首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
In this paper, a fully coupled thermo-hydro-mechanical model is presented for two-phase fluid flow and heat transfer in fractured/fracturing porous media using the extended finite element method. In the fractured porous medium, the traction, heat, and mass transfer between the fracture space and the surrounding media are coupled. The wetting and nonwetting fluid phases are water and gas, which are assumed to be immiscible, and no phase-change is considered. The system of coupled equations consists of the linear momentum balance of solid phase, wetting and nonwetting fluid continuities, and thermal energy conservation. The main variables used to solve the system of equations are solid phase displacement, wetting fluid pressure, capillary pressure, and temperature. The fracture is assumed to impose the strong discontinuity in the displacement field and weak discontinuities in the fluid pressure, capillary pressure, and temperature fields. The mode I fracture propagation is employed using a cohesive fracture model. Finally, several numerical examples are solved to illustrate the capability of the proposed computational algorithm. It is shown that the effect of thermal expansion on the effective stress can influence the rate of fracture propagation and the injection pressure in hydraulic fracturing process. Moreover, the effect of thermal loading is investigated properly on fracture opening and fluids flow in unsaturated porous media, and the convective heat transfer within the fracture is captured successfully. It is shown how the proposed computational model is capable of modeling the fully coupled thermal fracture propagation in unsaturated porous media.  相似文献   

2.
A numerical model, called CCPF1 (C onsolidation with C ompressible P ore F luid 1 ), is presented for one‐dimensional large strain consolidation of a saturated porous medium with compressible pore fluid. The algorithm includes all the capabilities of a previous large strain consolidation code, CS2, written for incompressible pore fluid. In addition, fluid density and fluid viscosity are functions of fluid pressure in CCPF1. Generalization of the numerical approach to accommodate these functions requires several modifications to the CS2 method, including phase relationships, intrinsic permeability, pore pressure, fluid potential, and mass flux. Inertial forces are neglected and isothermal conditions are assumed. The development of CCPF1 is first presented, followed by an example that illustrates the effects of pore fluid compressibility on the mechanics of consolidation of saturated porous media. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
探针法测定冻土的导水率   总被引:1,自引:0,他引:1  
  相似文献   

4.
lNTRODUCTIONIt is wel1 established that the vitrinite reflectance (R<, ) de-pends on the temperature history that a basin has undergone.In general, Ro is a function of maximum paleotemperature andeffective heating time. Thus, the paleotemperature of sedi-ments and the value of vitrinite ref1ectance are controlled by theflow of heat Q(t) into the basin and by the thermal parametersof the sediments. Therefore, in principle, it is possible to cal-culate the thermal vitrinite reflectance of …  相似文献   

5.
Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.  相似文献   

6.
The coexistence of chemical potential gradients of solute species in a hydrothermal solution, and a temperature gradient imposed by a heat source may lead to complex coupled transport of matter and heat. If the geological material is permeable to solutes, thermal diffusion (Soret effect) may constitute an important transport mechanism that could redistribute ionic species in the fluid phase. An attempt is made to explain, by stability theory, the non-steady-state behaviour of the system and the temperature oscillations within a thin convective layer adjacent to the walls of the heat source.  相似文献   

7.
This paper presents a fully coupled finite element formulation for partially saturated soil as a triphasic porous material, which has been developed for the simulation of shield tunnelling with heading face support using compressed air. While for many numerical simulations in geotechnics use of a two‐phase soil model is sufficient, the simulation of compressed air support demands the use of a three‐phase model with the consideration of air as a separate phase. A multiphase model for soft soils is developed, in which the individual constituents of the soil—the soil skeleton, the fluid and the gaseous phase—and their interactions are considered. The triphasic model is formulated within the framework of the theory of porous media, based upon balance equations and constitutive relations for the soil constituents and their mixture. An elasto‐plastic, cam–clay type model is extended to partially saturated soil conditions by incorporating capillary pressure according to the Barcelona basic model. The hydraulic properties of the soil are described via DARCY 's law and the soil–water characteristic curve after VAN GENUCHTEN . Water is modelled as an incompressible and air as a compressible phase. The model is validated by means of selected benchmark problems. The applicability of the model to geotechnical problems is demonstrated by results from the simulation of a compressed air intervention in shield tunnelling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Most practical reservoir simulation studies are performed using the so-called black oil model, in which the phase behavior is represented using solubilities and formation volume factors. We extend the multiscale finite-volume (MSFV) method to deal with nonlinear immiscible three-phase compressible flow in the presence of gravity and capillary forces (i.e., black oil model). Consistent with the MSFV framework, flow and transport are treated separately and differently using a sequential implicit algorithm. A multiscale operator splitting strategy is used to solve the overall mass balance (i.e., the pressure equation). The black-oil pressure equation, which is nonlinear and parabolic, is decomposed into three parts. The first is a homo geneous elliptic equation, for which the original MSFV method is used to compute the dual basis functions and the coarse-scale transmissibilities. The second equation accounts for gravity and capillary effects; the third equation accounts for mass accumulation and sources/ sinks (wells). With the basis functions of the elliptic part, the coarse-scale operator can be assembled. The gravity/capillary pressure part is made up of an elliptic part and a correction term, which is computed using solutions of gravity-driven local problems. A particular solution represents accumulation and wells. The reconstructed fine-scale pressure is used to compute the fine-scale phase fluxes, which are then used to solve the nonlinear saturation equations. For this purpose, a Schwarz iterative scheme is used on the primal coarse grid. The framework is demonstrated using challenging black-oil examples of nonlinear compressible multiphase flow in strongly heterogeneous formations.  相似文献   

