首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osterberg-Cell (O-Cell) tests are widely used to predict the load–settlement behavior of large-diameter drilled shafts socketed in rock. The loading direction of O-Cell tests for shaft resistance is opposite to that of conventional downward load tests, meaning that the equivalent top load–settlement curve determined by the summation of the mobilized shaft resistance and end bearing at the same deflection neglects the pile-toe settlement caused by the load transmitted along the pile shaft. The emphasis is on quantifying the effect of coupled shaft resistance, which is closely related to the ratios of pile diameter to soil modulus (D/Es) and total shaft resistance to total applied load (Rs/Q) in rock-socketed drilled shafts, using the coupled load-transfer method. The proposed analytical method, which takes into account the effect of coupled shaft resistance, was developed using a modified Mindlin’s point load solution. Through comparisons with field case studies, it was found that the proposed method reasonably estimated the load-transfer behavior of piles and coupling effects due to the transfer of shaft shear loading. These results represent a significant improvement in the prediction of load–settlement behaviors of drilled shafts subjected to bi-directional loading from the O-Cell test.  相似文献   

2.
This paper presents a shear load transfer function and an analytical method for estimating the load transfer characteristics of rock-socketed drilled shafts subjected to axial loads. A shear load transfer (f–w) function of rock-socketed drilled shafts is proposed based on the constant normal stiffness (CNS) direct shear tests. It is presented in terms of the borehole roughness and the geological strength index (GSI) so that the structural discontinuities and the surface conditions of the rock mass can be considered. An analytical method that takes into account the coupled soil resistance effects is proposed using a modified Mindlin’s point load solution. Through comparisons with load test results, the proposed methodology is in good agreement with the general trend observed in in situ measurements and represents an improvement in the prediction of the shear behavior of rock-socketed drilled shafts.  相似文献   

3.
Two‐dimensional slope stability analysis for a slope with a row of drilled shafts needs a mechanism to take into account the three‐dimensional effect of the soil arching due to the spaced drilled shafts on slope. To gain a better understanding of the arching mechanisms in a slope with evenly spaced drilled shafts socketed into a stable stratum (or a rock layer), the three‐dimensional finite element modelling technique was used for a comprehensive parametric study, where the nonlinear and plastic nature of the soil and the elastic behavior of the drilled shafts as well as the interface frictions were modelled. Various factors were varied in the parametric study to include (1) the rigidity of the drilled shafts as influenced by its diameter, modulus of elasticity, and total length; (2) shafts spacing and location on the slope; (3) the material properties of rock and the socket length of shaft; and (4) the soil movement and strength parameters. Evidences of soil arching and reduction in the stresses and displacements through the load transfer mechanisms due to the presence of the drilled shafts were elucidated through the finite element method (FEM) simulation results. Design charts based on regression analysis of FEM simulation results were created to obtain a numerical value of the load transfer factor for the arching mechanism provided by the drilled shafts on the slope. Observations of the arching behavior learned from the FEM simulations provide an insight into the behavior of drilled shafts stabilized slope. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The increase of pile resistance with time is referred to as ‘set-up’. This behaviour of driven piles has been widely discussed in many studies by researchers. Meanwhile, there has been little, if any, information regarding this aspect for drilled shafts. Performing a bearing capacity test for a shaft over time, however, requires higher costs and more complicated rigs compared to a driven pile. A database including results from five Osterberg cell-tested drilled shafts conducted at two different stages is considered, from which the set-up effect is statistically analysed. The reliability-based analysis technique using Monte Carlo simulation (MCS) is used to develop separate resistance factors to account for different degrees of uncertainties associated with the predicted reference resistance and the predicted set-up resistance in the framework of the load and resistance factor design (LRFD) method. By incorporating set-up into design, shaft length or number of shafts can be reduced and economical design of drilled shafts can be achieved.  相似文献   

5.
Load displacement analysis of drilled shafts can be accomplished by utilizing the “t-z” method, which models soil resistance along the length and tip of the drilled shaft as a series of springs. For non-linear soil springs, the governing differential equation that describes the soil-structure interaction may be discretized into a set of algebraic equations based upon finite difference methods. This system of algebraic equations may be solved to determine the load–displacement behavior of the drilled shaft when subjected to compression or pullout. By combining the finite difference method with Monte Carlo simulation techniques, a probabilistic load–displacement analysis can be conducted. The probabilistic analysis is advantageous compared to standard factor of safety design because uncertainties with the shaft–soil interface and tip properties can be independently quantified. This paper presents a reliability analysis of drilled shaft behavior by combining the finite difference technique for analyzing non-linear load–displacement behavior with Monte Carlo simulation method. As a result we develop probabilistic relationships for drilled shaft design for both total stress (undrained) and effective stress (drained) parameters. The results are presented in the form of factor of safety or resistance factors suitable for serviceability design of drilled shafts.  相似文献   

