区—11个赋煤构造带。以地球动力学理论为基础,以构造控煤特征为研究主线,探讨了三级赋煤构造单元的基本控煤特征。该项研究对煤炭资源评价和勘查具有重要意义。   相似文献   

15.
舒兰煤田水曲柳区煤层气在平面上富气中心分布与富煤中心一致。该区煤层气属特低丰度、中等埋深的小型煤气田。适宜井下瓦斯抽采。可在建井后,在瓦斯富集部位煤层底板岩巷中,采用钻孔抽采方式,可回收近1.8亿m3煤层气,不但提高了资源的利用率,还将减少环境污染,提高了煤矿生产安全度,具有显著的经济意义和社会效益。  相似文献   

16.
分析了我国煤炭资源的安全保证问题,认为其主要影响因素是:有效供给不足、回采率低、基础地质工作滞后、国家“财产权益”模糊、忽视循环经济发展等,并提出了有关建议。   相似文献   

17.
解光新  李小彦  庄军 《煤田地质与勘探》2001,29(6):8-11,T001,T002,T003,T004
通过对我国不同时代,不同产地煤层中菌藻生物化石的种类和丰度研究,观察到煤层中的菌藻类生物具形态各异,属种繁多,数量丰富的特征。经热模拟实验证明:菌藻类煤的成烃能力比同煤级的腐植煤高,(甲烷高1-2倍,液态烃高4-5倍),尤其对深水区形成的腐泥煤,是石油的主要母质。因此,今后在寻找煤层气或煤成油的有利区块时,应深入的研究成煤环境和成煤物质。  相似文献   

18.
针对辽宁红阳煤田局部采区浅部煤炭资源逐渐枯竭的问题,通过煤田构造发育规律和演化史研究、油气地震勘探资料解译、平衡剖面恢复等技术和方法,预测了该煤田深部及外围煤炭资源的赋存状况、远景勘探开发区及煤炭资源量。结果显示:煤田二区为正常背斜的控煤构造,-1500m以浅的煤炭资源储量为83148万t;煤田南部岳家堡背斜往南发育,徐往子勘探区东部存在一个低次序含煤向、背斜构造,可作为远景勘探区,估算-1500m以浅的煤炭资源量为1.85亿t。   相似文献   

19.
内蒙古是我国非常重要的后备煤炭资源基地,煤层大多聚集在白垩纪断陷盆地中,其中,五间房含煤盆地煤炭资源丰富。通过对该盆地东南部3个钻孔57件煤样的煤岩学和煤化学分析,探讨了煤层的煤质特征、煤相类型及其演化规律。研究结果表明:本区煤层以低—中高灰、高挥发分产率和低—特低硫为特征;具有较高的镜/惰比和结构保存指数;煤相类型主要为潮湿森林沼泽相,自下而上,成煤泥炭沼泽覆水程度总体有所加深,上部泥炭沼泽具有水体逐渐加深的水进型特征,下部泥炭沼泽具有水体逐渐变浅的水退型特征。   相似文献   

20.
新疆地区侏罗系中低变质煤储层吸附特征及煤层气资源前景   总被引:11,自引:2,他引:11  
利用高压吸附仪对新疆主要沉积盆地侏罗系煤储层的甲烷吸附能力进行了测试。测试结果表明中低变质煤的吸附能力普遍较低 ,且吸附能力随煤镜质组反射率值的增加而增加 ,随煤中水分的增加而减小 ,其原因与煤的微孔特征有关。根据煤储层的吸附兰氏体积 ,新疆侏罗系煤储层可分为 4类区 ,并认为新疆具有煤层气资源前景的地区分布在煤的吸附兰氏体积大于 12m3 /t的第三类区及第四类区  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号