首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It has been shown that the operator‐splitting method (OSM) provides explicit and unconditionally stable solutions for quasi‐static pseudo‐dynamic substructure testing. However, the OSM provides only an explicit target displacement but not an explicit target velocity, so that it is essentially an implicit method for real‐time substructure testing (RST) when the velocity‐dependent restoring force is considered. This paper proposes a target velocity formulation based on the forward difference of the predicted displacements so as to render the OSM explicit for RST. The stability and accuracy of the resulting OSM‐RST algorithm are investigated. It is shown that the OSM‐RST is unconditionally stable so long as the non‐linear stiffness and damping are of the softening type (i.e. the tangent stiffness and damping never exceed the initial values). The stability of the OSM‐RST for structures with infinite tangent damping coefficient or stiffness is also proved, and the stability of the method for MDOF structures with a non‐classical damping matrix is demonstrated by an energy criterion. The effects of actuator delay and compensation are analysed based on the bilinear approximation of the actuator step response. Experiments on damped SDOF and MDOF structures verify that the stability of the OSM‐RST is preserved when the experimental substructure generates velocity‐dependent reaction forces, whereas the stability of real‐time substructure tests based on the central difference method is worsened by the damping of the specimen. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
One of the weaknesses of the operator splitting method (OSM) is that its corrector step employs the approximation that incremental forces are linearly related to the tested structure's initial stiffness matrix. This paper presents a new predictor–corrector technique in which the assumptions about the tested structure's response are shifted to the predictor step, which results in an enhancement in overall simulation accuracy, especially for nonlinear structures. Unlike OSM, which splits the displacement and velocity operators into explicit and implicit terms, the new method uses predicted accelerations to compute fully explicit displacement and velocity values in the predictor step. Another advantage of the proposed technique, termed the full operator method (FOM) is that its formulation makes it suitable for both quasi‐static and real‐time hybrid simulation. The effectiveness of FOM is first evaluated by investigating error propagation in an undamped single degree‐of‐freedom model. It is shown that the corrector step in FOM is able to significantly suppress aberrant simulation results caused by incorrect estimation of the structure's stiffness matrix. The performance of FOM is demonstrated by exercising two additional models, which exhibit significant inelastic behavior under the prescribed excitation. The simulation results show that the proposed FOM algorithm is capable of producing accurate solutions and that the corrector step is influential in effectively reducing simulation errors. It is also shown that FOM suppresses actuator displacement control errors because of its reliance on measured quantities in the corrector step. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The full operator method (FOM) has been proposed to overcome some of the shortcomings of the commonly used operator splitting method (OSM). In particular, the FOM is improved by increasing the accuracy of both the predictor and corrector using the estimated tangent stiffness of the tested structure. The numerical characteristics of the FOM, including stability and accuracy, are investigated in this study. It is shown that FOM is conditionally stable. The stability and accuracy characteristics are dependent on the accuracy of the estimated tangent stiffness and the parameters associated with the acceleration variation in the time-stepping integration method. Mass-spring systems with different types of nonlinearity, including hardening, stiffening, and softening behavior, are used to evaluate the performance of the FOM. It is found that the FOM can capture these types of nonlinearity with satisfactory accuracy. Using a prototype 12-story composite coupled wall system, the influences of the strong nonlinearity of the system as well as the displacement control errors from hydraulic actuators on the performance of the FOM are explored. The results show that the FOM is capable of generating reasonably accurate results despite the presence of strong structural nonlinearity and displacement control errors.  相似文献   

4.
