首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This study examines the effect of water repellency on controlling temporal variability of runoff generation mechanisms and soil detachment on metamorphic derived soils under dry‐Mediterranean climate. The research is carried out in an unburnt Mediterranean hillslope in souther Spain characterized by a patchy vegetation pattern and shallow soils. The Water Drop Penetration Time test (WDPT) is applied to measure water repellency at the end of summer (Sep‐2008), mid autumn (Nov‐2008) and mid winter (Feb‐2009). Rainfall simulations were used to obtain runoff generation and soil detachment in the same periods of time. The main shrub specie is Cistus monspeliensis which leaves a load of litter during the summer due to the lack of water. This great amount of organic material is accumulated under the shrubs triggering an extreme water repellence (WDPT > 6,000 s) that limits infiltration processes. This process is enforced due to the low soil water content at the end of dry season. Certain water repellency (WDPT > 1,500 s) is also observed on bare soil as consequence of their sandier texture and the accumulation of annual plants which die at the end of the wet season. Soil moisture increases during the autumn and water repellency disappears in both shrub and bare soil at the middle of the wet season (WDPT < 5 s). The main consequence is that the temporal trend of water repellency controls the mechanism and frequency of runoff generation and, hence, soil detachment. At the end of the summer, Hortonian mechanisms predominates when water repellency is extreme, even in soils under Cistus monspeliensis where runoff generation can reach higher peaks of overland flow and sediment concentration. Conversely, only the saturation of soil could generate runoff during the wet season being this quite less frequent in bare soil and absent in shrub. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In Mediterranean regions, hillslopes are generally considered to be a mosaic of sink and source areas that control runoff generation and water erosion processes. These hillslopes used to be characterized by a complex hydrological and erosive response combining Hortonian and saturation excess overland flows. The hydrological response of soils is highly dependent on the soil surface components (e.g. vegetation patches, bare soil, rock fragment cover, crusts), which each one of them is dominated by a certain hydrological process. One of these soil surface components, not widely considered in studies of soil hydrology under Mediterranean conditions, is the accumulation of litter beneath shrubs enhancing water repellency in soils. This study investigates the influence of soil surface components, especially the litter accumulated beneath Cistus spp., in the hydrological and erosive responses of soils on two Mediterranean hillslopes having different exposures. The study was performed by means of rainfall simulation experiments and the Water Drop Penetration Time for measuring water repellency of soils, both techniques being carried out at the end of summer (September 2010) with very dry soils. The results indicate that (i) soil surface components from the north facing hillslope are characterized by a more uniform hydrological and erosive response than those from the south‐facing ones; (ii) the water repellency is more influential on the hydrological response of the north‐facing hillslope due to a greater accumulation of organic rest on the soils as the vegetation cover is also higher; (iii) the south‐facing hillslope seemed to follow the fertility island theory with very degraded bare soil areas, which are the most generated areas of runoff and mobilized sediments; (iv) the experimental area can be considered as a threshold area between the semiarid and subhumid Mediterranean environments, with the south‐facing hillslope being comparable with the former and the north facing one with the latter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The dynamics of vegetation‐driven spatial heterogeneity (VDSH) and its function in structuring runoff and sediment fluxes have received increased attention from both geomorphological and ecological perspectives, particularly in arid regions with sparse vegetation cover. This paper reviews the recent findings in this area obtained from field evidence and numerical simulation experiments, and outlines their implications for soil erosion assessment. VDSH is often observed at two scales, individual plant clumps and stands of clumps. At the patch scale, the local outcomes of vegetated patches on soil erodibility and hydraulic soil properties are well established. They involve greater water storage capacity as well as increased organic carbon and nutrient inputs. These effects operate together with an enhanced capacity for the interception of water and windborne resources, and an increased biological activity that accelerates breakdown of plant litter and nutrient turnover rates. This suite of relationships, which often involve positive feedback mechanisms, creates vegetated patches that are increasingly different from nearby bare ground areas. By this way a mosaic builds up with bare ground and vegetated patches coupled together, respectively, as sources and sinks of water, sediments and nutrients. At the stand scale within‐storm temporal variability of rainfall intensity controls reinfiltration of overland flow and its decay with slope length. At moderate rainfall intensity, this factor interacts with the spatial structure of VDSH and the mechanism of overland flow generation. Reinfiltration is greater in small‐grained VDSH and topsoil saturation excess overland flow. Available information shows that VDSH structures of sources and sinks of water and sediments evolve dynamically with hillslope fluxes and tune their spatial configurations to them. Rainfall simulation experiments in large plots show that coarsening VDSH leads to significantly greater erosion rates even under heavy rainfall intensity because of the flow concentration and its velocity increase. