首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blasting is a widely used technique for rock fragmentation in opencast mines and tunneling projects. Ground vibration is one of the most environmental effects produced by blasting operation. Therefore, the proper prediction of blast-induced ground vibrations is essential to identify safety area of blasting. This paper presents a predictive model based on gene expression programming (GEP) for estimating ground vibration produced by blasting operations conducted in a granite quarry, Malaysia. To achieve this aim, a total number of 102 blasting operations were investigated and relevant blasting parameters were measured. Furthermore, the most influential parameters on ground vibration, i.e., burden-to-spacing ratio, hole depth, stemming, powder factor, maximum charge per delay, and the distance from the blast face were considered and utilized to construct the GEP model. In order to show the capability of GEP model in estimating ground vibration, nonlinear multiple regression (NLMR) technique was also performed using the same datasets. The results demonstrated that the proposed model is able to predict blast-induced ground vibration more accurately than other developed technique. Coefficient of determination values of 0.914 and 0.874 for training and testing datasets of GEP model, respectively show superiority of this model in predicting ground vibration, while these values were obtained as 0.829 and 0.790 for NLMR model.  相似文献   

2.
The purpose of this article is to evaluate and predict the blast induced ground vibration using different conventional vibration predictors and artificial neural network (ANN) at a surface coal mine of India. Ground Vibration is a seismic wave that spread out from the blast hole when detonated in a confined manner. 128 blast vibrations were recorded and monitored in and around the surface coal mine at different strategic and vulnerable locations. Among these, 103 blast vibrations data sets were used for the training of the ANN network as well as to determine site constants of various conventional vibration predictors, whereas rest 25 blast vibration data sets were used for the validation and comparison by ANN and empirical formulas. Two types of ANN model based on two parameters (maximum charge per delay and distance between blast face to monitoring point) and multiple parameters (burden, spacing, charge length, maximum charge per delay and distance between blast face to monitoring point) were used in the present study to predict the peak particle velocity. Finally, it is found that the ANN model based on multiple input parameters have better prediction capability over two input parameters ANN model and conventional vibration predictors.  相似文献   

3.
This research was performed on the quarry that will be opened to produce aggregates and rock filling material at Catalagzi region at Zonguldak province in Turkey. However, there are some structures which can be adversely affected by blasting at the quarry. These structures are a methane exploration drill hole and a house at the distances of 340 and 390 m, respectively. One of the main goals of this study is to perform a preliminary assessment of possible damage effect of ground vibrations induced by blasting on these structures by risk analysis based on ground vibration measurements. In order to propose a preliminary blast design models separately for aggregate and rock filling material production, six test shots with different maximum charge per delay were planned and fired at the quarry. In these shots, 90 events were recorded. To predict peak particle velocity (PPV), the relationship between the recorded peak particle velocities and scaled distances were investigated. During this investigation, the data pairs were statistically analyzed and a PPV prediction equation specific to this site with 95% prediction line were obtained. And also, this equation was used in the derivation of the practical blasting charts specific to this site as a practical way of predicting the peak particle velocity and maximum charge per delay for future blasting. A risk analysis was performed by using this equation. In the light of this analysis, preliminary blast design models were proposed to be used in this quarry for aggregate and rock filling material production.  相似文献   

4.
A new site-specific vibration prediction equation was developed based on site measurement performed in a sandstone quarry. Also, several vibration prediction equations were compiled from the blasting literature and used to predict ground vibration for the studied quarry. By this way, site-specific equation created by regression analysis and the equations obtained from the blasting literature were compared in terms of prediction accuracy. Some of the equations obtained from the literature made better predictions than the site-specific equation created for the studied quarry. The prediction equations were grouped, and the effects of the rock formation and mine type on the prediction accuracy were investigated. Suitable error measures for evaluation of ground vibration prediction were examined in detail. A new general prediction equation was created using site factors (K, β) of the examined studies. The general equation was created using 17 prediction equations reported by blast researchers. Prediction capability of the general equation was found to be strong. Diversity of the blast data is one of the strongest features of the general equation.  相似文献   

