首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seasonal abundance and spatial distribution of eggs and early larvae of the bay anchovy,Anchoa mitchilli, and the weakfish,Cynoscion regalis, were determined from plankton collections taken during 1971–1976 in the lower Chesapeake Bay. Eggs and larvae of the bay anchovy,Anchoa mitchilli, dominated the ichthyoplankton, making up 96% of the total eggs and 88% of all larvae taken. A comparison of egg and larval densities from the lower Chesapeake Bay to existing data from other East Coast estuaries suggested that Chesapeake Bay is a major center of spawning activity for this species.Anchoa mitchilli spawning commenced in May when mean water column temperatures approached 17°C and abruptly ceased after August. Eggs and early larvae presented a continuous distribution throughout the study area during these months. Eggs and larvae of several sciaenid species, especiallyC. regalis, ranked second in numerical abundance. Larval weakfish were consistently taken in late summer of each sampling year but peak abundance and distribution was observed in August 1971. Sciaenid eggs exhibited a distinct polyhaline distribution with greatest concentrations observed at the Chesapeake Bay entrance or along the Bay eastern margin. Analysis of sciaenid egg morphometry and larval occurrence suggested spawning activity of at least four species. Additional important species represented by eggs and/or larvae in the lower Chesapeake Bay wereHypsoblennius hentzi, Gobiosoma ginsburgi, Trinectes maculatus, Symphurus plagiusa andParalichthys dentatus with the remaining species occurring infrequently.  相似文献   

2.
Patterns and variability in reproductive output of pelagic fish are seldom determined at the ecosystem scale. We examined temporal and spatial variability in spawning by bay anchovy (Anchoa mitchilli), and in distribution and abundances of its pelagic early-life stages, throughout Chesapeake Bay. On two cruises in June and July 1993, ichthyoplankton and zooplankton were collected on 15 transects at 18.5-km (10 nautical mile) intervals over the 260-km length of the bay. Finer-scale sampling was carried out in a grid of stations between two transects on each cruise. Regional abundance patterns of bay anchovy eggs and larvae in the lower, mid, and upper Bay were compared with zooplankton abundances, environmental variables, and biovolumes of two gelatinous predators—the scyphomedusa Chrysaora quinquecirrha and the lobate ctenophore Mnemiopsis leidyi. Abundances of anchovy eggs, and, especially, larvae were higher in July than in June. Baywide daily egg production increased from 4.25×1012 in June to 8.43×1012 in July. Concentrations of zooplankton that are potential anchovy prey nearly doubled on a baywide basis between June and July, while biovolumes of the ctenophore declined. Except for scyphomedusan biovolumes, all analyzed organisms differed regionally in abundance and were patchily distributed at 1-km to 10-km sampling scales. Negative correlations between larval anchovy abundances and gelatinous predator biovolumes suggested that predation may have controlled abundances of bay anchovy early-life stages. Biomasses of adult anchovy, estimated from daily egg productions, were higher in the lower Bay and remarkably similar—23,433 tons in June and 23,194 tons in July. Most spawning by bay anchovy occurred during July in the seaward third of Chesapeake Bay, emphasizing the importance of this region for recruitment potential of the Bay's most abundant fish.  相似文献   

3.
Bay scallop (Argopecten irradians) populations existed in Chesapeake Bay until 1933, when they declined dramatically due to a loss of seagrass habitat. Since then, there have been no documented populations within the Bay. However, some anecdotal observations of live bay scallops within the lower Bay suggest that restoration of the bay scallop is feasible. We therefore tested whether translocated adults of the southern bay scallop, Argopecten irradians concentricus, could survive during the reproductive season in vegetated and unvegetated habitats of the Lynnhaven River sub-estuary of lower Chesapeake Bay in the absence of predation. Manipulative field experiments evaluated survival of translocated, caged adult scallops in eelgrass Zostera marina, macroalgae Gracilaria spp., oyster shell, and rubble plots at three locations. After a 3-week experimental period, scallop survival was high in vegetated habitats, ranging from 98% in their preferred habitat, Z. marina, to 90% in Gracilaria spp. Survival in Z. marina was significantly higher than that in rubble (76%) and oyster shell (78%). These findings indicate that reproductive individuals can survive in vegetated habitats of lower Chesapeake Bay when protected from predators and that establishment of bay scallop populations within Chesapeake Bay may be viable.  相似文献   

