首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The change of frozen soil environment is evaluated by permafrost thermal stability, thermal thaw sensibility and surface landscape stability and the quantitatively evaluating model of frozen soil environment is proposed in this paper. The evaluating model of frozen soil environment is calculated by 28 ground temperature measurements along Qinghai-Xizang Highway. The relationships of thermal thaw sensibility and freezing and thawing processes and seasonally thawing depth, thermal stability and permafrost table temperature, mean annual ground temperature and seasonally thawing depth, and surface landscape stability and freezing and thawing hazards and their forming possibility are analyzed. The results show that thermal stability, thermal thaw sensibility and surface landscape stability can be used to evaluate and predict the change of frozen soil environment under human engineering action.  相似文献   

2.
This study integrated spatially distributed field observations and soil thermal models to constrain the impact of frozen ground on snowmelt partitioning and streamflow generation in an alpine catchment within the Niwot Ridge Long-Term Ecological Research site, Colorado, USA. The study area was comprised of two contrasting hillslopes with notable differences in topography, snow depth and plant community composition. Time-lapse electrical resistivity surveys and soil thermal models enabled extension of discrete soil moisture and temperature measurements to incorporate landscape variability at scales and depths not possible with point measurements alone. Specifically, heterogenous snowpack thickness (~0–4 m) and soil volumetric water content between hillslopes (~0.1–0.45) strongly influenced the depths of seasonal frost, and the antecedent soil moisture available to form pore ice prior to freezing. Variable frost depths and antecedent soil moisture conditions were expected to create a patchwork of differing snowmelt infiltration rates and flowpaths. However, spikes in soil temperature and volumetric water content, as well as decreases in subsurface electrical resistivity revealed snowmelt infiltration across both hillslopes that coincided with initial decreases in snow water equivalent and early increases in streamflow. Soil temperature, soil moisture and electrical resistivity data from both wet and dry hillslopes showed that initial increases in streamflow occurred prior to deep soil water flux. Temporal lags between snowmelt infiltration and deeper percolation suggested that the lateral movement of water through the unsaturated zone was an important driver of early streamflow generation. These findings provide the type of process-based information needed to bridge gaps in scale and populate physically based cryohydrologic models to investigate subsurface hydrology and biogeochemical transport in soils that freeze seasonally.  相似文献   

3.
Control of evaporation from seasonally frozen soil is an important method for alleviating water shortages in arid and semi-arid areas. To investigate the inhibition of soil evaporation by sand and the major factors that influence soil evaporation, a series of field experiments with five sand-mulch thicknesses (0 cm, bare soil [BS], 1 cm [T1], 2 cm [T2], 3 cm [T3] and 4 cm [T4], with an average diameter of 1 mm) were conducted during the freeze–thaw period in Northern China. Soil evaporation characteristics in the three freeze–thaw stages were revealed and the major factors influencing soil evaporation were analysed using grey correlation analysis. The results showed that the cumulative soil evaporation decreased with increasing sand-mulch thickness during the freeze–thaw period, and only small differences in soil evaporation were observed between the T3 and T4 treatments. The reduction in soil evaporation under different sand-mulch thicknesses was 19.2–62.6% in the unstable freezing stage (P1), 2.0–28.3% in the stable freezing stage (P2) and 4.8–20.4% in the thawing stage (P3). In P1, solar radiation was a major factor influencing soil evaporation in all treatments and vapour pressure was a major factor in the sand-mulch treatments, and the influence of relative humidity on soil evaporation decreased in the T4 treatment. During the coldest P2, solar radiation was lowest so that relative humidity and wind speed became the more dominant influence factors on soil evaporation in all treatments, and surface soil water content was a major factor in the sand-mulch treatments. In P3, average air temperature and solar radiation were major factor influencing soil evaporation in all treatments and vapour pressure was a major factor in the BS and T1 treatments, whereas water surface evaporation was the major factor in the T2, T3 and T4 treatments. The results suggest that the addition of sand mulch in agricultural fields may be a beneficial practice to reduce water stress in arid and semi-arid areas.  相似文献   