5.
The present paper mainly with deals the prediction of safe explosive charge used per delay (QMAX) using support vector machine (SVM) incorporating peak particle velocity (PPV) and distance between blast face to monitoring point (D). 150 blast vibration data sets were monitored at different vulnerable and strategic locations in and around a major coal producing opencast coal mines in India. 120 blast vibrations records were used for the training of the SVM model vis-à-vis to determine site constants of various conventional vibration predictors. Rest 30 new randomly selected data sets were used to compare the SVM prediction results with widely used conventional predictors. Results were compared based on coefficient of correlation (R) between measured and predicted values of safe charge of explosive used per delay (QMAX). It was found that coefficient of correlation between measured and predicted QMAX by SVM was 0.997, whereas it was ranging from 0.063 to 0.872 by different conventional predictor equations.  相似文献   

6.
Excavation of coal, overburden, and mineral deposits by blasting is dominant over the globe to date, although there are certain undesirable effects of blasting which need to be controlled. Blast-induced vibration is one of the major concerns for blast designers as it may lead to structural damage. The empirical method for prediction of blast-induced vibration has been adopted by many researchers in the form of predictor equations. Predictor equations are site specific and indirectly related to physicomechanical and geological properties of rock mass as blast-induced ground vibration is a function of various controllable and uncontrollable parameters. Rock parameters for blasting face and propagation media for blast vibration waves are uncontrollable parameters, whereas blast design parameters like hole diameter, hole depth, column length of explosive charge, total number of blast holes, burden, spacing, explosive charge per delay, total explosive charge in a blasting round, and initiation system are controllable parameters. Optimization of blast design parameters is based on site condition and availability of equipment. Most of the smaller mines have predesigned blasting parameters except explosive charge per delay, total explosive charge, and distance of blast face from surface structures. However, larger opencast mines have variations in blast design parameters for different benches based on strata condition: Multivariate predictor equation is necessary in such case. This paper deals with a case study to establish multivariate predictor equation for Moher and Moher Amlohri Extension opencast mine of India. The multivariate statistical regression approach to establish linear and logarithmic scale relation between variables to predict peak particle velocity (PPV) has been used for this purpose. Blast design has been proposed based on established multivariate regression equation to optimize blast design parameters keeping PPV within legislative limits.  相似文献   

7.
Most blasting operations are associated with various forms of energy loss, emerging as environmental side effects of rock blasting, such as flyrock, vibration, airblast, and backbreak. Backbreak is an adverse phenomenon in rock blasting operations, which imposes risk and increases operation expenses because of safety reduction due to the instability of walls, poor fragmentation, and uneven burden in subsequent blasts. In this paper, based on the basic concepts of a rock engineering systems (RES) approach, a new model for the prediction of backbreak and the risk associated with a blast is presented. The newly suggested model involves 16 effective parameters on backbreak due to blasting, while retaining simplicity as well. The data for 30 blasts, carried out at Sungun copper mine, western Iran, were used to predict backbreak and the level of risk corresponding to each blast by the RES-based model. The results obtained were compared with the backbreak measured for each blast, which showed that the level of risk achieved is in consistence with the backbreak measured. The maximum level of risk [vulnerability index (VI) = 60] was associated with blast No. 2, for which the corresponding average backbreak was the highest achieved (9.25 m). Also, for blasts with levels of risk under 40, the minimum average backbreaks (<4 m) were observed. Furthermore, to evaluate the model performance for backbreak prediction, the coefficient of correlation (R 2) and root mean square error (RMSE) of the model were calculated (R 2 = 0.8; RMSE = 1.07), indicating the good performance of the model.  相似文献   

8.
Ground vibration is one of the common environmental effects of blasting operation in mining industry, and it may cause damage to the nearby structures and the surrounding residents. So, precise estimation of blast-produced ground vibration is necessary to identify blast-safety area and also to minimize environmental effects. In this research, a hybrid of adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) was proposed to predict blast-produced ground vibration in Pengerang granite quarry, Malaysia. For this goal, 81 blasting were investigated, and the values of peak particle velocity, distance from the blast-face and maximum charge per delay were precisely measured. To demonstrate the performance of the hybrid PSO–ANFIS, ANFIS, and United States Bureau of Mines empirical models were also developed. Comparison of the predictive models was demonstrated that the PSO–ANFIS model [with root-mean-square error (RMSE) 0.48 and coefficient of determination (R 2) of 0.984] performed better than the ANFIS with RMSE of?1.61 and R 2 of 0.965. The mentioned results prove the superiority of the newly developed PSO–ANFIS model in estimating blast-produced ground vibrations.  相似文献   