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The impact of vegetated filter strips (VFS) on sediment removal from runoff has been studied extensively in recent years. Vegetation is believed to increase water infiltration and decrease water turbulence thus enhancing sediment deposition within filter media. In the study reported here, field experiments have been conducted to examine the efficiency of vegetated filter strips for sediment removal from cropland runoff. Twenty filters with varying length, slope and vegetated cover were used under simulated runoff conditions with an average sediment concentration of 2700 mg/L. The filters were 2, 5, 10 and 15 m long with a slope of 2·3 and 5% and three types of vegetation. Three other strips with bare soil were used as a control. The experimental results showed that the average sediment trapping efficiency of all filters was 84% and ranging from 68% in a 2‐m filter to as high as 98% in a 15‐m long filter compared with only 25% for the control. The length of filter has been found to be the predominant factor affecting sediment deposition in VFS up to 10 m. Increasing filter length to 15 m did not improve sediment trapping efficiency under the present experimental conditions. The rate of incoming flow and vegetation cover percentage has a secondary effect on sediment deposition in VFS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Vegetation mosaics have commonly been thought to include two principal zones with distinctly different hydrology: relatively bare and impermeable runoff source zones (intergroves) and more strongly absorbing vegetated runon zones (groves). However, the data required to verify the internal uniformity of hydrologic response within these components of mosaic landscapes have been lacking, as have data on the nature (abrupt or gradational) of the boundaries between them. This study examines the degree of internal uniformity of key soil properties in the intergroves and groves of an Australian vegetation mosaic. Infiltration rates, soil water content, shear strength, bulk density and texture were determined at intervals of 1·5–2·5 m across several grove–intergrove cycles of an Australian banded shrubland. Results demonstrate that order‐of‐magnitude variability in soil infiltration rates can occur across intergroves, with lesser variation in groves. Patterns of infiltration are systematically related to slope position. Rates are relatively high in the uppermost parts of the intergrove, and fall to low values only in the lowermost intergrove where soils are mechanically strong. Infiltration rates increase rapidly from the lowermost intergrove to reach maxima within the upper to middle grove, from where rates once again decline toward the next intergrove. However, there is only a gradational change in infiltration rates across the pioneer zone–grove boundary, which is the sharpest of the mosaic boundaries when identified using plant cover data. Hydrologic models built on the presumption that mapped plant cover units are equally distinct hydrologically may need to be refined to incorporate the presence of systematic internal variability of infiltration rates and gradational change in soil hydraulic properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Lateral redistribution of surface water in patchy arid ecosystems has been hypothesized to contribute to the maintenance of vegetation patches through the provision of a water subsidy from bare sites to vegetated sites. Such runon-runoff processes occur during Hortonian runoff events on topographically sloping ground. Surface flow redistribution may also occur on topographically flat ground if the presence of the vegetation patch creates a contrast in infiltration rate, leading to a free-surface gradient in ponded water. The precise dynamics and the eco-hydrologic role of this process has resisted complete theoretical treatment to date. Here the overland flow equations are modified to account for the presence of vegetation situated over a flat surface. The resulting model is solved numerically to determine whether this mechanism could influence the spatial partitioning of water in patchy arid ecosystems. Assumptions made about infiltration processes and overland flow in existing eco-hydrologic models of patchy and patterned arid ecosystems are evaluated in comparison to the solution of the ‘full’ coupled Saint-Venant equations with various infiltration models. The results indicate that the optimization of vegetation spatial patch scales with respect to water redistribution may be determined by the size of the infiltration redistribution length L over which the presence of an infiltration contrast perturbs baseline infiltration behavior.  相似文献   

7.