Online hybrid tests (called the online tests), particularly when combined with substructuring techniques, are able to conduct large‐scale tests. An extension of this technique is to combine multiple loading tests conducted in remote locations and to integrate the tests with large numerical analysis codes. In this study, a new Internet online test system is developed in which a physical test is conducted in one place, the associated numerical analysis is performed in a remote location, and the two locations communicate over the Internet. To implement the system, a technique that links test and analysis domains located at different places is proposed, and an Internet data exchange interface is devised to allow data communication across Internet. A practical method that utilizes standard protocols implemented by operating systems for sharing files and folders is adopted to ensure stable and robust communication between remotely located servers that commonly protect themselves by strict firewalls. To combine the online test with a finite element program formulated in an incremental form and adopting an implicit integration scheme, a tangent stiffness prediction procedure is proposed. In this procedure, a tangent stiffness is estimated based on a few previous steps of experimental data. Using the system devised, tests on a base‐isolated structure were carried out. Here, the base‐isolation layer was taken as the tested part and tested in Kyoto University, Japan, and the superstructure was modelled by means of a finite element program and analysed in a computer located in Osaka University. A series of physical Internet online tests were carried out, with the integration time interval and the method of tangent stiffness prediction as the major parameters. The tests demonstrated that the Internet communication was very stable and robust, without malfunctions. The proposed method of stiffness prediction was effective even when the experimental hysteresis curves exhibited complex behaviour, thereby ensuring accurate simulation for the earthquake response of the entire structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A variant of the Rosenbrock‐W integration method is proposed for real‐time dynamic substructuring and pseudo‐dynamic testing. In this variant, an approximation of the Jacobian matrix that accounts for the properties of both the physical and numerical substructures is used throughout the analysis process. Only an initial estimate of the stiffness and damping properties of the physical components is required. It is demonstrated that the method is unconditionally stable provided that specific conditions are fulfilled and that the order accuracy can be maintained in the nonlinear regime without involving any matrix inversion while testing. The method also features controllable numerical energy dissipation characteristics and explicit expression of the target displacement and velocity vectors. The stability and accuracy of the proposed integration scheme are examined in the paper. The method has also been verified through hybrid testing performed of SDOF and MDOF structures with linear and highly nonlinear physical substructures. The results are compared with those obtained from the operator splitting method. An approach based on the modal decomposition principle is presented to predict the potential effect of experimental errors on the overall response during testing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A set of algorithms combined with a substructure technique is proposed for an online hybrid test framework, in which the substructures are encapsulated by a standard interface that implements displacements and forces at the common substructure boundaries. A coordinator equipped with the proposed algorithms is designed to achieve boundary compatibility and equilibrium, thereby endowing the substructures the ability to behave as one piece. A model‐based predictor and corrector, and a noniterative procedure, characterize the set of algorithms. The coordinator solves the dynamics of the entire structure and updates the static boundary state simultaneously by a quasi‐Newton procedure, which gradually formulates the condensed stiffness matrix associated with corresponding degrees of freedom. With the condensed stiffness matrix and dynamic information, a condensed equation of motion is derived and then solved by a typical time integration algorithm. Three strategies for updating the condensed stiffness matrix are incorporated into the proposed algorithms. Each adopts different stiffness matrix during the predicting and correcting stage. These algorithms are validated by two numerical substructure simulations and a hybrid test. The effectiveness and feasibility are fully demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In a pseudodynamic test, errors in restoring-force feedback are introduced into numerical computations. Some of these errors can excite the higher-frequency response of the specimen. In this paper, the use of viscous and numerical dampings to eliminate spurious higher-frequency effects is studied. Since the tangent stiffness of a non-linear specimen cannot be measured accurately, initial-stiffness-dependent viscous damping is considered. In addition, an explicit integration algorithm with desired numerical damping properties is proposed and examined. The analytical and numerical studies presented indicate that viscous-damping properties can be substantially changed by non-linear deformations. For this reason, the use of numerical damping appears to be more advantageous.  相似文献   

8.