9.
This paper analyses results of trial, construction and quarry blasting, carried out in sediment rock deposits, mainly limestone and dolomite. Based on results of seismic measurements and engineering geological observations in sedimentary formation, an empirical relationship was established between ground vibration and geological strength index (GSI). The charge weight of explosive that may be detonated per delay for any given distance of nearby structures from the blast is approximately determined by using the concept of the scaled distance (SD) along with the DIN 4150 standard.  相似文献   

10.
Wall control blasting practices arc necessary to reduce the impact of blasting on mine faces but can also have a significant negative impact on mine productivity and operating costs. The conventional practice in deep open pit mines is to use so-called trim blasts adjacent to pit walls. To provide burden relief these trim blasts have fewer rows than full production blasts and are fired to a cleared free-face: hence they are termed 'unchoked.' This practice leads to scheduling constraints on the pit operations and can cause ore dilution due to excessive muckpile movement. The use of such trim blasts stems from the perception that increased wall damage results from 'choked' blasts. These concerns are based on the unproven assumptions that blast vibration levels and explosive gas penetration increase with increased blast burden and face confinement. This paper describes work undertaken as part of a major investigation into wall control blasting at the KCGM Fimiston Mine, Kalgoorlie, Western Australia. It details a study to assess damage effects due to blast burden. Borehole air pressure measurements and borehole video camera inspections owere done behind a series of single blastholes drilled owith varying burden distances, as owell as behind a dedicated trim blast and a full production blast. It was found that the measured damage effects, including visible rock cracking, dilation, and the limited extent of gas penetration behind the blastholes, did not vary significantly with burden or blast type for the cases tested. This result was in complete agreement with detailed vibration measurements conducted by Blair and Armstrong [1] during the study, which found that vibration was independent of blast burden. As a result of these investigations, changes to the blasting practices at the mine were implemented. Dedicated trim blasts and free-face blasting have been replaced by modified production blasts and the practice of 'choking' blasts has been introduced. This has resulted in a significant improvement in productivity and cost savings without compromising pit wall integrity.  相似文献   

11.
In order to control or reduce the ground vibrations caused by underground blasts in Malmberget mine, a number of blast tests were carried out during production blasts and a series of single shot waveforms were obtained. Then the single shot waveforms from the same ring or different rings were analysed and compared with each other. The results showed that the single shots are reproducible, meaning that the ground vibrations caused by underground blasts can be controlled by means of the interference of the vibration waveforms measured. Finally, a formal test using electronic detonators and employing an optimum delay time of 8 ms was done in production. The test for an 11-borehole ring shows that the maximum vertical ground vibrations are reduced to the maximum vertical vibrations of a single shot. Particularly, the total vibration history for the 11-borehole-ring blast is shortened to about 200 ms over a velocity of 2 mm/s. However, the total vibration history of a normal production blast of 11-borehole ring is always 1400 ms over a velocity of 2 mm/s, namely the total vibration time of a production blast can be reduced to one seventh of that of the common production blasts by using the vibration control method. This indicates that the vibration control method introduced in the paper is feasible for underground mining blasts.  相似文献   

12.
It is becoming increasingly important, from an environmental viewpoint, to minimize vibrations induced in urban dwellings by blasting. The present study illustrates how the delay interval between blastholes can be chosen to control and minimize the vibration energy within the structural response band of most houses. In particular, it is shown that the only possibility of reducing such energy is to employ a delay interval in the range 10–35 ms. However, the induced vibrations are also dependent upon the accuracy of the delay initiators as well as the level of random fluctuations between each blasthole signature. It is shown that only very accurate electronic delays give the possibility of utilizing fully the delay sequence in order to control structural vibrations. If the vibration emission from each blasthole is totally uncorrelated with that of any other blasthole then the resulting amplitude spectrum of the blast will be totally unpredictable. This situation occurs irrespective of the delay initiation sequence or its accuracy. Under these conditions it is impossible to predict the blast-induced energy lying within the structural response band.  相似文献   