Soil moisture is a key process in the hydrological cycle. During ecological restoration of the Loess Plateau, soil moisture status has undergone important changes, and infiltration of soil moisture during precipitation events is a key link affecting water distribution. Our study aims to quantify the effects of vegetation cover, rainfall intensity and slope length on total infiltration and the spatial variation of water flow. Infiltration data from the upper, middle and lower slopes of a bare slope, a natural grassland and an artificial shrub grassland were obtained using a simulated rainfall experiment. The angle of the study slope was 15° and rainfall intensity was set at 60, 90, 120, 150, and 180 mm/hr. The effect these factors have on soil moisture infiltration was quantified using main effect analysis. Our results indicate that the average infiltration depth (ID) of a bare slope, a grassland slope and an artificial shrub grassland slope was 46.7–73.3, 60–80, and 60–93.3 cm, respectively, and average soil moisture storage increment was 3.5–5.7, 5.0–9.4, and 5.7–10.2 mm under different rainfall intensities, respectively. Heavy rainfall intensity and vegetation cover reduced the difference of soil infiltration in the 0–40 cm soil layer, and rainfall intensity increased surface infiltration differences on the bare slope, the grassland slope and the artificial shrub grassland slope. Infiltration was dominated by rainfall intensity, accounting for 63.03–88.92%. As rainfall continued, the contribution of rainfall intensity to infiltration gradually decreased, and the contribution of vegetation cover and slope length to infiltration increased. The interactive contribution was: rainfall intensity * vegetation cover > vegetation cover * slope length > rainfall * slope length. In the grass and shrub grass slopes, lateral flow was found at a depth of 23–37 cm when the slope length was 5–10 m, this being related to the difference in soil infiltration capacity between different soil layers formed by the spatial cross-connection of roots.  相似文献   

8.
At the beginning of the drought in the Sahel in the 1970s and 1980s, rainfall decreased markedly, but runoff coefficients and in some cases, absolute runoff increased. This situation was due to the conversion of the land cover from natural vegetation with a low annual runoff coefficient, to cropland and bare soils, whose runoff coefficients are higher. Unless they are adapted, hydrological conceptual models, such as GR2M, are unable to reproduce this increase in runoff. Despite the varying environmental and climatic conditions of the West African Sahel, we show that it is possible to increase the performance of the GR2M model simulations by elaborating a time‐varying soil water holding capacity and to incorporate this value in the annual maximum amount of water to be stored in reservoir A of the model. We looked for interactions between climate, rural society, and the environment. These interactions drive land‐cover changes in the Sahel, which in turn drive the distribution of rainfall between infiltration, evaporation, and runoff and hence the water resources, which are vital in this region. We elaborated several time series of key indicators linked to these interactions. We then integrated these changes in the runoff conditions of the GR2M model through the maximum value of the reservoir capacity. We calculated annual values of water holding capacity using the annual values of four classes of land cover, natural vegetation, cultivated area, bare soil, and surface water. We then used the hydrological model with and without this time‐varying soil value of A and compared the performances of the model under the two scenarios. Whatever the calibration period used, the Nash–Sutcliffe index was always greater in the case of the time‐varying A time series.  相似文献   

9.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

10.
Soil hydrology was investigated in the Guadelperalón experimental watershed in order to determine the influence of land use and vegetation cover on runoff and infiltration within the Dehesa land system. Five soil–vegetation units were selected: (1) tree cover, (2) sheep trials, (3) shrub cover, (4) hillslope grass and (5) bottom grass. The results of the simulated rainfall experiments performed at an intensity of 56·6 mm h−1 during one hour on plots of 0·25 m2, and the water drop penetration time test indicate the importance of water repellency in the Dehesa land system under drought conditions. Low infiltration rates (c. 9–44 mm h−1) were found everywhere except at shrub sites and in areas with low grazing pressure. Soil water repellency greatly reduced infiltration, especially beneath Quercus ilex canopies, where fast ponding and greater runoff rates were observed. The low vegetation cover as a consequence of a prolonged drought and grazing pressure, in conjunction with the soil water repellency, induces high runoff rates (15–70 per cent). In spite of this, macropore fluxes were found in different locations, beneath trees, on shrub-covered surfaces, as well as at sites with a dominance of herbaceous cover. Discontinuity of the runoff fluxes due to variations in hydrophobicity causes preferential flows and as a consequence deeper infiltration, especially where macropores are developed. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