9.
针对复杂流体运动中物质输运方程的数值求解面临地形复杂、数值阻尼过大以及数值振荡等难题,建立了Godunov格式下求解二维水流-输运方程的高精度耦合数学模型,提出了集成输运对流项的HLLC (Harten-Lax-van Leer-Contact)型近似黎曼算子,可同时计算水流通量及输运通量,不仅有效模拟了复杂地形上水流运动,而且解决了输运方程中对流项产生的数值阻尼过大和不稳定振荡等难题。采用水深-水位加权重构技术和Minmod限制器,提高了模型处理复杂混合流态的能力,同时结合Hancock预测-校正方法,使模型具有时空二阶精度。算例结果表明,模型精度高、稳定性好,能有效抑制数值阻尼,适合模拟实际复杂流体运动中物质的输运过程,具有较好的推广应用价值。  相似文献   

10.
The Tongue Creek watershed lies on the south flank of Grand Mesa in western Colorado, USA and is a site with 1.5 km of topographic relief, heat flow of 100 mW/m2, thermal conductivity of 3.3 W m–1 °C–1, hydraulic conductivity of 10-8 m/s, a water table that closely follows surface topography, and groundwater temperatures 3–15°C above mean surface temperatures. These data suggest that convective heat transport by groundwater flow has modified the thermal regime of the site. Steady state three-dimensional numerical simulations of heat flow, groundwater flow, and convective transport were used to model these thermal and hydrological data. The simulations provided estimates for the scale of hydraulic conductivity and bedrock base flow discharge within the watershed. The numerical models show that (1) complex three-dimensional flow systems develop with a range of scales from tens of meters to tens of kilometers; (2) mapped springs are frequently found at locations where contours of hydraulic head indicate strong vertical flow at the water table, and; (3) the distribution of groundwater temperatures in water wells as a function of surface elevation is predicted by the model.  相似文献   

11.
Petrographic, fluid inclusion, geochemical and isotopic evidence from xenoliths in alkali basalts suggests that low-viscosity fluids rich in O-H-C, dissolved silicates and especially the incompatible elements may ascend, decompress and precipitate crystalline phases and/or induce partial fusion in the upper mantle. Such mantle metasomatic fluids (MMF) may be important in generating isotopic heterogeneity and in transporting and focusing mantle heat. In order to model the movement of MMF, the ordinary differential equations governing the variation ofP, T, ascent velocity and fluid density of a compressible, viscous, single-phase (H2O or CO2) non-reacting fluid ascending through a vertical crack of constant width have been solved. A large number of numerical simulations were carried out in which the significant factors affecting flow behavior (thermodynamic and transport fluid properties, roughness and width of cracks, geothermal gradient, initial conditions, etc.) were systematically varied. The calculations show that: (1) MMF tends to move at uniform rates following a short period of rapid initial acceleration, (2) MMF ascends nearly isothermally, (3) MMF acts as an efficient heat transfer agent; numerical experiments show that transport of heat into regions undergoing metasomatism can lead to partial fusion. The heat transported by movement of MMF averaged over the age of the Earth is sufficient to generate about 0.1 km3 of basaltic magma per year, which is approximately equal to the production rate of alkaline magma. If an intense period of mantle degassing occured early in the history of the Earth, the transport of heat and mass (K, U, Rb, LREE) by migrating fluids might have been important.  相似文献   