4.
The structure of the fish community associated with eelgrass beds in the lower Chesapeake Bay was studied over a 14 month period. A total of 24,182 individuals in 48 species was collected by otter trawl with Leiostomus xanthurus (spot) comprising 63% of the collection, Syngnathus fuscus (northern pipefish) 14%, Anchoa mitchilli (bay anchovy) 9%, and Bairdiella chrysoura (silver perch) 5%. The density and diversity of fishes were higher in vegetated areas compared to unvegetated areas; fishes were more abundant in night collections Fish abundance and species number increased in the spring and early summer as both water temperature and eelgrass biomass increased and decreased in the fall and winter as temperature and eelgrass biomass decreased. Gill netting revealed some of the top predators in the system, especially the sandbar shark, Carcharhinus milberti. The fish community in the Chesapeake Bay was quite different from North Carolina eelgrass fish communities. Most notable was the rarity of the pinfish, Lagodon rhomboides, which may be a very important predator in the structuring of the epifaunal communities.  相似文献   

5.
Four polymorphic loci in seven natural oyster (Crassostrea virginica Gmelin) populations of the Chesapeake Bay were analyzed by protein-gel electrophoresis for genetic variation. Samples of about 100 each were taken in 1977 along environmental gradients from stations in the James and Potomac rivers. The distribution of genotypes at four loci for each of the stations was nog significantly different from Hardy-Weinberg expectations. At two loci (Pgi andLap-2), a pool of all seven stations was also in equilibrium. Significant genetic differentiation between rivers was detected for two other loci (Pgm-1 andLap-1), and frequency of one genotype (Lap-1 95/95) was significantly correlated with mean temperature over the water monitoring period (1972–1977).  相似文献   

6.
Climate effects on hydrology impart high variability to water-quality properties, including nutrient loadings, concentrations, and phytoplankton biomass as chlorophyll-a (chl-a), in estuarine and coastal ecosystems. Resolving long-term trends of these properties requires that we distinguish climate effects from secular changes reflecting anthropogenic eutrophication. Here, we test the hypothesis that strong climatic contrasts leading to irregular dry and wet periods contribute significantly to interannual variability of mean annual values of water-quality properties using in situ data for Chesapeake Bay. Climate effects are quantified using annual freshwater discharge from the Susquehanna River together with a synoptic climatology for the Chesapeake Bay region based on predominant sea-level pressure patterns. Time series of water-quality properties are analyzed using historical (1945–1983) and recent (1984–2012) data for the bay adjusted for climate effects on hydrology. Contemporary monitoring by the Chesapeake Bay Program (CBP) provides data for a period since mid-1984 that is significantly impacted by anthropogenic eutrophication, while historical data back to 1945 serve as historical context for a period prior to severe impairments. The generalized additive model (GAM) and the generalized additive mixed model (GAMM) are developed for nutrient loadings and concentrations (total nitrogen—TN, nitrate?+?nitrate—NO2?+?NO3) at the Susquehanna River and water-quality properties in the bay proper, including dissolved nutrients (NO2?+?NO3, orthophosphate—PO4), chl-a, diffuse light attenuation coefficient (K D (PAR)), and chl-a/TN. Each statistical model consists of a sum of nonlinear functions to generate flow-adjusted time series and compute long-term trends accounting for climate effects on hydrology. We present results identifying successive periods of (1) eutrophication ca. 1945–1980 characterized by approximately doubled TN and NO2?+?NO3 loadings, leading to increased chl-a and associated ecosystem impairments, and (2) modest decreases of TN and NO2?+?NO3 loadings from 1981 to 2012, signaling a partial reversal of nutrient over-enrichment. Comparison of our findings with long-term trends of water-quality properties for a variety of estuarine and coastal ecosystems around the world reveals that trends for Chesapeake Bay are weaker than for other systems subject to strenuous management efforts, suggesting that more aggressive actions than those undertaken to date will be required to counter anthropogenic eutrophication of this valuable resource.  相似文献   