This study examines runoff generated under simulated rainfall on Summerford bajada in the Jornada Basin, New Mexico, USA. Forty‐five simulation experiments were conducted on 1 m2 and 2 m2 runoff plots on grassland, degraded grassland, shrub and intershrub environments located in grassland and shrubland communities. Average hydrographs generated for each environment show that runoff originates earlier on the vegetated plots than on the unvegetated plots. This early generation of runoff is attributed to soil infiltration rates being overwhelmed by the rapid concentration of water at the base of plants by stemflow. Hydrographs from the degraded grassland and intershrub plots rise continuously throughout the 30 min simulation events indicating that these plots do not achieve equilibrium runoff. This continuously rising form is attributed to the progressive development of raindrop‐induced surface seals. Most grassland and shrub plots level out after the initial early rise indicating equilibrium runoff is achieved. Some shrub plots, however, display a decline in discharge after the early rise. The delayed infiltration of water into macropores beneath shrubs with vegetation in their understories is proposed to explain this declining form. Water yields predicted at the community level indicate that the shrubland sheds 150 per cent more water for a given storm event than the grassland. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Rainfall experiments have been conducted in the laboratory in order to assess the hydrological response of top soils very susceptible to surface sealing and containing rock fragments in different positions with respect to the soil surface. For a given cover level, rock fragment position in the top soil has an ambivalent effect on water intake and runoff generation. Compared to a bare soil surface rock fragments increase water intake rates as well as time of runoff concentration and decrease runoff volume if they rest on the soil surface. For the same cover level, rock fragments reduce infiltration rate and enhance runoff generation if they are well embedded in the top layer. The effects of rock fragment position on infiltration rate and runoff generation are proportional to cover percentage. Micromorphological analysis and measurements of the saturated hydraulic conductivity of bare top soils and of the top layer underneath rock fragments resting on the soil surface reveal significant differences supporting the mechanism proposed by Poesen (1986): i.e. runoff generated as rock flow or as Horton overland flow can (partly) infiltrate into the unsealed soil surface under the rock fragments, provided that they are not completely embedded in the top layer. Hence, rock fragment position, beside other rock fragment properties, should be taken into account when assessing the hydrological response of soils susceptible to surface sealing and containing rock fragments in their surface layers. A simple model, based on the proportions of bare soil surface, soil surface occupied by embedded rock fragments, and soil surface covered with rock fragments resting on the soil surface, describes the runoff coefficient data relatively well.  相似文献   

13.
Precipitation is often the sole source of water replenishment in arid and semi‐arid areas and, thus, plays a pertinent role in sustaining desert ecosystems. Revegetation over 40 years using mainly Artemisia ordosica and Caragana korshinskii at Shapotou Desert Experimental Research Station near Lanzhou, China, has established a dwarf‐shrub and microbiotic soil crust cover on the stabilized sand dunes. The redistribution of infiltrated moisture through percolation, root extraction, and evapotranspiration pathways was investigated. Three sets of time‐domain reflectometry (TDR) probes were inserted horizontally at 5, 10, 15, 20, 30 and 40 cm depths below the ground surface in a soil pit. The three sets of TDR probes were installed in dwarf‐shrub sites of A. ordosica and C. korshinskii community with and without a microbiotic soil crust cover, and an additional set was placed in a bare sand dune area that had neither vegetation nor a microbiotic soil crust present. Volumetric soil moisture content was recorded at hourly intervals and used in the assessment of infiltration for the different surface covers. Infiltration varied greatly, from 7·5 cm to more than 45 cm, depending upon rainfall quantity and soil surface conditions. In the shrub community area without microbiotic soil crust cover, infiltration increased due to preferential flow associated with root tunnels. The microbiotic soil crust cover had a significant negative influence on the infiltration for small rainfall events (~10 mm), restricting the infiltration depth to less than 20 cm and increasing soil moisture content just beneath the soil profile of 10 cm, whereas it was not as strong or clear for larger rainfall events (~60 mm). For small rainfall events, the wetting front depth for the three kinds of surface cover was as follows: shrub community without microbiotic soil crust > bare area > shrub community with microbiotic soil crust. In contrast, for large rainfall events, infiltration was similar in shrub communities with and without microbiotic soil crust cover, but significantly higher than measured in the bare area. Soil water extraction by roots associated with evapotranspiration restricted the wetting front penetration after 1 to 3 h of rainfall. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
J. Holden  T. P. Burt 《水文研究》2002,16(13):2537-2557