4.
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.  相似文献   

5.
Seasonal changes over 2 years (2004–2006) in soil moisture content (θv) of frozen alpine frost meadow soils of the Qinghai‐Tibet plateau permafrost region under three different levels of vegetation cover were investigated. Vegetation cover and air temperature changes had significant effects (synergistic effect) on θv and its distribution in the soil profile. During periods of soil freezing or thawing, the less the vegetation cover, the quicker the temperature drop or rise of soil water, and the shorter the duration of the soil water freeze–thaw response in the active soil layer. Under 30% and 65% vegetation cover the amplitude of variation in θv during the freezing period was 20–26% greater than that under 93% cover, while during the thawing period, it was 1·5‐ to 40·5‐fold greater. The freezing temperature of the surface soil layer, fTs, was 1·6 °C lower under 30% vegetation cover than under 93% vegetation cover. Changes in vegetation cover of the alpine frost meadow affected θv and its distribution, as well as the relationship between θv and soil temperature (Ts). As vegetation cover decreased, soil water circulation in the active layer increased, and the response to temperature of the water distribution across the soil profile was heightened. The quantity of transitional soil phase water at different depths significantly increased as vegetation cover decreased. The influence of vegetation cover and soil temperature distribution led to a relatively dry soil layer in the middle of the profile (0·70–0·80 m) under high vegetation cover. Alpine meadow θv and its pattern of distribution in the permafrost region were the result of the synergistic effect of air temperature and vegetation cover. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Infiltration of water into two frozen engineered soils of different gradation was studied in laboratory soil columns 1.2 m long and 0.1 m in diameter. Prior to testing, the soil moisture was adjusted to two levels, described by the gravimetric water content of 5% or 10%, and soils were compacted to about 80–90% of the maximum dry density and refrigerated to temperatures ranging from ?8 to ?2 °C. Water with temperatures 8–9 °C was thereafter fed on the top of columns at a constant head, and the times of water breakthrough in the column and reaching a steady percolation rate, as well as the percolation rate, were recorded. The soil water content was a critical factor affecting the thawing process; during freezing, soil moisture was converted into ice, which blocked pores, and its melting required high amounts of energy supplied by infiltrating water. Hence, the thawing of soils with higher initial water content was much slower than in lower moisture soils, and water breakthrough and the attainment of steady percolation required much longer times in higher moisture soils. Heat transfer between infiltrating water, soil ice, and frozen soil particles was well described by the energy budget equations, which constitute a parsimonious model of the observed processes. The finer grained soil and more compacted soil columns exhibited reduced porosity and required longer times for soil thawing. Practical implications of study results for design of bioretention facilities (BFs) in cold climate include the use of coarse engineered soils and fitting bioretention facilities with a drain facilitating soil drainage before the onset of freezing weather. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Significant seismic events have occurred around the world during winter months in regions where cold temperatures cause ground freezing. Current seismic design practice does not address the effects of cold temperatures in the seasonally frozen areas. Since many elevated water tank structures in cold regions are located in seismic active zones, determining the effect of seasonally frozen soil on the stochastic response of elevated water tank structures subjected to random seismic excitation is an important structural consideration. A three dimensional finite element model, which considers viscous boundaries, was built up to obtain the stochastic seismic behavior of an elevated water tank–fluid–soil interaction system for frozen soil condition. For this model, the power spectral density function represents random ground motion applied to each support point of the three dimensional finite element model of the elevated water tank–fluid–soil interaction system. Numerical results show that the soil temperature affects the seismic response of the elevated water tank; whereas the variation in the thickness of the frozen soil causes insignificant changes on the response. In addition, the effect of the variation in water tank’s fullness on the stochastic response of the coupled system is investigated in the study. As a result, the seasonal frost changes the foundation soil stiffness and may impact seismic behavior of the water tank.  相似文献   

9.
The Qinghai-Tibet plateau has the world's largest area of seasonally frozen ground. Here, shallow groundwater displays behavior that is distinct from that elsewhere in the world. In the present study, we explore the seasonal and interannual variation of the shallow groundwater levels from 2012 to 2016, and attempt to quantitatively evaluate the relative influences of individual driving factors on the shallow groundwater levels based on boosted regression trees. The results show that: (1) on a seasonal scale, the groundwater levels were characterized by a double peak and double valley relationship, while on an interannual scale the groundwater levels showed a slightly downwards trend from 2012 to 2016; and (2) during the frozen period, the seasonal variation of groundwater levels was determined by mean air temperature through its effect on the soil thaw–freeze process, accounting for 53.15% of total variation. Meanwhile, ET0 and rainfall exerted little impact on the seasonal variation of groundwater levels, which might be attributed to the aquitard of frozen soil that impedes the exchange between surface water and groundwater. Moreover, there was a lag between groundwater levels and soil freezing–thawing. During the non-frozen period, the mean air temperature was again the most important factor impacting the variation of groundwater levels, through its effect on ET0, and accounted for 40.75% of total variation, while rainfall had little effect on groundwater levels when rainfall intensity was less than 12 mm/day. These results will benefit predictions of future trends in groundwater levels within the context of global warming.  相似文献   

