首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a new way of selecting real input ground motions for seismic design and analysis of structures based on a comprehensive method for estimating the damage potential of ground motions, which takes into consideration of various ground motion parameters and structural seismic damage criteria in terms of strength, deformation, hysteretic energy and dual damage of Park & Ang damage index. The proposed comprehensive method fully involves the effects of the intensity, frequency content and duration of ground motions and the dynamic characteristics of structures. Then, the concept of the most unfavourable real seismic design ground motion is introduced. Based on the concept, the most unfavourable real seismic design ground motions for rock, stiff soil, medium soil and soft soil site conditions are selected in terms of three typical period ranges of structures. The selected real strong motion records are suitable for seismic analysis of important structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake, as they can cause the greatest damage to structures and thereby result in the highest damage potential from an extended real ground motion database for a given site. In addition, this paper also presents the real input design ground motions with medium damage potential, which can be used for the seismic analysis of structures located at the area with low and moderate seismicity. The most unfavourable real seismic design ground motions are verified by analysing the seismic response of structures. It is concluded that the most unfavourable real seismic design ground motion approach can select the real ground motions that can result in the highest damage potential for a given structure and site condition, and the real ground motions can be mainly used for structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
This discussion consists of two parts. The first part raises a few comments and questions on the method presented in the above paper. The second part proposes a measure for identifying resonant accelerograms in a set of earthquake records without the need for pre‐processing of the records or inclusion of the structure dynamic analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Study on the severest real ground motion for seismic design and analysis   总被引:1,自引:0,他引:1  
How to select the adequate real strong earthquake ground motion for seismic analysis and design of trucures is an essential problem in earthquake engineering research and practice.In the paper the concept of the severest design ground motion is proposed and a method is developed for comparing the severity of the recorded strong ground motions.By using this method the severest earthquake ground motions are selected out as seismic inputs to the structures to be designed from a database that consists of more than five thousand significant strong ground moton records collected over the world.The selected severest ground motions are very likely to be able to drive the structures to their critical response and thereby result in the highest damage potential.It is noted that for different structures with diffferent predominant natural periods and at different sites where structures are located the severest design ground motions are usually different.Finally.two examples are illustrated to demonstrate the rationality of the concept and the reliability of the selected design motion.  相似文献   

4.
王珊  张郁山 《中国地震》2017,33(1):56-67
系统介绍了国内外各类抗震设计规范和导则中关于设计地震动时程方面的规定。分别从时程分析范围、时程组数以及天然时程所占比例、设计地震动时程的峰值和反应谱特性、设计地震动时程的持时特性以及设计地震动时程的相关性等5个方面,对比了不同行业抗震设计规范中关于地震动时程相关规定的异同。以我国现行《建筑抗震设计规范》为例,给出了满足相关要求的设计地震动时程,并针对设计地震动时程确定过程中需要关注的问题进行了讨论,以期为我国地震安全性评价工作中设计反应的确定谱提供参考。  相似文献   

5.
面向设计应用的地震动空间相干函数模型   总被引:2,自引:1,他引:1  
本文对现有的常用地震动空间相干模型进行了总结,提出了一个新的面向工程抗震设计应用的形式统一的地震动空间相干函数模型,在此基础上推导出了多点地震反应谱和功率谱计算所需要的振型组合系数的解析表达式,避免了耗费时间的数值积分运算。本文模型与计算方法使多点地震激励下结构响应的计算时间减低至积分方法的1/20以下,使多点地震反应谱方法和多点地震功率谱方法在计算时间方面实用化。  相似文献   