7.
The distribution of two classes of lipid biomarker compounds (fatty acids and sterols) was used in conjunction with several bulk parameters (total suspended solids, chlorophyll a, and particulate carbon and nitrogen concentrations) to examine spatial and temporal variability in the sources of particulate organic matter (POM) important to southern Chesapeake Bay. Based on these geochemical parameters, we found that suspended and sedimentary organic matter in the southern Chesapeake Bay is derived from autochthonous sources including a mixture of fresh and detrital phytoplankton, zooplankton, and bacteria. The dominant factor contributing to temporal variability during our study was phytoplankton productivity. Enrichments in particulate organic carbon, chlorophyll a, total fatty acids, total sterols, and a number of biomarkers specific to phytoplankton sources were found in particles collected from surface (1 m) and deep (1 m above the bottom) portions of the water column at several sites during the spring bloom in March 1996 and during a localized bloom in July 1995. Comparison of sites at the mouths of two tributaries (York and Rappahannock rivers) to southern Chesapeake Bay with two sites located in the bay mainsterm indicates spatial variation in the composition of POM was not significant in this region of the bay. The energetic nature of this region of the Chesapeake Bay most likely contributes to the observed homogeneity. Comparison with biomarker studies conducted in other estuaries suggests the high levels of productivity characteristic of the Chesapeake Bay contribute to high background levels of POM.  相似文献   

8.
Restoration of the Chesapeake Bay ecosystem has been a priority for residents and governments of the bay watershed for the past decade. One obstacle in the efforts to “save the bay” has been continuing nutrient enrichment from agricultural and sewer runoff. The attainability of a mandated 40% nutrient reduction goal has yet to be seen. Furthermore, disappearance of certain organisms may have had an adverse effect on the resilience of the ecosystem. The Eastern oyster (Crassostrea virginica), once abundant in Chesapeake Bay, was a vital part of the food web, processing excess phytoplankton and depositing materials on the bottom. Over harvesting and disease have decimated the native oyster population. The introduction of an exotic species, the Japanese oyster (Crassostrea gigas), may be a way to reestablish a robust oyster community in the bay. The literature on the role of bivalve molluscs in estuarine ecosystems shows that they are an essential part of healthy estuaries around the world. A comparison ofC. virginica andC. gigas in terms of temperature and salinity tolerance and resistance to disease shows thatC. virginica is ideally adapted to conditions in Chesapeake Bay, but it is unable to stave off the endemic diseases, whereasC. gigas is adapted to conditions in the lower bay only but is much less susceptible to the same diseases. We conclude that the potential introduction ofC. gigas to Chesapeake Bay would be limited by the Japanese species’ physiological requirements but that the revitalization of a bivalve population is imperative to the restoration of ecosystem function.  相似文献   

9.
The decline of submersed aquatic vegetation (SAV) in tributaries of the Chesapeake Bay has been associated with increasing anthropogenic inputs, and restoration of the bay remains a major goal of the present multi-state “Bay Cleanup” effort. In order to determine SAV response to water quality, we quantified the water column parameters associated with success of transplants and natural regrowth over a three-year period along an estuarine gradient in the Choptank River, a major tributary on the eastern shore of Chesapeake Bay. The improvement in water quality due to low precipitation and low nonpoint source loadings during 1985–1988 provided a natural experiment in which SAV was able to persist upstream where it had not been for almost a decade. Mean water quality parameters were examined during the growing season (May–October) at 14 sites spanning the estuarine gradient and arrayed to show correspondence with the occurrence of SAV. Regrowth of SAV in the Choptank is associated with mean dissolved inorganic nitrogen <10 μM; mean dissolved phosphate <0.35 μM; mean suspended sediment <20 mg l?1; mean chlorophylla in the water column <15 μg l?1; and mean light attenuation coefficient (Kd) <2 m?1. These values correspond well with those derived in other parts of the Chesapeake, particularly in the lower bay, and may provide managers with values that can be used as target concentrations for nutrient reduction strategies where SAV is an issue.  相似文献   

10.
Aerial surveys were conducted in the lower Chesapeake Bay during 1986–1989 to estimate abundance and examine the distribution of the cownose ray,Rhinoptera bonasus, during its seasonal residence, May–October. Most of the survey effort was concentrated in the lower and mid-bay regions. Cownose rays appeared uniformly distributed across the bay during mid-summer, but were more abundant in the eastern portion of the bay during migration. North-south distribution varied and reflected the general seasonal migration pattern. Mean abundance increased stepwise monthly from June through September and declined dramatically in October with their emigration from the bay. Abundance estimates from individual surveys varied. The greatest range of individual survey abundance estimates occurred in September (0–3.7×107 cownose rays0 due to high variation in school size and abundance between surveys. Monthly mean cownose ray abundance ranged from 0 in May and November to an estimated maximum of 9.3×106 individuals in September. The magnitude of the population suggests that the cownose ray plays an important role in the trophic dynamics of the Chesapeake Bay ecosystem. The historical data were insufficient to determine whether the population has increased, but these surveys provided the baseline data which would allow future investigation of cownose ray population dynamics in lower Chesapeake Bay.  相似文献   