10.
C. L. I. Ho  C. Valeo 《水文研究》2005,19(2):459-473
Urban winter hydrology has garnered very little attention owing to the general notion that high‐intensity rainfalls are the major flood‐generating events in urban areas. As a result, few efforts have been made to research urban snow and its melt characteristics. This study investigates the characteristics of urban snow that differentiate it from rural snow, and makes recommendations for incorporating these characteristics into an urban snowmelt model. A field study was conducted from the fall of 2001 to the spring of 2002 in the city of Calgary, Canada. Snow depths and densities, soil moisture, soil temperature, snow albedo, net radiation, snow evaporation, and surface temperature were measured at several locations throughout the winter period. The combination of urban snow removal practices and the physical elements that exist in urban areas were found to influence the energy balance of the snowpack profoundly. Shortwave radiation was found to be the main source of energy for urban snow; as a consequence, the albedo of urban snow is a very important factor in urban snowmelt modelling. General observations lead to the classification of snow as one of four types: snow piles, snow on road shoulders, snow on sidewalk edges, and snow in open areas. This resulted in the development of four separate functions for the changing snow albedo values. A study of the frozen ground conditions revealed that antecedent soil moisture conditions had very little impact on frozen ground, and thus frozen ground very nearly always acts as a near impervious area. Improved flood forecasting for urban catchments in cold regions can only be achieved with accurate modelling of urban winter runoff that involves the energy balance method, incorporating snow redistribution and urban snow‐cover characteristics, and using small time steps. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Effect of macropores on soil freezing and thawing with infiltration   总被引:3,自引:0,他引:3       下载免费PDF全文
An understanding of heat transport and water flow in unsaturated soils experiencing freezing and thawing is important when considering hydrological and thermal processes in cold regions. Macropores, such as cracks, roots, and animal holes, provide efficient conduits for enhanced infiltration, resulting in a unique distribution of water content. However, the effects of macropores on soil freezing and thawing with infiltration have not been well studied. A one‐directional soil‐column freezing and thawing experiment was conducted using unsaturated sandy and silt loams with different sizes and numbers of macropores. During freezing, macropores were found to retard the formation of the frozen layer, depending on their size and number. During thawing, water flowed through macropores in the frozen layer and reached the underlying unfrozen soil. However, infiltrated water sometimes refroze in a macropore. The ice started to form at near inner wall of the macropore, grew to the centre, and blocked flow through the macropore. The blockage ice in the macropore could not melt until the frozen layer disappeared. Improving a soil freezing model to consider these macropore effects is required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The soil freeze–thaw controls the hydrological and carbon cycling and thus affects water and energy exchanges at land surface. This article reported a newly developed algorithm for distinguishing the freeze/thaw status of surface soil. The algorithm was based on information from Advanced Microwave Scanning Radiometer Enhanced (AMSR‐E) which records brightness temperature (Tb) in the afternoon and after midnight. The criteria and discriminant functions were obtained from both radiometer observations and model simulations. First of all, the microwave radiation from freeze–thaw soil was examined by carrying out experimental measurements at 18·7 and 36·5 GHz using a Truck‐mounted Multi‐frequency Microwave Radiometer (TMMR) in the Heihe River of China. The experimental results showed that the soil moisture is a key component that differentiates the microwave radiation behaviours during the freeze–thaw process, and the differences in soil temperature and emissivity between frozen and thawed soils were found to be the most important criteria. Secondly, a combined model was developed to consider the impacts of complex ground surface conditions on the discrimination. The model simulations quite followed the trend of in situ observations with an overall relation coefficient (R) of approximately 0·88. Finally, the ratio of Tb18·7H (horizontally polarized Tb at 18·7 GHz) to Tb36·5V was considered primarily as the quasi‐emissivity, which is more reasonable and explicit in measuring the microwave radiation changes in soil freezing and thawing than the spectral gradient. By combining Tb36·5V to indicate the soil temperature variety, a Fisher linear discrimination analysis was used to establish the discriminant functions. After being corrected by TMMR measurements, the new discriminant algorithm had an overall accuracy of 86% when validated by 4‐cm soil temperature. The multi‐year discriminant results also provided a good agreement with the classification map of frozen ground in China. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
14.
There is little knowledge available about infiltration and evaporation processes in wadi channels in arid regions. This work was conducted to determine the actual evaporation from bare soils in wadi channels in the south-western region of the Kingdom of Saudi Arabia. The estimation of soil evaporation is highly dependent on the availability of moisture in the upper layers of alluvial wadis, in which the areal rainfall, flood hydrograph and soil properties play a significant part. The study was conducted by estimating the actual evaporation using soil moisture data, precipitation and runoff depths in a representative basin. The results are compared with potential rates. The actual rates were 1.5 mm/day immediately after a rainy day and then decreased to 0.42 mm/day. The minimum rate was about 0.1–0.2 mm/day during the dry season. The potential rates were about 9.5 mm/day in June and July, decreasing to 3.5 mm/day in December and January.  相似文献   