This paper presents a method for evaluating the residual structural capacity of earthquake‐affected steel structures. The method first quantifies the damage severity of a beam by computing the dynamic‐strain‐based damage index. Next, the model used to analyze the structure is updated based on the damage index, to reflect the observed damage conditions. The residual structural capacity is then estimated in terms of changes in stiffness and strength, which can be applied by structural engineers, via a nonlinear static analysis of the updated model. The main contributions of this paper are in performance evaluation of the dynamic‐strain‐based damage index for seismically induced damage using a newly developed substructure testing environment, consideration of various damage patterns in composite beams, and extension of a local damage evaluation technique to a residual capacity estimation procedure by incorporating the model‐updating technique. In laboratory testing, the specimens were damaged quasi‐statically, and vibration tests were conducted as the damage proceeded. First, a bare steel beam–column connection was tested, and then a similar one with a floor slab was used for a more realistic case. The estimated residual structural capacities for these specimens were compared with the static test results. The results verified that the proposed method can provide fine estimates of the stiffness and strength deteriorations within 10% for the specimen without the floor slab and within 30% for that with the floor slab. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
A fully implicit iterative integration procedure is presented for local and geographically distributed hybrid simulation of the seismic response of complex structural systems with distributed nonlinear behavior. The purpose of this procedure is to seamlessly incorporate experimental elements in simulations using existing fully implicit integration algorithms designed for pure numerical simulations. The difficulties of implementing implicit integrators in a hybrid simulation are addressed at the element level by introducing a safe iteration strategy and using an efficient procedure for online estimation of the experimental tangent stiffness matrix. In order to avoid physical application of iterative displacements, the required experimental restoring force at each iteration is estimated from polynomial curve fitting of recent experimental measurements. The experimental tangent stiffness matrix is estimated by using readily available experimental measurements and by a classical diagonalization approach that reduces the number of unknowns in the matrix. Numerical and hybrid simulations are used to demonstrate that the proposed procedure provides an efficient method for implementation of fully implicit numerical integration in hybrid simulations of complex nonlinear structures. The hybrid simulations presented include distributed nonlinear behavior in both the numerical and experimental substructures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We study the mechanical deformation of fractures under normal stress, via tangent and specific fracture stiffnesses, for different length scales using numerical simulations and analytical insights. First, we revisit an equivalent elastic layer model that leads to two expressions: the tangent stiffness is the sum of an “intrinsic” stiffness and the normal stress, and the specific stiffness is the tangent stiffness divided by the fracture aperture at current stress. Second, we simulate the deformation of rough fractures using a boundary element method where fracture surfaces represented by elastic asperities on an elastic half‐space follow a self‐affine distribution. A large number of statistically identical “parent” fractures are generated, from which sub‐fractures of smaller dimensions are extracted. The self‐affine distribution implies that the stress‐free fracture aperture increases with fracture length with a power law in agreement with the chosen Hurst exponent. All simulated fractures exhibit an increase in the specific stiffness with stress and an average decrease with increase in length consistent with field observations. The simulated specific and tangent stiffnesses are well described by the equivalent layer model provided the “intrinsic” stiffness slightly decreases with fracture length following a power law. By combining numerical simulations and the analytical model, the effect of scale and stress on fracture stiffness measures can be easily separated using the concept of “intrinsic” stiffness. We learn that the primary reason for the variability in specific stiffness with length comes from the fact that the typical aperture of the self‐affine fractures itself scales with the length of the fractures.  相似文献   

11.
Servo‐hydraulic actuators have been widely used for experimental studies in engineering. They can be controlled in either displacement or force control mode depending on the purpose of a test. It is necessary to control the actuators in real time when the rate‐dependency effect of a test specimen needs to be accounted for under dynamic loads. Real‐time hybrid simulation (RTHS) and effective force testing (EFT) method, which can consider the rate‐dependency effect, have been known as viable alternatives to the shake table testing method. Due to the lack of knowledge in real‐time force control, however, the structures that can be tested with RTHS and EFT are fairly limited. For instance, satisfying the force boundary condition for axially stiff members is a challenging task in RTHS, while EFT has a difficulty to be implemented for nonlinear structures. In order to resolve these issues, this paper introduces new real‐time force control methods utilizing the adaptive time series (ATS) compensator and compliance springs. Unlike existing methods, the proposed force control methods do not require the structural modeling of a test structure, making it easy to be implemented especially for nonlinear structures. The force tracking performance of the proposed methods is evaluated for a small‐scale steel mass block system with a magneto‐rheological damper subjected to various target forces. Accuracy, time delay, and resonance response of these methods are discussed along with their force control performance for an axially stiff member. Overall, a satisfactory force tracking performance was observed by using the proposed force control methods.  相似文献   

12.