11.
An historical summary of the distribution and abundance of submerged aquatic vegetation (SAV) in the Chesapeake Bay is presented. Evidence suggests that SAV has generally been common throughout the bay over the last several hundred years with several fluctuations in abundance. The decline ofZostera marina (eelgrass) in the 1930’s and the rapid expansion ofMyriophyllum spicatum (watermilfoil) in the late 1950’s and early 1960’s were two significant events involving a single species. Since 1965, however, there has been a significant reduction of all species in most sections of the bay. Declines were first observed in the Patuxent, Potomac and sections of other rivers in the Maryland portion of the Bay between 1965 and 1970. Dramatic reductions were observed over the entire length of the bay from 1970 to 1975. Particularly severe losses were observed at the head of the bay around Susquehanna Flats as well as in numerous rivers along Maryland’s eastern and western shores. Changes in the lower, Virginia portion of the bay occurred primarily in the western tributaries. Greatest losses of vegetation occurred in the years following Tropical Storm Agnes in 1972. Since 1975 little regrowth has been observed in the Chesapeake Bay. Other areas along the Atlantic Coast of the U.S. during the same period have experienced no similar widespread decline. It thus appears that the factors affecting the recent changes in distribution and abundance of submerged vegetation in the bay are regional in nature. Causes for this decline may be related to changes in water quality, primarily increased eutrophication and turbidity.  相似文献   

12.
With increased shoreline hardening and development, it is important to understand the ecological processes occurring in these and adjacent coastal habitats. A common species found associated with these hard-substrate habitats in Chesapeake Bay is the grass shrimp, Palaemonetes pugio. Caging experiments were conducted from June to August 2010 to examine the effects of shrimp on the recruitment and development of hard-substrate communities. Experiments were conducted at two low-salinity sites within Chesapeake Bay and one high-salinity site in an adjacent coastal bay in Virginia. The addition of grass shrimp reduced recruitment of polychaetes and scyphistomae of the sea nettle, Chrysaora quinquecirrha, and increased recruitment of encrusting bryozoans and the oyster, Crassostrea virginica. After 12?weeks, sea nettles at one low-salinity site, dominated predator-exclusion treatments. At the high-salinity site, oysters dominated when shrimp were present. Although it is unclear whether the results of short-term caging studies can be applied across larger temporal and spatial scales, the significant effects of grass shrimp on two important Chesapeake Bay species suggests that increases in hard-substrate habitat could have broader impacts within this and other systems.  相似文献   

13.
Atlantic croaker is one of the most abundant demersal fish in Chesapeake Bay. Until recently, when substantial declines in abundance have occurred, high biomass supported elevated fisheries landings. Therefore, study of the diet of Atlantic croaker is important to understand its own dynamics and its role in the Chesapeake Bay ecosystem. Patterns in the diet of croaker varied annually, seasonally, and spatially, but were not strongly correlated with any measured environmental variables. Although the majority of the diet of croaker consisted of polychaetes and other benthic items, about 20% of the croaker diet by weight consisted of anchovy and other fishes. Croaker consumption of anchovy is likely a result of crepuscular feeding that has not been captured in previous studies that sampled during the day and with bottom trawls. Thus, croaker influences both the benthic and pelagic components of the Chesapeake Bay food web and incorporating such diel patterns in diet may increase the reliability of fishery ecosystem models.  相似文献   