15.
Dry saline soils are common in the arid and hyper‐arid basins located in the Chilean Altiplano, where evaporation from shallow groundwater is typically the major component of the water balance. Thus, a good understanding of evaporation processes is necessary for improving water resource planning and management in these regions. In this study, we conducted laboratory experiments with a natural saline soil column to estimate evaporation rates and assess the liquid and water vapor fluxes under different water table levels. Water content, electrical conductivity and temperature at different depths were utilized to assess the liquid and water vapor fluxes in the soil column. We observed movement of water that dissolves salts from the soil and transports them to areas in the column where they accumulate. Isothermal liquid flux was predominant, while thermal and isothermal liquid and thermal water vapor fluxes were negligible, except for deep water table levels where isothermal and thermal water vapor fluxes had similar magnitude but opposite directions. Differences observed in total fluxes for all water table levels were due to different upward and downward fluxes, which depend on changes in water content and temperature within the soil profile. Both the vapor flux magnitude and direction were found to be very sensitive to the choice of empirical parameters used in flux quantification, such as tortuosity and the enhancement factor for local temperature gradients in the air phase within the column. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The need to understand and simulate hydrological phenomena and their interactions, and the impact of anthropogenic and climate changes on natural environments have promoted the study of evaporation from bare soils in arid climates. In closed Altiplano basins, such as those encountered in arid and hyper arid basins in northern Chile, evaporation from shallow groundwater is the main source of aquifer depletion, and thus, its study is crucial for water resources management. The objective of this work is to understand the mechanisms of evaporation in saline soils with shallow water tables, in order to better quantify evaporation fluxes and improve our understanding of the water balance in these regions. To achieve this objective, a model that couples fluid flow with heat transfer was developed and calibrated using column experiments with saline soils from the Huasco salt flat basin, Chile. The model enables determination of both liquid and water vapour fluxes, as well as the location of the evaporation front. Experimental results showed that salt transport inside the soil profile modified the water retention curve, highlighting the importance of including salt transport when modelling the evaporation processes in these soils. Indeed, model simulations only agreed with the experimental data when the effect of salt transport on water retention curves was taken into account. Model results also showed that the evaporation front is closer to the soil surface as the water table depth reduces. Therefore, the model allows determining the groundwater level depth that results in disconnection of liquid fluxes in the vadose zone. A sensitivity analysis allowed understanding the effect of water‐flux enhancements mechanisms on soil evaporation. The results presented in this study are important as they allow quantifying the evaporation that occurs in bare soils from Altiplano basins, which is typically the main water discharge in these closed basins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Here, we studied the isotope characteristics and source contributions of soil water in the permafrost active layer by collecting soil samples in July 2018 in Yangtze River basin. Soil moisture and temperature showed decreasing trends from 0–80 cm, and an increasing trend from 80–100 cm. The value of δ18O and δD first increased and then decreased in the soil profile of 0–100 cm; however, d-excess increased from 0–100 cm. δ18O values became gradually positive from the southwest to northeast of the study area, while d-excess gradually increased from southeast to northwest. The evaporation water line (EL) was δD = 7.56 δ18O + 1.50 (R2 = 0.90, p < 0.01, n = 96). Due to intense solar radiation and evaporation on the Tibetan Plateau, the elevation did not impact the surface soil. The altitude effect of the soil depths of 0–20 cm was not obvious, but the other soil layers had a significant altitude effect. Soil moisture and temperature were closely related to the stable isotopic composition of soil water. The contribution of precipitation to soil water on the sunny slope was 86%, while the contribution of the shady slope was 84%. However, the contribution of ground ice to soil water on sunny slope was 14% and the shady slope was 16%. The contribution of ground ice to soil water increased with increasing altitude on the sunny slope, but the contribution of ground ice to soil water had no obvious trend on the shady slope.  相似文献   