6.
The use of drilled shafts to stabilize an unstable slope has been a widely accepted practice. There are two basic design and analysis issues involved: one is to determine the global factor of safety of the drilled shafts stabilized slope and the other one is to determine the design earth thrust on the drilled shafts for structural design of the shafts. In this paper, a limiting equilibrium method of slices based solution for calculating global factor of safety (FS) of a slope with the presence of a row of drilled shafts is developed. The arching mechanisms due to the presence of the drilled shafts on slope were taken into account by a load transfer factor. The method for calculating the net force applied to the drilled shaft from the soil mass was also developed. The interrelationships among the drilled shaft location on the slope, the load transfer factor, and the global FS of the slope/shaft system were derived utilizing the developed numerical closed‐form solution. An illustrative example is presented to elucidate the use of the solution in optimizing the location of the drilled shafts on slope to achieve the desired global factor of safety of the slope/shaft system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The pre-bored grouted planted pile is a new type of composite pile foundation that consists of a precast concrete pile and the surrounding cemented soil. A series of shear tests were conducted in a specific shear test apparatus to investigate the shaft capacity of the different pile–soil interfaces. The test results show that the frictional capacity of the cemented soil–sand interface is controlled mainly by the sand properties, while the strength of the cemented soil slightly influences the interface properties by affecting the normalized roughness coefficient Rn. The frictional capacity of the concrete–sand interface is similar to the frictional capacity of the cemented soil–sand interface, and the existence of mud cake layer virtually hampers the frictional properties of the interface. The maximum skin friction of the concrete–cemented soil interface increases approximately linearly with the increasing cemented soil strength, and the value of the maximum skin friction is much larger than that of the cemented soil–sand interface of identical cemented soil strength, which demonstrates the integrity of the pre-bored grouted planted pile in the load transfer process.  相似文献   

8.
There are no appropriate theories and methods of computation yet which could quantitatively analyze the stress and strain of super-long rock-socketed bored piles and simulate the full process of pile deformation. The bearing behavior and settlement characteristics are complicated because of the construction techniques, characteristics of overlying deposit soil and rock, pile material, geometrical configuration and load in particular. In this paper, the authors introduce the case of the Tianxingzhou Bridge pile foundation, analyzed through the Centrifuge Model Test (CMT). The results indicate that, for large-diameter rock-socketed bored piles, sufficient pile–soil displacement is essential for the effect of pile lateral friction in overlying soil layers. It is also shown that the load is borne by pile lateral friction and end resistance, and that the load transfer behavior of the rock-socketed pile group foundation has similar characteristics to large-diameter rock-socketed single pile.  相似文献   

9.
Using pile segment analysis, the mobilized shaft resistance of axially loaded nondisplacement piles in sand is investigated here. It is accepted that the shaft capacity of piles constructed in granular soils is highly influenced by the mechanical behavior of soil–structure interfaces forming adjacent the piles skin. Adopting the thin interface layer as a load transfer mechanism, a simple but accurate critical state compatible interface constitutive model is introduced. After evaluation, the interface model in conjunction with the pile segment analysis is applied for the prediction of the shaft resistance mobilized in nondisplacement piles. The proposed approach takes into account the influences of pile diameter and surface roughness together with the effects of the surrounding soil density and stiffness on the mobilized shaft resistance. The performance of the proposed method is verified by comparing its predictions with the experimental data of various model piles covering wide ranges of length, diameter, roughness, and surrounding soil properties. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Cone penetration test (CPT) is one of the most common in situ tests which is used for pile design because it can be realized as a model pile. The measured cone resistance (qc) and sleeve friction (fs) usually are employed for estimation of pile unit toe and shaft resistances, respectively. Thirty three pile case histories have been compiled including static loading tests performed in uplift, or in push with separation of shaft and toe resistances at sites which comprise CPT or CPTu sounding. Group method of data handling (GMDH) type neural networks optimized using genetic algorithms (GAs) are used to model the effects of effective cone point resistance (qE) and cone sleeve friction (fs) as input parameters on pile unit shaft resistance, applying some experimentally obtained training and test data. Sensitivity analysis of the obtained model has been carried out to study the influence of input parameters on model output. Some graphs have been derived from sensitivity analysis to estimate pile unit shaft resistance based on qE and fs. The performance of the proposed method has been compared with the other CPT and CPTu direct methods and referenced to measured piles shaft capacity. The results demonstrate that appreciable improvement in prediction of pile shaft capacity has been achieved.  相似文献   