14.
Larvae and juveniles are often most abundant at some distance from where spawning occurs. Such apparent distribution shifts can be the result of larval migration, seasonal shifts in the distribution of spawners, or spatial heterogeneity in mortality. In the present study, a cohort-based method was adopted to test for larval migration of bay anchovy (Anchoa mitchilli) and to estimate its rate and timing. A spatially and temporally extensive series of ichthyoplankton samples was collected in the lowest 122 km of the Hudson River in summer 1998. Bay anchovy eggs and young-of-year individuals were abundant (mean density=1.6 m?3 and 0.95 m?3, respectively). Daily age used to define cohort membership was determined from otoliths. Age and length were strongly related (R2=0.74). The age-length relationship varied over the season such that early-season bay anchovy hatched in June grew more rapidly than later-season anchovy hatched in August. Cohorts were defined as week-long birth-data classes, and net migration patterns of 11 cohorts were analyzed. Mean location shifted upriver as cohorts increased in age to 6 wk, at a net rate of about 0.6 km d?1. Cohort abundance usually decreased over time in downriver regions, but usually increased in upriver regions. The cohort analysis confirmed that the upriver shift in distribution of early-stage anchovy is not entirely due to changes in adult spawning behavior or to clines in larval mortality, and must be partly the result of larval migration.  相似文献   

15.
Seasonality and abundance of ichthyoplankton in great South Bay,New York   总被引:1,自引:0,他引:1  
The seasonality and abundance patterns of ichthyoplankton were investigated during 1985–1986 in Great South Bay, New York, USA. Eggs representing 17 species and larvae representing 23 species of fish were identified. Bay anchovy, Anchoa mitchilli, was the most abundant ichthyoplankter, comprising >96% of the eggs and >69% of the larvae collected. Bay anchovy spawned throughout the bay from late May through August, with peak baywide densities of >200 eggs and 6 larvae m?3. Eggs of windowpane flounder (Scophthalmus aquosus) ranked second in abundance and were present in both spring and fall. Other dominant larvae were winter flounder (Pleuronectes americanus) and American sand lance (Ammodytes americanus). Their combined density reached 8 m?3 and accounted for the winter peak in larvae. The seasonality of abundance of larval fish was strongly correlated with reported densities of copepod nauplii prey.  相似文献   

16.
As part of the Microbial Exchanges and Coupling in Coastal Atlantic Systems (MECCAS) Project, crab larvae were collected in the shelf waters off Chesapeake Bay in June and August 1985 and April 1986. We conducted hydrographic (temperature, salinity, nutrients) and biological (chlorophyll, copepods) mapping in conjunction with Eulerian and Lagrangian time studies of the vertical distribution of crab larvae in the Chesapeake Bay plume. These abundance estimates are used with current meter records and drifter trajectories to infer mechanisms of larval crab dispersion to the shelf waters and recruitment back into Chesapeake Bay. The highest numbers of crab larvae were usually associated with the Chesapeake Bay plume, suggesting that it was the dominant source of crab larvae to shelf waters. Patches of crab larvae also were found in the higher salinity shelf waters, and possibly were remnants of previous plume discharge events. The distribution of crab larvae in the shelf waters changed on 1–2 d time scales as a consequence of both variations in the discharge rate of the Chesapeake Bay plume and local wind-driven currents. Downwelling-favorable winds (NW) intensified the coastal jet and confined the plume and crab larvae along the coast. In April during a downwelling event (when northwesterly winds predominated), crab zoeae were transported southward along the coast at speeds that at times exceeded 168 km d−1. During June and August the upwelling-favorable winds (S, SW) opposed the anticyclonic turn of the plume and, via Ekman circulation, forced the plume and crab larvae to spread seaward. Plume velocities during these conditions generally were less than 48 km d−1. The recruitment of crab larvae to Chesapeake Bay is facilitated in late summer by the dominance of southerly winds, which can reverse the southward flow of shelf waters. Periodic downwelling-favorable winds can result in surface waters and crab larvae moving toward the entrance of Chesapeake Bay. Approximately 27% of the larval crabs spend at least part of the day in bottom waters, which have a residual drift toward the bay mouth. There appears to be a variety of physical transport mechanisms that can enhance the recruitment of crab larvae into Chesapeake Bay.  相似文献   

17.
The objective of this study was to gain baseline population data on the genetic diversity and differentiation of eelgrass (Zostera marïna L.) populations in the Chesapeake and Chincoteague bays. Natural and transplanted eelgrass beds were compared using starch gel electrophoresis of allozymes. Transplanted eelgrass beds were not reduced in genetic diversity compared with natural beds. Inbreeding coefficients (FIS) indicated that transplanted eelgrass beds had theoretically higher levels of outcrossing than natural beds, suggesting the significance of use of seeds as donor material and of seedling recruitment following transplantation diebacks. Natural populations exhibited very great genetic structure (FST=0.335), but transplanted beds were genetically similar to the donor bed and each other. Genetic diversity was lowest in Chincoteague Bay, reflecting recent restoration history since the 1930s wasting disease and geographical isolation from other east coast populations. These data provide a basis for developing a management plan for conserving eelgrass genetic diversity in the Chesapeake Bay and for guiding estuary-wide restoration efforts. It will be important to recognize that the natural genetic diversity of eelgrass in the estuary is distributed among various populations and is not well represented by single populations.  相似文献   