18.
Wildfires are a cause of soil water repellency (hydrophobicity), which reduces infiltration whilst increasing erosion and flooding from post-fire rainfall. Post-fire soil water repellency degrades over time, often in response to repeated wetting and drying of the soil. However, in mountainous fire-prone forests such as those in the Western USA, the fire season often terminates in a cold and wet winter, during which soils not only wet and dry, but also freeze and thaw. Little is known about the effect of repeated freezing and thawing of soil on the breakdown of post-fire hydrophobicity. This study characterized the changes in hydrophobicity of Sierra Nevada mountain soils exposed to different combinations of wet–dry and freeze–thaw cycling. Following each cycle, hydrophobicity was measured using the Molarity of Ethanol test. Hydrophobicity declined similarly across all experiments that included a wetting cycle. Repeated freezing and thawing of dry soil did not degrade soil water repellency, but freeze–thaw cycles decreased hydrophobicity in wet soils. Total soil organic matter content was not different between soils of contrasting hydrophobicity. Macroscopic changes such as fissures and cracks were observed to form as soil hydrophobicity decayed. Microscopic changes revealed by scanning electron microscope imagery suggest different levels of soil aggregation occurred in samples with distinct hydrophobicities, although the size of aggregates was not clearly correlated to the change in water repellency due to wet–dry and freeze–thaw cycling. A 9-year climate and soil moisture record from Providence Critical Zone Observatory was combined with the laboratory results to estimate that hydrophobicity would persist an average of 144 days post-fire at this well-characterized, typical mid-elevation Sierra Nevada site. Most of the breakdown in soil water repellency (79%) under these climate conditions would be attributable to freeze–thaw cycling, underscoring the importance of this process in soil recovery from fire in the Sierra Nevada.  相似文献   

19.
为了解冻融作用对黄土湿陷性的作用效果,以Q3黄土为研究对象,采用增(减)湿法配制不同含水量黄土试样,测试黄土在无补水条件下受温度影响的冻融变形、压缩变形和湿陷变形;对原状黄土进行颗粒分析及基本物理力学参数试验。分析表明:(1)黄土是否产生冻胀取决于其含水量是否超过"临界冻胀含水量"。(2)冻融黄土与原状黄土相比压缩变形量较大,把部分浸水湿陷变形转化为压缩变形,冻融作用使黄土的湿陷性弱化。(3)冷冻黄土在相同温度下,含水量越大,湿陷系数越小;在同一含水量下,冻结温度愈低湿陷系数愈小。  相似文献   

20.
岸滩侧蚀崩塌现象普遍存在于江河湖泊中,是一种危害较大的自然灾害。季节性冰冻河流受水动力、冻融耦合作用,岸滩崩塌机理复杂,开展其岸坡稳定性研究对河势控制和河流综合治理具有重要意义。以松花江干流大顶子山航电枢纽下游近坝段为例,采用BSTEM断面尺度模型,对河岸崩塌过程进行了模拟,定量分析了冻融作用对河岸稳定性的影响。研究结果表明:涨水期河岸稳定性相对较高,洪水期和退水期稳定性相对较低,为崩岸多发时期;冻融作用会使河岸稳定安全系数Fs提前达到不稳定临界值,即与不考虑冻融作用相比,河岸提前崩塌,且考虑冻融作用的崩塌宽度更接近实测值,累计冲刷崩塌总量增幅约为7%~41%。研究结果可为季节性冰冻河流岸滩崩塌及河道演变研究提供一定借鉴和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号