11.
为探讨桩侧地基土反力对高承台嵌岩灌注桩桩身屈曲稳定的影响,假定地基反力系数呈更为复杂的幂分布,基于弹性地基梁理论建立桩土体系总势能方程,采用最小势能原理,导出了桩身屈曲临界荷载与稳定计算长度的解析解,并据此获得了地基反力系数分布模式、桩身自重及桩侧摩阻力等对桩身屈曲稳定的影响规律。工程应用分析结果表明,考虑地基反力系数为一般幂分布时,桩身屈曲分析结果更趋合理。  相似文献   

12.
This paper presents a procedure to assess the mobilized pile side and tip resistance versus pile head and tip settlement under axial load in clay soil. The load transfer (tz) curve is evaluated at any point on the loaded pile based on the combined pile tip/side resistance–displacement mechanisms along the length of the pile. Unlike current methods that assume the pile settlements as a percentage of the pile/shaft diameter, the presented technique determines the side and tip resistance of the pile and the associated pile settlement under existing load based on the current stress/strain level in the surrounding soil up to failure (excessive settlement). The technique employs the concepts of the elastic theory and Ramberg–Osgood characterization of the stress–strain behavior of the clay soil. Case studies are also presented to exhibit the capabilities of the proposed procedure. The good agreement between measured and calculated load transfer curves along the pile and pile tip resistance versus pile head, side, and tip displacements shows the consistency of the proposed procedure. A computer code is developed to employ the presented technique.  相似文献   

13.
Rock socketed piles have a number of features which differentiate them from other types of piles. The generally stubby geometry leads to more even distribution of capacity between shaft and base. However, the low ratio of pile modulus to rock modulus leads to high compressibility and this, coupled with a tendency for the load transfer response along the shaft to exhibit strain-softening, gives rise to an overall response where the shaft capacity may be fully mobilized, and potentially degraded, before significant mobilization of base load. The paper presents results of finite element analyses of the response of rock-socketed piles, with particular attention to the shaft response with and without intimate base contact. The shaft interface uses a model, developed from principles of tribology, that includes dilation (and strain-hardening) prior to peak shaft friction, followed by strain-softening at larger displacements. The results of the study are shown to be consistent with field measurements, and to capture effects of the absolute pile diameter on the peak shaft friction. It is also shown that intimate base contact mitigates significantly the degree of strain-softening of the shaft response.  相似文献   

14.
The axial capacity of novel spun-cast ductile iron (SCDI) tapered pile fitted with a lower helical plate is investigated. Seven instrumented piles, five SCDI tapered and two steel straight shafts, were installed in sand soil using mechanical torque. The piles were tested under axial compressive loading and their ultimate capacities were determined. To assess the cyclic loading effect on the piles performance, two load sequences were adopted: four piles were subjected to monotonic loading, and three were subjected to initial cyclic loading followed by monotonic loading. The installation torque was monitored and the resulting capacity-to-torque ratio was compared to the literature reported values. Tapered helical piles displayed a stiffer response and yielded higher capacities compared to the straight ones. Strain gauges were used to evaluate the piles load transfer mechanism, and demonstrated increased shaft resistance due to the pile taper. The taper helped compact the sand within the zone adjacent to the pile, originally disturbed by the helix penetration, hence increased the soil strength and stiffness. These effects were prominent for larger ratio of shaft/helix diameter. Finally, 3D finite element analyses were conducted to evaluate the axial performance of the system and demonstrated its enhanced frictional resistance. The experimental and numerical results confirmed the superior performance of the proposed system in sands.  相似文献   

15.
The paper presents a numerical study on the side resistance of a drilled shaft in granular materials. The numerical result is used to develop new design equations for the side resistance of drilled shafts in granular soils. The Discrete Element Method (DEM) is used to model a drilled shaft in granular material. The granular material is represented as assemblies of ellipsoidal particles. Nominal side resistance is represented as the product of a parameter (β) and vertical stress. The numerical result shows that the relationship between β and void ratio can be described by a hyperbolic function for a given vertical stress. DEM result is also compared with three design equations. Although these design equations capture the decrease of β with depth, deviation is observed between the DEM results and the design equations. Finally, new design equations based on state parameter are proposed.  相似文献   