This paper studies the stability of the central difference method (CDM) for real‐time substructure test considering specimen mass. Because the standard CDM is implicit in terms of acceleration, to avoid iteration, an explicit acceleration formulation is assumed for its implementation in real‐time dynamic substructure testing. The analytical work shows that the stability of the algorithm decreases with increasing specimen mass if the experimental substructure is a pure inertia specimen. The algorithm becomes unstable however small the time integration interval is, when the mass of specimen equal or greater than that of its numerical counterpart. For the case of dynamic specimen, the algorithm is unstable when there is no damping in the whole test structure; a damping will make the algorithm stable conditionally. Part of the analytical results is validated through an actual test. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a method is proposed to invert permeability from seismoelectric logs in fluid‐saturated porous formations. From the analysis of both the amplitude and the phase of simulated seismoelectric logs, we find that the Stoneley wave amplitude of the ratio of the converted electric field to the pressure (REP) is sensitive to porosity rather than permeability while the tangent of the REP's phase is sensitive to permeability. The REP's phase reflects the phase discrepancy between the electric field and the pressure at the same location in the borehole. We theoretically derive the frequency‐dependent expression of the REP of the low‐frequency Stoneley wave and find that the tangent of the REP's argument is approximately in inverse proportion to permeability. We obtain an inversion formula and present the permeability inversion method by using the tangent of the REP's phase. To test this method, the permeabilities of different sandstones are inverted from the synthetic full‐waveform data of seismoelectric logs. A modified inversion process is proposed based on the analysis of inversion errors, by which the relative errors are controlled below 25% and they are smaller than those of the permeability inversion from the Stoneley wave of acoustic logs.  相似文献   

14.
This paper is Part II of a two‐part paper describing a full‐scale 3‐story 3‐bay concrete‐filled tube (CFT)/buckling‐restrained braced frame (BRBF) specimen tested using psuedo‐dynamic testing procedures. The first paper described the specimen design, experiment, and simulation, whereas this paper focuses on the experimental responses of BRBs and BRB‐to‐gusset connections. This paper first evaluates the design of the gusset connections and the effects of the added edge stiffeners in improving the seismic performance of gusset connections. Test results suggest that an effective length factor of 2.0 should be considered for the design of the gusset plate without edge stiffeners. Tests also confirm that the cumulative plastic deformation (CPD) capacity of the BRBs adopted in the CFT/BRBF was lower than that found in typical component tests. The tests performed suggest that the reduction in the BRB CPD capacities observed in this full‐scale frame specimen could be due to the significant rotational demands imposed on the BRB‐to‐gusset joints. A simple method of computing such rotational demands from the frame inter‐story drift response demand is proposed. This paper also discusses other key experimental responses of the BRBs, such as effective stiffness, energy dissipation, and ductility demands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Shaking tables are suitable facilities to assess and validate the behavior of structures and nonstructural components under actual seismic actions. Because of the size and weight limitations of the tables, some approaches, like testing reduced‐scale models or testing only the main structural components, are deemed necessary. In these cases, to comply with modeling requirements, large amount of extra‐mass should be added to the specimen. Therefore, to avoid the risk of lateral instability of models, to maintain the weight of test specimens within table payload, while maintaining the amount of mass needed, an external device for transmitting the inertia forces to the models using an improved sliding system is proposed. Although friction devices for similar purposes have been developed using sliding bearings (Teflon pads or rollers), the measured coefficient of dynamic friction and the energy dissipated by friction have been very high. In order to drastically diminish the damping added to the specimen response when a friction device is used, the improved device employs a linear motion guide system (LMGS) with very low friction. Shaking table tests to collapse of reinforced concrete walls were used to evaluate the effectiveness of the proposed device. Measured dynamic friction coefficients, spectral accelerations and hysteresis loops show that friction developed in the LMGS did not add any significant amount of damping into the specimen response. Thus, the proposed device is a reliable and suitable mass‐carrying sliding system (MCSS) for dynamic testing using medium‐size shaking tables. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Structural damage assessment under external loading, such as earthquake excitation, is an important issue in structural safety evaluation. In this regard, appropriate data analysis and feature extraction techniques are required to interpret the measured data and to identify the state of the structure and, if possible, to detect the damage. In this study, the recursive subspace identification with Bona‐fide LQ renewing algorithm (RSI‐BonaFide‐Oblique) incorporated with moving window technique is utilized to identify modal parameters such as natural frequencies, damping ratios, and mode shapes at each instant of time during the strong earthquake excitation. From which the least square stiffness method (LSSM) combined with the model updating technique, called efficient model correction method (EMCM), is used to estimate the first‐stage system stiffness matrix using the simplified model from the previously identified modal parameters (nominal model). In the second stage, 2 different damage assessment algorithms related to the nominal system stiffness matrix were derived. First, the model updating technique, called EMCM, is applied to correct the nominal model by the newly identified modal parameters during the strong motion. Second, the element damage index can be calculated using element damage index method (EDIM) to quantify the damage extent in each element. Verification of the proposed methods through the shaking table test data of 2 different types of structures and a building earthquake response data is demonstrated to specify its corresponding damage location, the time of occurrence during the excitation, and the percentage of stiffness reduction.  相似文献   

17.