Blanket peat covers the headwaters of many major European rivers. Runoff production in upland blanket peat catchments is flashy with large flood peaks and short lag times; there is minimal baseflow. Little is known about the exact processes of infiltration and runoff generation within these upland headwaters. This paper presents results from a set of rainfall simulation experiments performed on the blanket peat moorland of the North Pennines, UK. Rainfall was simulated at low intensities (3–12 mm h?1), typical of natural rainfall, on bare and vegetated peat surfaces. Runoff response shows that infiltration rate increases with rainfall intensity; the use of low‐intensity rainfall therefore allows a more realistic evaluation of infiltration rates and flow processes than previous studies. Overland flow is shown to be common on both vegetated and bare peat surfaces although surface cover does exert some control. Most runoff is produced within the top few centimetres of the peat and runoff response decreases rapidly with depth. Little vertical percolation takes place to depths greater than 10 cm owing to the saturation of the peat mass. This study provides evidence that the quickflow response of upland blanket peat catchments is a result of saturation‐excess overland flow generation. Rainfall–runoff response from small plots varies with season. Following warm, dry weather, rainfall tends to infiltrate more readily into blanket peat, not just initially but to the extent that steady‐state surface runoff rates are reduced and more flow takes place within the peat, albeit at shallow depth. Sediment erosion from bare peat plots tends to be supply limited. Seasonal weather conditions may affect this in that after a warm, dry spell, surface desiccation allows sediment erosion to become transport limited. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
In cold climates, the process of freezing–thawing significantly affects the ground surface heat balance and water balance. To better understand the mechanism of evaporation from seasonally frozen soils, we performed field experiments at different water table depths on vegetated and bare ground in a semiarid region in China. Soil moisture and temperature, air temperature, precipitation, and water table depths were measured over a 5‐month period (November 1, 2016, to March 14, 2017). The evaporation, which was calculated by a mass balance method, was high in the periods of thawing and low in the periods of freezing. Increased water table depth in the freezing period led to high soil moisture in the upper soil layer, whereas lower initial groundwater levels during freezing–thawing decreased the cumulative evaporation. The extent of evaporation from the bare ground was the same in summer as in winter. These results indicate that a noteworthy amount of evaporation from the bare ground is present during freezing–thawing. Finally, the roots of Salix psammophila could increase the soil temperature. This study presents an insight into the joint effects of soil moisture, temperature, ground vegetation, and water table depths on the evaporation from seasonally frozen soils. Furthermore, it also has important implications for water management in seasonally frozen areas.  相似文献   

16.
An experimental study based on the effects of fire on soil hydrology was developed at the Experimental Station of ‘La Concordia’ (Valencia, Spain). It is located on a calcareous hillside facing SSE and composed of nine erosion plots (4 × 20 m). In summer 2003, after eight years of soil and vegetation recovery from previous fires in 1995 (with three fire treatments: T1 high‐intensity fire, T2 moderate intensity, and T3 not burnt), experimental fires of low intensity were again conducted on the plots already burnt, to study the effects of repeated fires on the soil water infiltration, soil water content and runoff. Infiltration rates and capacities were measured by the mini‐disk infiltrometer method (MDI), assessing the effects of vegetation cover by comparing the under‐canopy microenvironment (UC) and its absence on bare soil (BS), immediately before and after the fire experiments. Soil properties like water retention capacity (SWRC) and water content (SWC) were also determined for the different fire treatments (T1, T2 and T3) and microsites (UC and BS). Hydrological parameters, such as runoff and infiltration rate, were monitored at plot scale from July 2002 to July 2004. In the post‐fire period, data displayed a 20% runoff increase and a decrease in infiltration (18%). Differences in the steady‐state infiltration rate (SSI) and infiltration capacity (IC) were tested with the MDI on the different treatments (T1, T2 and T3), and between the UC and BS microsites of each treatment. After fire, the SSI of the UC soil declined from 16 mm h−1 to 12 mm h−1 on T1, and from 24 mm h−1 to 19 mm h−1 on T2. The IC was reduced by 2/3 in the T1 UC soil, and by half on T2 UC soil. On the BS of T1 and T2, the fire effect was minimal, and higher infiltration rates and capacities were reached. Therefore, the presence/absence of vegetation when burnt influenced the post‐burnt infiltration patterns at soil microscale. On the T3, different rates and capacities were obtained depending on the microsites (UC and BS), with higher SSI (25 mm h−1) and IC (226 mm h−1) on BS than on UC (SSI of 18 mm h−1 and IC of 136 mm h−1). The SWRC and SWC were recovered from 1995 to 2003 (prior to the fires). The 2003 fire promoted high variability on the SWC at pF 0·1, 2 and 2·5, and the SWRC on burnt soils were reduced. To summarize, the IC and SSI post‐fire decreases were related to the lower infiltration rate at plot scale, the significant differences in the SWRC between burnt and control treatments, and the increase in the runoff yield (20%). According to the results, the MDI was a useful tool to characterize the soil infiltration on the vegetation patches of the Mediterranean maquia, and contrary to other studies, on the UC soil, the infiltration rate and IC, when soil was dry, were lower than that obtained on BS. Once the soil gets wet, similar values were found on both microenvironments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Water repellency (WR) from fire‐affected soils can affect infiltration processes and increase runoff rates. We investigated the effects of fire‐induced changes in soil WR and the related soil hydrological