18.
Fish biomass size spectra in Chesapeake Bay   总被引:1,自引:0,他引:1  
Biomass size spectra of pelagic fish were modeled to describe community structure, estimate potential fish production, and delineate trophic relationships in Chesapeake Bay. Spectra were constructed from midwater trawl collections each year in April, June–August, and October 1995–2000. The size spectra were bimodal: the first spectral dome corresponded to small zooplanktivorous fish, primarily bay anchovyAnchoa mitchilli; the second dome consisted of larger fish from several feeding guilds that are supported by multiple prey-predator linkages. Annual production estimates of pelagic fish, derived from a mean production to biomass ratio, varied nearly three-fold, ranging from 162 × 109 kcal (125 × 103 tons) in 1996 to 457 × 109 kcal (352 × 103 tons) in 2000. Seasonally, the biomass level and mean individual sizes of fish in the first dome increased from April to October, while the biomass level of the second dome was relatively stable. Regionally, biomass levels in the second dome were higher than biomasses in the first dome for the upper and lower Bay, but were minimal in the middle Bay where seasonal and episodic hypoxia occurs. To test a benthic-pelagic coupling hypothesis that could explain the higher biomass in the second domes for the lower and upper Bay, a cyclic size-spectrum model was fit that included only species in the zooplanktivorous-piscivorous fish guilds. The mean, normalized slope equaled ?1, indicating that zooplanktivorous fish may support piscivore production, but that a benthic-pelagic linkage is required to fully support fish production in the second dome. Interannual variability in slopes and intercepts of modeled size spectra was related to salinity, recruitment level of bay anchovy, and the primary axis of a correspondence analysis (salinity effect) on fish community structure. The spectral slope and intercept of normalized spectra were lowest in 1996, a near-record wet year. Results suggest that fish size spectra can be developed as useful indicators of ecosystem state and response to perturbations, especially if prey-predator relationships are explicitly represented.  相似文献   

19.
The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in the upper estuary since the early 1990s, but have worsened in the lower estuary. The overall system-wide eutrophication impact is high, despite a decrease in nitrogen loads from the upper basin and declining surface water nitrate nitrogen concentrations over that period; (3) eutrophic conditions in the Potomac River Estuary are representative of Chesapeake Bay region and other US estuaries; moderate to high levels of nutrient-related degradation occur in about 65 % of US estuaries, particularly river-dominated low-flow systems such as the Potomac River Estuary; and (4) shellfish (oyster) aquaculture could remove eutrophication impacts directly from the estuary through harvest but should be considered a complement—not a substitute—for land-based measures. The total nitrogen load could be removed if 40 % of the Potomac River Estuary bottom was in shellfish cultivation; a combination of aquaculture and restoration of oyster reefs may provide larger benefits.  相似文献   

20.
A 2,500-year history of anoxia and eutrophication in Chesapeake Bay   总被引:2,自引:0,他引:2  
Ongoing monitoring programs and historical data are not sufficient to establish anthropogenic effects on the ecology of Chesapeake Bay. However, stratigraphic records preserved in the sediments can be used to reconstruct both prehistoric and historic sedimentation and water conditions of the bay, including anoxia and eutrophication. Pollen, diatoms, total organic carbon (TOC), nitrogen, total sulfur, and an estimate of the degree of pyritization of iron (DOP) are being used as paleoecological indicators in dated sediment cores for the purpose of reconstructing a long-term environmental history of the bay. Analysis of the data indicates that sedimentation rates, anoxic conditions, and eutrophication have increased in the Chesapeake Bay since the time of European settlement. For example, since initial land clearance around 1760, sedimentation rates have increased from as low as 0.02 cm yr?1 to an average 0.22 cm yr?1, and TOC from 0.14 mg cm?2 yr?1 to a high 4.96 mg cm?2 yr?1. Diatom community structure shows a steady decrease in overall diversity since 1760 and the centric:pennate ratio has increased significantly since 1940.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号