12.
Numerical simulation of gas migration driven by compressible two-phase partially miscible flow in porous media is of major importance for safety assessment of deep geological repositories for long-lived high-level nuclear waste. We present modeling of compositional liquid and gas flow for numerical simulations of hydrogen migration in deep geological radioactive waste repository based on persistent primary variables. Two-phase flow is considered, with incompressible liquid and compressible gas, which includes capillary effects, gas dissolution, and diffusivity. After discussing briefly the existing approaches to deal with phase appearance and disappearance problem, including a persistent set of variables already considered in a previous paper (Bourgeat et al., Comput Geosci 13(1):29–42, 2009), we focus on a new variant of the primary variables: dissolved hydrogen mass concentration and liquid pressure. This choice leads to a unique and consistent formulation in liquid saturated and unsaturated regions, which is well adapted to heterogeneous media. We use this new set of variable for numerical simulations and show computational evidences of its adequacy to simulate gas phase appearance and disappearance in different but typical situations for gas migration in an underground radioactive waste repository.  相似文献   

13.
An existing dual-porosity finite element model has been extended to include thermo-hydro-mechanical coupling in both media. The model relies on overlapping distinct continua for the fluid and solid domains. In addition, conductive and convective heat transfers are incorporated using a single representative thermodynamics continuum. The model is applied to the problem of an inclined borehole drilled in a fractured formation subjected to a three-dimensional state of stress and, a temperature gradient between the drilling fluid and the formation. A sensitivity analysis has been carried out to study the impact of thermal loading, effect of heat transport by pore fluid flow and, the effect of parameters of the secondary medium used to represent the fractures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Aquifer contamination by organic chemicals in subsurface flow through soils due to leaking underground storage tanks filled with organic fluids is an important groundwater pollution problem. The problem involves transport of a chemical pollutant through soils via flow of three immiscible fluid phases: namely air, water and an organic fluid. In this paper, assuming the air phase is under constant atmospheric pressure, the flow field is described by two coupled equations for the water and the organic fluid flow taking interphase mass transfer into account. The transport equations for the contaminant in all the three phases are derived and assuming partition equilibrium coefficients, a single convective – dispersive mass transport equation is obtained. A finite element formulation corresponding to the coupled differential equations governing flow and mass transport in the three fluid phase porous medium system with constant air phase pressure is presented. Relevant constitutive relationships for fluid conductivities and saturations as function of fluid pressures lead to non-linear material coefficients in the formulation. A general time-integration scheme and iteration by a modified Picard method to handle the non-linear properties are used to solve the resulting finite element equations. Laboratory tests were conducted on a soil column initially saturated with water and displaced by p-cymene (a benzene-derivative hydrocarbon) under constant pressure. The same experimental procedure is simulated by the finite element programme to observe the numerical model behaviour and compare the results with those obtained in the tests. The numerical data agreed well with the observed outflow data, and thus validating the formulation. A hypothetical field case involving leakage of organic fluid in a buried underground storage tank and the subsequent transport of an organic compound (benzene) is analysed and the nature of the plume spread is discussed.  相似文献   

15.
增强型地热系统(EGS)中高温岩石与流体之间的对流换热特征一直以来是干热岩(HDR)研究的重要基础内容。岩石导热热阻对裂隙对流换热特征具有重要影响。为研究其具体影响,综合运用理论解析与数值模拟2种研究方法,通过对解析解讨论以及建立数值模型,研究两平行光滑平板之间的换热规律。结果表明:流体速度、传热边界层充分发展时,局部努塞尔特准数Nux为定值,与其他因素无关;局部对流换热系数hx仅与流体热导率k和裂隙开度e有关,与其他因素无关。上下平板壁面热流恒定时,Nux为8.235;温度恒定时,Nux为7.54。然后建立多组导热热阻不同的岩石裂隙对流换热数值模型,发现岩石导热热阻增大,温度场进口段延长,对流换热系数h增大。岩石长度显著影响进口段占比,进而影响h的大小。h随着长度增大而减小;当岩石长度足够长时,进口段占比足够小,此时除k与e之外的参数对h基本没影响。并且发现实验室常用岩石长度为100 mm,而典型EGS工程中裂隙长度是米级的,建议室内实验重视岩石长度对裂隙对流换热特征的影响。  相似文献   