6.
The performance‐based design of lifeline systems requires spatially variable seismic excitations at the structures' supports that are consistent with prescribed seismic ground motion characteristics and an appropriate spatial variability model—such motions can be obtained through conditional simulation. This work revisits the concept of conditional simulation and critically examines the conformity of the generated motions with the characteristics of the target random field and observations from data recorded at dense instrument arrays. Baseline adjustment processing techniques for recorded earthquake accelerograms are extended to fit the requirements of simulated and conditionally simulated spatially variable ground motions. Emphasis is placed on the use of causal vs acausal filtering in the data processing. Acceleration, velocity and displacement time histories are evaluated in two example applications of the approach. The first application deals with a prescribed synthetic time history that incorporates nonstationarity in the amplitude and frequency content of the motions and depends on earthquake magnitude, source–site distance and local soil conditions; this example results in zero residual displacements. The second application considers as prescribed time history a recording in the vicinity of a fault and yields nonzero residual displacements. It is shown that the conditionally simulated time histories preserve the characteristics of the prescribed ones and are consistent with the target random field. The results of this analysis suggest that the presented methodology provides a useful tool for the generation of spatially variable ground motions to be used in the performance‐based design of lifeline systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

8.
不同抗震标准下的海洋石油平台设计地震动参数研究   总被引:3,自引:0,他引:3  
在海洋石油平台抗震标准方面,中国与美国规范之间存在一定的差异。本文首先介绍了两国抗震规范中的相关内容。以渤海某油田为例,根据渤海及邻区的地震构造、地震活动环境及地震动衰减关系,利用概率方法进行地震危险性分析;采用一维等效线性化方法,根据场地土动力性能试验资料,确定不同抗震标准下的设计地震动参数。最后分析不同抗震标准下的地震动参数关系,以及对工程设计的影响。结合我国渤海与美国南加利福尼亚地区的地震活动性对比分析,对我国海洋石油平台的设防地震水准提出建议。  相似文献   

9.
Three‐dimensional seismic survey design should provide an acquisition geometry that enables imaging and amplitude‐versus‐offset applications of target reflectors with sufficient data quality under given economical and operational constraints. However, in land or shallow‐water environments, surface waves are often dominant in the seismic data. The effectiveness of surface‐wave separation or attenuation significantly affects the quality of the final result. Therefore, the need for surface‐wave attenuation imposes additional constraints on the acquisition geometry. Recently, we have proposed a method for surface‐wave attenuation that can better deal with aliased seismic data than classic methods such as slowness/velocity‐based filtering. Here, we investigate how surface‐wave attenuation affects the selection of survey parameters and the resulting data quality. To quantify the latter, we introduce a measure that represents the estimated signal‐to‐noise ratio between the desired subsurface signal and the surface waves that are deemed to be noise. In a case study, we applied surface‐wave attenuation and signal‐to‐noise ratio estimation to several data sets with different survey parameters. The spatial sampling intervals of the basic subset are the survey parameters that affect the performance of surface‐wave attenuation methods the most. Finer spatial sampling will reduce aliasing and make surface‐wave attenuation easier, resulting in better data quality until no further improvement is obtained. We observed this behaviour as a main trend that levels off at increasingly denser sampling. With our method, this trend curve lies at a considerably higher signal‐to‐noise ratio than with a classic filtering method. This means that we can obtain a much better data quality for given survey effort or the same data quality as with a conventional method at a lower cost.  相似文献   

10.
地铁车站的强地震反应分析及设计地震动参数研究   总被引:1,自引:0,他引:1  
进行了地铁地下车站的地震反应分析,探讨了地铁车站地震反应的主要影响因素,介绍了地面与基岩间峰值相对位移的确定及其在地下结构抗震设计中的应用,初步研究了地铁车站埋深对结构地震反应的影响。分析结果表明,地震引起的地基变形是影响地下结构动力反应的决定性因素,结构峰值变形反应与自由场峰值变形反应之间近似存在简单的线性关系;相对于设计基本地震加速度,地面与基岩间峰值相对位移(PGRD)对于地下结构抗震分析及设计是一种更为合理的设计地震动参数。  相似文献   

11.
带深桩基础高层建筑结构的地震动输入问题   总被引:1,自引:0,他引:1  
带深桩基础高层建筑结构的地震反应分析通常按刚性地基假定选择地震动输入,其合理性一直受到工程界关注。本文探讨了此类结构考虑桩-土-结构相互作用的整体有限元分析的地震激励施加、单元网格划分、积分步长确定、边界处理等问题,通过整体有限元分析模型和常规分析模型的算例分析对比,探讨了常规地震动输入方法的合理程度。结果表明,常规输入法总体偏于安全,是基本可行的,但可能低估结构底部几层的地震反应,应引起注意。  相似文献   