13.
Directives from the Hon’ble Supreme Court of India led to the banning of mining activities within a radius of 2 km of the Sri Jambunatheswara ancient temple in Hospet taluk of Karnataka State of India. On recommendation of the Department of Archaeology & Museums, Government of Karnataka, CSIR-CIMFR undertook extensive investigations wherein the ground vibration and air overpressure due to blasting in nearby iron ore mines were monitored to assess their damage and annoyance potentials. The magnitudes of blast-induced ground vibration and air-overpressure recorded in the temple were found to be within the standard safe limits stipulated by the Directorate General of Mines Safety, India when trial blasts were carried out at a distance greater than 290 m from the temple. When blasts were conducted at a distance of beyond 845 m from the temple, neither vibration nor sound of blasting could be recorded or heard at the temple premises, indicating it a safe zone for blasting. After thorough analyses of the recorded data, precise blast design parameters were recommended for blasting at distances beyond 200 m from the temple and allowing this distance to be demarcated as the safe zone where controlled blasting could ensure safety of the ancient temple.  相似文献   

14.
Ground vibrations arising from excavation with blasting is one of the fundamental problems in the mining industry. Therefore, the prediction of ground vibration components plays an important role in the minimization of environmental complaints. In this study, 582 events were recorded during limestone production at a quarry (Akyol Quarry) during a period of time. The blasting parameters of these shots were also carefully recorded. During the statistical analysis of the collected data, three predictor equations proposed by the United States Bureau of Mines (USBM), Ambraseys–Hendron and Langefors–Kihlstrom were used to establish a relationship between peak particle velocity and scaled distance described by these prediction equations. As a result of this analysis, the most powerful relationship was determined and proposed to be used in this site. And also, this equation was used in the derivation of the practical blasting charts specific to this site as a practical way of predicting the peak particle velocity and maximum charge amount per delay for future blasting.  相似文献   

15.
Ever since development of human civilization, mining and agriculture has been the backbone of growth. Today the most developed countries of the world are the ones focused on core economical development, be it power generation, steel making, oil and gas production, or agriculture. Mining has been gaining importance over the years both from the economic perspective and as an area of sustained research. With the advent of globalization, things have changed very fast and today it is an industry that is driving the economies of several nations. Global competition has propelled countries to reach higher production levels through better techniques of drilling and blasting, excavation and mineral processing. We now have bigger and faster drill machines and excavators. In Explosives technology too significant progress has been made towards having safer explosives and accurate initiating systems that have increased overall control over blasting in terms of vibration, fragmentation, throw, fly rock and overall blast economics. Explosives and Rock Blasting Technology has advanced so much in the last few decades that blasting can now be precisely performed, controlled and predicted. Development of new tools like electronic blasting systems and advanced simulation software has made it possible to customize blasting results as per requirement. These developments have helped mining engineer worldwide in reaping huge productivity benefits besides making it possible to meet the environmental norms even in most demanding conditions. Inability to blast large size shots on account of proximity of mines to human habitation have always constrained mine management in fully leveraging the strength of large size production equipments. Mine managers have been forced to conduct small blasts on increased frequency to provide feed to large capacity shovels while compromising on Shovel productivity on account of undesirable movement of shovels during blasting. This paper deals with a case study at SEB quarry of Tata Steel wherein it was difficult to fire a big blast due to existing nearby structures. A critical scientific study was conducted before successfully firing of one of the biggest shot of 83 tonnes in the history of quarry. The paper discusses the issues being faced, alternate solutions opted and the final outcome.  相似文献   

16.
青岛为典型花岗岩地区,地铁隧道开挖采用钻爆法。本文首先采用现场实测与统计分析的方法分析了青岛地铁3号线3个工点的隧道爆破监测数据,较为系统地研究了钻爆法施工条件下地表及邻近构筑物的最大振速、主频分布与爆破参数的相关关系,采用线性回归法拟合出包含上述因素的经验公式。采用数值模拟手段,模拟爆破条件下地表及临近建筑物的振动的响应,并将模拟结果与实测数据进行对比,研究主要结论如下:(1)最大振速随比例距离基本呈指数的形式衰减,随着比例距离的增加,最大振速值逐渐减小; (2)爆破引起的振动主频随比例距离分布较为随机,无法建立两者之间的数学模型,主频多在20~70Hz范围内; (3)建筑物内部中三矢量方向上的最大振速均随着楼层的增高呈一定的增加趋势,建筑物外部的地表振速要大于内部质点的速度。  相似文献   

17.
A database of ground vibration due to blasting at 27 limestone quarries, located in various parts of India, has been created. The database contains peak particle velocity (PPV), frequency, other vibration related and blast design parameters. Regression analysis of the data is carried out to derive site constants of the USBM predictor equation for individual quarries. It is found that these site constants are correlated with each other. By combining all the data, a generalised predictor equation is developed to assess and control ground vibration. In addition, mean zone of attenuation has been delineated using the predictor equations of the individual quarries. The dominant frequency of ground vibration with respect to distance and the possibility of modifying it by changing delay intervals in production blasts are also examined.  相似文献   