16.
The drilled shafts have been widely used to support lateral loads (active load case) or as a means to stabilize an unstable slope (passive load case) due to their large lateral load resistance and structural capacity for shear and bending moments. However, there is a need to develop an analytical procedure that can use the actual measured deflection data of a drilled shaft subject to either active or passive load case to interpret the soil‐drilled shaft interaction behavior. The mathematical formulation and the accompanied numerical procedure based on the principle of superposition were developed in this paper to allow for deducing the relevant soil‐drilled shaft interaction behavior under the applied lateral load (i.e. net soil reaction force on the drilled shaft, the shear and bending moment in the shaft) from the measured deflection data. Both compatibility and force equilibrium conditions were utilized in formulating the mathematical equations for common single drilled shaft boundary conditions (free head and fixed bottom). The current application is limited to small deformation to meet the requirement that the drilled shaft responds in a linear elastic range. A total of three theoretical cases, along with two actual field cases, were used to demonstrate the validity of the proposed method and its engineering applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents the results of three-dimensional, finite element analyses performed with an advanced, two-surface-plasticity, constitutive sand model to investigate the response of non-displacement piles to axial loading. The analysis domain is carefully meshed such that the formation and evolution of shear bands next to the pile shaft and near the pile base can be properly captured. Analyses considering various soil profiles and pile geometries show that the mobilized lateral earth pressure coefficient K along the pile shaft increases with increasing relative density and decreasing initial confining stress. The ultimate unit base resistance is independent of pile diameter, increasing with increasing relative density and increasing initial confining stress at the pile base. Based on the analysis results, design equations are proposed to estimate the limit shaft resistance and ultimate base resistance of non-displacement piles in sandy soil. In proposing these relationships, the pile slenderness ratio is considered. The effect of layer proximity to the base of the pile or pile base embedment in a layer is also considered.  相似文献   

18.
Hasan  Md. Rakib  Yu  Xinbao  Abu-Farsakh  Murad 《Acta Geotechnica》2021,16(2):491-506

Load tests of drilled shafts are often performed using Osterberg cell (O-cell) testing, a popular load test method for drilled shafts, which measures both side and tip resistance. However, it is common that only one of the resistance components can be fully mobilized. Therefore, extrapolation of the partially mobilized resistance is often required to determine the total resistance or the equivalent top-down curve. The extrapolation tends to introduce errors to the constructed total resistance values, which subsequently affect the calibrated resistance factors required for the LRFD design of drilled shafts. In this study, eight O-cell tests of drilled shafts with total measured resistances close to the failure criteria defined by FHWA, 5% of the shaft diameter (B), were collected among 64 drilled shaft load tests from Louisiana and Mississippi. For each of the eight cases, extrapolation was performed on both tip and side movement curves for the construction of the equivalent top-down load-settlement (ELT) curves. Data points from the measured side or tip movement curve were removed systematically to create a total of 80 cases with partially mobilized movement curves, and extrapolation exercises were performed on each fabricated case to obtain its equivalent top-down curve. The error of bias for each fabricated case was determined for statistical analyses. Multiple linear regression analysis was performed on the bias errors to model the bias errors caused by extrapolation. Calibrated resistance factors were determined and compared between the original database and fabricated database needing extrapolation. A correction method is proposed, based on a linear regression relationship, to estimate and minimize the extrapolation error of bias for less mobilized databases.

  相似文献   

19.
大直径超长钻孔灌注桩荷载分层传递特性试验分析   总被引:3,自引:2,他引:1  
基于"上海市虹桥综合交通枢纽交通中心工程西交通广场"工程现场静载荷试验和桩身应力测试结果,分析竖向荷载作用下大直径超长钻孔灌注桩在成层土中的荷载传递特性。本工程试桩已加载至破坏,对此试验结果进行分析,能为深入研究大直径超长钻孔灌注桩的承载性状提供有价值的工程参考。本次试验结果表明:1)大直径超长钻孔灌注桩桩端承载力所占比例较低,荷载-沉降关系为陡降型,存在明显拐点;2)桩侧与桩端阻力非同步发挥且相互影响,而上下土层侧阻力系先后发挥至极限;3)根据试桩实测数据,土层埋深对桩周具有相似物理力学性质土层的侧摩阻力影响较大。  相似文献   

20.
曹卫平  陆清元  樊文甫  李升 《岩土力学》2016,37(11):3048-3056
通过模型试验研究了竖向荷载作用下砂土中斜桩的荷载传递性状,分析了桩身倾角及长径比对斜桩桩身轴力、弯矩、剪力、桩侧摩阻力及端阻比的影响。试验结果表明:在桩顶竖向荷载作用下,斜桩桩身轴力均小于相应直桩桩身轴力,桩身倾角越大,轴力沿深度衰减得越快,桩长径比越大,轴力沿深度衰减得也越快;斜桩桩身最大弯矩随桩身倾角及长径比的增加而增加,最大弯矩出现的深度与桩身倾角无关,只与长径比相关;不论桩身倾角及长径比的大小,斜桩桩身最大剪力均出现在桩顶截面处,桩身最大剪力随着桩身倾角的增加而增大;桩身倾角越大,斜桩最大摩阻力越大,长径比越大,斜桩最大摩阻力越小,斜桩最大摩阻力出现在桩顶下1/4~1/5桩长处;斜桩端阻比随着桩顶竖向荷载的增加而增大,随着桩身倾角及长径比的增加而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号