12.
A procedure for treating the P– Δ effect in the direct displacement‐based seismic design of regular steel moment resisting frames with ideal elastoplastic material behaviour is proposed. A simple formula for the yield displacement amplification factor as a function of ductility and the stability coefficient is derived on the basis of the seismic response of an inelastic single degree‐of‐freedom system taking into account the P– Δ effect. Extensive parametric seismic inelastic analyses of plane moment resisting steel frames result in a simple formula for the dynamic stability coefficient as a function of the number of stories of a frame and the column to beam stiffness ratio. Thus, the P– Δ effect can be easily taken into account in a direct displacement‐based seismic design through the stability coefficient and the yield displacement amplification factor. A simple design example serves to illustrate the application of the proposed method and demonstrate its merits. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Seismic failure of structures supported on pile foundation has revealed the importance of seismic soilfoundation-structure interaction(SSFSI) for ensuring safe design. The uncertainties in subsoil properties and seismic loading may lead the problem to be more redundant. In this context, the present study attempts to assess the seismic reliability of pile foundation-supported building structure embedded in inhomogeneous clay layer considering inertial interaction. Shear strength of clay and earth...  相似文献   

14.
With the recent emergence of wavelet‐based procedures for stochastic analyses of linear and non‐linear structural systems subjected to earthquake ground motions, it has become necessary that seismic ground motion processes are characterized through statistical functionals of wavelet coefficients. While direct characterization in terms of earthquake and site parameters may have to wait for a few more years due to the complexity of the problem, this study attempts such characterization through commonly available Fourier and response spectra for design earthquake motions. Two approaches have been proposed for obtaining the spectrum‐compatible wavelet functionals, one for input Fourier spectrum and another for input response spectrum, such that the total number of input data points are 30–35% of those required for a time‐history analysis. The proposed methods provide for simulating ‘desired non‐stationary characteristics’ consistent with those in a recorded accelerogram. Numerical studies have been performed to illustrate the proposed approaches. Further, the wavelet functionals compatible with a USNRC spectrum in the case of 35 recorded motions of similar strong motion durations have been used to obtain the strength reduction factor spectra for elasto‐plastic oscillators and to show that about ±20% variation may be assumed from mean to 5 and 95% confidence levels due to uncertainty in the non‐stationary characteristics of the ground motion process. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Best estimate seismic analysis are generally based on time‐domain simulations of structural responses. The seismic load is then modeled by a stochastic process representing ground motion. For this purpose, the analyst can use recorded accelerograms or work with synthetically generated ones. The number of ground motion time‐histories available for a given scenario and site condition is limited and generally not sufficient for carrying out more advanced probabilistic structural response analysis. It is then necessary to have at our disposal methods that allow for generating synthetic accelerograms that realistically characterize earthquake ground motions. However, most of the methods proposed in literature for generating synthetic accelerograms do not accurately reproduce the natural variability of ground motion parameters (such as PGA, cumulative absolute velocity, and Arias intensity) observed for recorded time histories. In this paper, we introduce a new method for generating synthetic ground motion, based on Karhunen‐Loève decomposition and a non‐Gaussian stochastic model. The proposed method enables the structural analyst to simulate ground motion time histories featuring the properties mentioned above. To demonstrate its capability, we study the influence of the simulation method on different ground motion parameters and on soil response spectra. We finally compute fragility curves to illustrate the practical application of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Soil effects on peak ground acceleration, velocity and elastic response spectra (5% damping) are expressed by simple approximate relations in terms of five key parameters: (a) the fundamental vibration period of the non‐linear soil, TS, (b) the period of a bedrock site of equal thickness, Tb, (c) the predominant excitation period, Te, (d) the peak seismic acceleration at outcropping bedrock, a, and (e) the number of significant excitation cycles, n. Furthermore, another relation is proposed for the estimation of TS in terms of the soil thickness H, the average shear wave velocity of the soil V?S,o and a. The aforementioned parameters were first identified through a simplified analytical simulation of the site excitation. The multivariable approximate relations were then formulated via a statistical analysis of relevant data from more than 700 one‐dimensional equivalent‐linear seismic ground response analyses, for actual seismic excitations and natural soil conditions. Use of these relations to back‐calculate the numerical results in the database gives an estimate of their error margin, which is found to be relatively small and unbiased. The proposed relations are also independently verified through a detailed comparison with strong motion recordings from seven well‐documented case studies: (a) two sites in the San Fernando valley during the Northridge earthquake, and (b) five different seismic events recorded at the SMART‐1 accelerometer array in Taiwan. It is deduced that the accuracy of the relations is comparable to that of the equivalent‐linear method. Hence, they can be readily used as a quick alternative for routine applications, as well as for spreadsheet computations (e.g. GIS‐aided seismic microzonation studies) where numerical methods are cumbersome to implement. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
地下结构抗震计算地基弹簧系数取值方法研究   总被引:4,自引:0,他引:4  
荷载-结构模型是地下结构抗震计算中常采用的模型,模型中地基弹簧系数的确定是关键。为了简便、可靠地计算地基弹簧系数,在已有基床系数计算公式的基础上,建立了地基弹簧系数的经验计算公式,以有限元分析结果为数据基础,对公式的系数进行拟合,将公式拓展用于成层土体。选取算例验证了建议公式的合理性和准确性,分别采用建议公式、日本抗震准则公式以及有限元法计算了某地铁区间站结构的地基弹簧系数,并对在此基础上计算所得的地震作用下结构的内力进行了对比分析。  相似文献   