在总结和借鉴已有动力稳定判别准则的基础上,提出了两种拱结构动力稳定性分析的实用判别方法。方法1通过提取发生最大位移响应时刻的刚度矩阵的特征根符号来判断,方法2通过荷载-位移曲线的斜率变化来判断。通过对不同荷载类型、不同计算条件下拱结构的动力失稳特征的分析对比,指出结构整体刚度矩阵出现负的特征值是结构失稳的必要条件,可依此判断结构动力失稳临界荷载的下限值,位移时程曲线发散、性质发生改变或发生跳跃,荷载-位移曲线出现不规则现象,是拱结构动力失稳的重要判断依据。  相似文献   

18.
A new predictor–corrector (P–C) method for multi‐site sub‐structure pseudo‐dynamic (PSD) test is proposed. This method is a mixed time integration method in which computational components separable from experimental components are solved by implicit time integration method (Newmark β method). The experiments are performed quasi‐statically based on explicit prediction of displacement. The proposed P–C method has an important advantage as it does not require the determination of the initial stiffness values of experimental components and is thus suitable for representing elastic and inelastic systems. A parameter relating to quality of displacement prediction at boundaries nodes is introduced. This parameter is determined such that P–C method can be applicable to many practical problems. Error‐propagation characteristics of P–C method are also presented. A series of examples including linear and non‐linear soil–foundation–structure interaction problem demonstrate the performance of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The problem of assessing errors in implementing time-marching algorithms in the context of pseudo-dynamic seismic testing of structures is considered. These errors occur in implementing the numerical and experimental steps of the test procedure. The study investigates how a linearized variational equation can be augmented with the governing equation of motion to track the effect of the errors, and, accordingly, adjust the step size of integration adaptively to keep a global error norm within specified limits. The governing augmented equations are integrated using an explicit operator splitting scheme. Additional efforts, in terms of evaluation of the tangent stiffness matrix, are shown to become necessary while modelling the errors. Illustrative examples include numerical studies on a set of nonlinear systems and an experimental study on a geometrically nonlinear two-storied building frame. The experimental results from pseudo-dynamic test are shown to compare reasonably well with pertinent results from an effective force test.  相似文献   

20.
以6个1/2模型RCS梁柱节点拟静力试验为基础,研究不同轴压比下RCS组合件的滞回性能。试验结果表明:梁铰破坏时试件的滞回曲线饱满,耗能能力优于构造破坏;随着轴压比的增大,试件滞回环愈加丰满,初始刚度有所增加,承载力有所增大;随着加载位移的增加,刚度退化速率变慢,且梁铰破坏时随着轴压比增大,刚度退化速率变大。基于试验结果和现有恢复力模型理论,建立的三折线骨架曲线模型与实际试验骨架曲线具有较高的吻合度,能较好的反映轴压比对其滞回特性的影响,可为该RCS梁柱组合件的弹塑性分析及工程应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号