18.
Environmental problems such as vibration and air blast are often faced and discussed in mining, quarrying, civil construction, shaft tunnel, pipeline, and dam operations, where blasting is inevitable. It is necessary to establish national standards in order to minimize environmental problems induced by blasting and judicial matters in our country as it is in the USA, European Union (EU) countries, and other developed countries. This necessity and the obligation of Turkey, which has started the procedure of joining the EU, to accept EU criteria emphasize the importance of this study. In other words, the establishment of a particular national standard related with this subject is inevitable for Turkey. This will be possible only by studying and applying scientific methods and techniques by experts. This paper presents a new damage criterion norm for blast-induced ground vibrations in Turkey. In this study, first, numerous vibration records were taken in blasting operations performed at different sites and rock units. For these rock units, particle velocity predictions and frequency analysis were done. At the same time, structures in the neighborhoods of these blasts were also observed and investigated. Finally, a damage criterion norm based on risk analysis was established and proposed by using these collected data. In light of the norm to be obtained from the data that were collected in the research, it will lead the excavation work in our country to be performed in such way that they are more effective and will cause minimum environmental problems.  相似文献   

19.
Zhang  Yafen  Zhu  Yulong  Yan  Xiaoyu  Li  Shu  Yu  Qijing  Wang  Yidan 《Natural Hazards》2022,110(1):315-323

Explosives are still the cheapest source of breaking rock in the mining or tunnelling operation and can be applied in varying geological conditions. It generates various troubles such as ground vibration, air overpressure, and fly rocks. It is well known that the maximum charge per delay (MCPD) has to be optimum for safe blasting and can be achieved through trial blasts, which is a complicated and costly process. Therefore, it is required to reduce the number of trial blasts. In this study, a total of 18 blasts were conducted in an underground coal mine and were simulated using similar ground conditions using Ansys software. The Peak particle velocity values obtained in the mines and through the models were compared. The error in PPV found between the actual and predicted by simulation is less than 15%. It can help us design the MCPD in rock excavation operations, visualise damages using simulation in Ansys software, and economical compared to field trials.

  相似文献   

20.
Understanding a quarry in terms of its potential for breakwater construction materials presents a special challenge for the engineering geologist. Unlike blasting in aggregates and mining operations, optimisation of the extraction process has a focus on the potential for production of large blocks for armourstone. These blocks weighing many tonnes are used for cover layers to resist wave action. The quarry-run is used for breakwater core. If the quarry has been developed as a source of materials dedicated to a breakwater construction project, the success of the project depends greatly on the blasting and production of rock sizes that are required and the avoidance of leaving a massive quantity of unused materials behind in the quarry after project completion. Prediction of in-situ block sizes such as from joint spacing data, provides the most critical input for the prediction of the blast pile block size distribution (BBSD), which in turn is a vital early design input if the constructed breakwater is to be economical as well as effective.This paper is part of a series of papers that introduces the coastal engineering motivation for this work on engineering geology, giving reasons why the prediction of the fragmentation curve of the blast products in a dedicated quarry is of such economic importance for breakwater projects. The first step towards blasted block size distribution (BBSD) prediction is the prediction of the in-situ block sized distribution (IBSD), the main subject of this paper. Drawing together research methods from the 1990s and the rock mechanics principles of discontinuity analysis, a practical step by step methodology for IBSD assessment that includes approaches that are not reliant on specialised computer software is presented. Continuing on the practical theme, a new extension of the volumetric joint count approach is suggested for IBSD prediction for the case when sparse borehole data is all that is available. A case study of IBSD assessment and the associated BBSD and blast assessment is presented from a Carboniferous limestone quarry. For clarity, details of blast design and yield curve prediction that are recommended for use in the context of armourstone production, have been presented in a companion paper. The Rosin-Rammler equation is used as an example form for the BBSD prediction of a dedicated quarry and the potential for breakwater project optimisation is illustrated. The final section sets out a method for directly comparing yield curves together with the demand for materials set by the breakwater design. On the same plot, sizes where there is a relative shortfall in production can be identified. The dependence of effective breakwater design on accurate quarry yield prediction and quarry blasting performance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号