18.
Earthquakes damage engineering structures near, relatively to the rupture's size, to the source. In this region, the fault's dynamics affect ground motion propagation differently from site to site, resulting in systematic spatial variability known as directivity. Although a number of researches recommend that records with directivity‐related velocity pulses should be explicitly taken into account when defining design seismic action on structures, probabilistic seismic hazard analysis (PSHA), in its standard version, seems inadequate for the scope. In the study, it is critically reviewed why, from the structural engineering point of view, hazard assessment should account for near‐source effects (i.e., pulse‐like ground motions), and how this can be carried out adjusting PSHA analytically via introduction of specific terms and empirically calibrated models. Disaggregation analysis and design scenarios for near‐source PSHA are also formulated. The analytical procedures are then applied to develop examples of hazard estimates for sites close to strike–slip or dip–slip faults and to address differences with respect to the ordinary case, that is, when pulse‐like effects are not explicitly accounted for. Significant increase of hazard for selected spectral ordinates is found in all investigated cases; increments depend on the fault‐site configuration. Moreover, to address design scenarios for seismic actions on structures, disaggregation results are also discussed, along with limitations of current design spectra to highlight the pulse‐like effects of structural interest. Finally, an attempt to overcome these, by means of disaggregation‐based scenarios specific for the pulse occurrence case, is presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Risk‐based seismic design, as introduced in this paper, involves the use of different types of analysis in order to satisfy a risk‐based performance objective with a reasonable utilization rate and sufficient reliability. Differentiation of the reliability of design can be achieved by defining different design algorithms depending on the importance of a structure. In general, the proposed design is iterative, where the adjustment of a structure during iterations is the most challenging task. Rather than using automated design algorithms, an attempt has been made to introduce three simple guidelines for adjusting reinforced concrete frames in order to increase their strength and deformation capacity. It is shown that an engineer can design a reinforced concrete frame in a few iterations, for example, by adjusting the structure on the basis of pushover analysis and checking the final design by means of nonlinear dynamic analysis. A possible variant of the risk‐based design algorithm for the collapse safety of reinforced concrete frame buildings is proposed, and its application is demonstrated by means of an example of an eight‐storey reinforced concrete building. Four iterations were required in order to achieve the risk‐based performance objective with a reasonable utilization rate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This is the 6th contribution in the series of Historical Notes on seminal concepts in earthquake engineering and structural dynamics. It documents the origins and early developments (from the 1880s through 1992) of the effects of site geology on seismic ground motion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号