16.
The purpose of this paper is to examine the importance of different possible simplifying approximations when performing numerical simulations of fluid‐filled porous media subjected to dynamic loading. In particular, the relative importance of the various acceleration terms for both the solid and the fluid, especially the convective contribution, is assessed. The porous medium is modelled as a binary mixture of a solid phase, in the sense of a porous skeleton, and a fluid phase that represents both liquid and air in the pores. The solid particles are assumed to be intrinsically incompressible, whereas the fluid is assigned a finite intrinsic compressibility. Finite element (FE) simulations are carried out while assuming material properties and loading conditions representative for a road structure. The results show that, for the range of the material data used in the simulations, omitting the relative acceleration gives differences in the solution of the seepage velocity field, whereas omitting only the convective term does not lead to significant differences. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Numerical models of the Aix-les-Bains thermal aquifer (France) were used to investigate the influence of Quaternary paleoclimatic events on the current thermal state of the groundwater. Initial numerical tests were successful in that present-day fluid flows (heads and flow rates) and the resulting velocities were compatible with residence time data. Water flowing through an aquifer cools the rock mass; therefore, the rate of water flow governs the outlets temperature. For the Aix-les-Bains aquifer, applying present-day flow rates to the entire history of the aquifer leads to much more substantial cooling of the rock mass than is indicated by the outlets temperature (i.e. present-day flow rates are 10 times too high). This suggests that the aquifer may have gone through alternating functioning phases, during which the rock mass cooled, and blocked phases, during which the aquifer reheated. Other results indicate that the main parameters affecting thermal behavior during a functioning phase are the total inflow volume, rather than individual inflow rates, and the initial heat field. As phenomena linked to glaciation can lead to the blocking of infiltration zones and aquifer outlets, the findings suggest that the hypothesis of intermittent aquifer functioning related to glaciations is compatible with the current thermal field.  相似文献   

18.
In order to understand the hydrothermal activity mechanism of active layers to rainfall in permafrost regions caused by humidification of climate, the differences of ground surface energy balance and hydrothermal activity in different types of shallow soil with the consideration of rainfall were discussed. Based on the meteorological data in 2013 observed at Beiluhe observation station of Tibet Plateau, three types of shallow ground soil (i.e., sandy soil, sandy loam and silty clay) were selected to compare the differences in the water content and energy balance at the ground surface, dynamic processes of water and energy transport in active layers and coupling mechanism under rainfall condition in the plateau using a coupled water-vapor-heat transport model. The results show that the increase of soil particle size leads to the increase of surface net radiation and latent heat of evaporation, but the decrease of soil heat flux. The difference of surface energy balance, especially the sensible heat flux and latent heat of evaporation, are larger in the warm season but smaller in the cold season. The liquid water transport under hydraulic gradient and the water-vapor transport under thermal gradient are obvious as the particle size in soil increases. However, the water-vapor flux under thermal gradient increases but the liquid water flux under hydraulic potential gradient decreases. As a result, the water content in shallow soil decreases accordingly but it increases slightly at the depth of 25 ~75 cm. Moreover, with the increase of soil particle size, the thermal conductivity of soil, convective heat transfer under rainfall and surface evaporation increase, but the soil heat conduction flux and soil temperature gradient decrease. Thus, soil temperature in sandy soil is much higher than that of sandy loam and silty clay at the same depth. The permafrost table declines with the increase of the thickness of active layer, which is unfavourable to permafrost stability. The results can provide theoretical reference for stability prediction and protection of permafrost caused by humidification of climate.  相似文献   

19.
The impact of groundwater withdrawals on the interaction between multi-layered aquifers with different water qualities in the Viterbo geothermal area (central Italy) was studied. In this area, deep thermal waters are used to supply thermal spas and public pools. A shallow overlying aquifer carries cold and fresh water, used for irrigation and the local drinking-water supply. Starting with a conceptual hydrogeological model, two simplified numerical models were implemented: a steady-state flow model of the entire groundwater system, and a steady-state flow and heat transport model of a representative area, which included complex interactions between the aquifers. The impact of increased withdrawals associated with potential future development of the thermal aquifer must be considered in terms of the water temperature of the existing thermal sources. However, withdrawals from the shallow aquifer might also influence the discharge of thermal sources and quality of the water withdrawn from the shallow wells. The exploitation of the two aquifers is dependent on the hydraulic conductivity and thickness of the intervening aquitard, which maintains the delicate hydrogeological equilibrium. Effective methods to control this equilibrium include monitoring the vertical gradient between the two aquifers and the residual discharge of natural thermal springs.  相似文献   

20.
饶登宇  白冰  陈佩佩 《岩土力学》2018,39(12):4527-4536
在考虑相变的热能平衡方程和非饱和水分迁移质量控制方程的基础上,建立温度场-水分场的耦合模型,并采用一种无网格粒子算法(SPH)进行数值求解。其中,耦合方程中考虑了水流传热以及温度势对水流的直接驱动,在不考虑相变的情况下,该耦合模型可退化为常温下的水-热耦合模型,故可用于模拟冻融循环的相关问题。从求解热能平衡方程中的含冰量出发,实现解耦并对半无限单向冻结条件下介质内非稳态温度场和体积含水率分布场进行模拟,将耦合作用下的温度场与不耦合的解析解进行对比,反映出水分迁移对温度场存在较大影响。最后,求解了路基边坡在季节性周期温度边界下,温度场、水分场分布的演变规律,并评估了边坡阴阳面受热不均对水热两场分布的影响。计算结果基本能反映土冻结相变的实际物理过程,光滑粒子算法可以用于尝试解决冻土领域的其他相关问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号