response after one of the largest wildfires in Spain in recent years. The vertical distribution of WR in soil profiles was studied under oak and pine forests and the wetting pattern was analysed after rainfall simulations (85 mm h?1 during 60 min). After burning, the persistence of WR in soils under oaks increased in the upper 0–5 cm of soil in comparison with pre‐fire WR, but no significant changes were observed under pines. After a fire, WR was stronger and the thickness of the water‐repellent layer increased in soils under pines in the upper 0–16 cm of soil. The hydrophobic layer was thinner under oaks, where no strong to extremely water‐repellent samples were observed below 12 (in burnt soils) and 8 cm (in unburnt soils). Uniform wetting was observed through soil depth in burnt and unburnt soils under oaks, as a consequence of the prevailing matrix flux infiltration. Water was mostly stored in the upper few centimetres and soil became rapidly saturated, favouring a continuous rise in the runoff rate during the experiments. Moisture profiles under pines showed a heterogeneous wetting pattern, with highly irregular wetting fronts, as a result of wettable and water‐repellent three‐dimensional soil patches. In this case, runoff rates on burnt plots increased in relation to unburnt plots, but runoff generation reached a steady state after 25–30 min of simulated rainfall at an intensity of 85 mm h?1. Rainfall water infiltrated over a small part of the ponded area, where the vertical pressure of the water column overcame the WR. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In the Lainbach catchment, unconsolidated Pleistocene moraine sediments are widely distributed. Because of the great natural risk of floods, together with extreme loads of sediments, investigations of runoff production processes have been conducted in this area. At hillslope scale three test sites with different states of soil development and vegetation cover were instrumented with V‐shaped weirs, precipitation gauges and measurement devices for electrical conductivity (EC) of discharge water. The EC has been used as a geochemical tracer for hydrograph separation, since the statistical relationship between content of dissolved Ca2+, Mg2+ cations and EC is highly significant for different stages of runoff. This method allows hydrograph separation at high temporal resolution for both the rising and falling limb of the hydrograph. The following results of the investigations can be resumed. If relief conditions are similar, the effectiveness of runoff production decreases with an increasing density of vegetation cover. The runoff delivery ratio decreases as well as the peaks of runoff. In contrast, concentration times of hillslope catchments are equal, even if vegetation cover is of great density and soils are well developed. As a reason for the short reaction times, different runoff production processes have been detected. On bare ground, infiltration excess overland flow intensified by surface sealing processes is the main source for quick runoff. On hillslopes well covered by vegetation, translatory flow processes indicated by soil water with high solute contents force a rapid runoff reaction only a few minutes after rainfall has begun. It is to be assumed that translatory flow is a runoff production process typical for hillslopes covered by vegetation in a steep alpine relief. By means of the areal distribution of the topographic index, concentration of runoff production on a small part of the catchment has been demonstrated for hillslopes densely covered by vegetation. The investigations have shown that there is a lack of studies on runoff production processes in steep alpine relief, as well as a deficit of methods to quantify hydraulic properties of coarse‐grained soils with a wide grain size distribution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
There has been limited success in determining critical thresholds of ground cover or soil characteristics that relate to significant changes in runoff or sediment production at the microscale (<1 m2), particularly in semi‐arid systems where management of ground cover is critical. Despite this lack of quantified thresholds, there is an increasing research focus on the two‐phase mosaic of vegetation patches and inter‐patches in semi‐arid systems. In order to quantify ground cover and soil related thresholds for runoff and sediment production, we used a data mining technique known as conditional inference tree analysis to determine statistically significant values of a range of measured variables that predicted average runoff, peak runoff, sediment concentration and sediment production at the microscale. On Chromic Luvisols across a range of vegetation states in semi‐arid south‐eastern Australia, large changes in runoff and sediment production were related to a hierarchy of different variables and thresholds, but the percentage of bare soil played a primary role in predicting runoff and sediment production in most instances. The identified thresholds match well with previous thresholds found in semi‐arid and temperate regions (including the approximate values of 30%, 50% and 70% total ground cover). The analysis presented here identified the critical role of soil surface roughness, particularly where total ground cover is sparse. The analysis also provided evidence that a two‐phase mosaic of patches and inter‐patches identified via rapid visual assessment could be further delineated into distinct groups of hydrological response, or a multi‐phase rather than a two‐phase system. The approach used here may aid in assessing scale‐dependent responses and address data non‐linearity in studies of semi‐arid hydrology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号