首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
We report silicon isotopic determinations for USGS rock reference materials BHVO-1 and BHVO-2 using a Nu Plasma multi-collector (MC)-ICP-MS, upgraded with a new adjustable entrance slit, to obtain medium resolution, as well as a stronger primary pump and newly designed sampler and skimmer cones ("B" cones). These settings, combined with the use of collector slits, allowed a resolution to be reached that was sufficient to overcome the 14N16O and 14N2 interferences overlying the 30Si and the 28Si peaks, respectively, in an earlier set-up. This enabled accurate measurement of both δ30Si and δ29Si. The δ value is expressed in per mil variation relative to the NBS 28 quartz reference material. Based on data acquired from numerous sessions spread over a period of six months, we propose a recommended average δ30Si of −0.33 ± 0.05‰ and −0.29 ± 0.11‰ (2se) for BHVO-1 and BHVO-2, respectively. Our BHVO grand mean silicon isotope composition (δ30Si =−0.31 ± 0.06‰) is significantly more negative than the only published value for BHVO-2, but is in very good agreement with the recently established average value of ocean island basalts (OIB), confirming the conclusion that the OIB reservoir has a distinct isotopic composition from the solar reservoir as sampled by chondrites.  相似文献   

2.
We present an approach for tracing the fate of anthropogenic CO2, compiling a large data set of stable organic carbon isotope ratios from surface sediments, plankton, and sinking matter in the Atlantic Ocean. The δ13C values of sinking matter are generally lower by 0.5–4.6‰ compared to the surface sediments. This difference increases with increasing latitude, which is explained by a stronger modern increase in surface water [CO2 (aq)] in the Southern Ocean relative to the Tropical/Subtropical Ocean. Preindustrial dissolved CO2 concentrations in Atlantic surface waters, estimated from the δ13Corg of surface sediments, are compared to recently measured surface water [CO2 (aq)] values taken from literature. We obtain only a slight increase in [CO2 (aq)] at lower latitudes but a significant change of about 7 ± 2 μ m in high latitudinal surface waters which we attribute to anthropogenic perturbation. Our results suggest that CO2 released by human activities has been stored in Southern Ocean surface waters.  相似文献   

3.
The CRPG (Nancy, France) has prepared secondary reference materials for Li isotope measurements by mixing 7Li or 6Li spikes and either L-SVEC or IRMM-016 certified reference materials to produce solutions having a known Li concentration and isotopic composition. The Li7-N and Li6-N solution samples (1.5 mol l−1 HNO3) have nominal δ7Li isotopic compositions of 30.1‰ and -9.7‰ respectively relative to L-SVEC and concentrations of 100 mg l−1. Repeated measurement of these samples using the QUAD-ICP-MS at the CRPG yielded δ7Li of 30.4 ± 1.1‰ (n = 13) and -8.9 ± 0.9‰ (n = 9) at the 2s level of confidence. An additional LiCl-N solution was measured and yielded a delta value of 9.5 ± 0.6‰ (n = 3). Identical results were obtained at the BRGM (Orléans, France) from determinations performed with a Neptune MC-ICP-MS (30.2 ± 0.3‰, n = 89 for the Li7-N, -8.0 ± 0.3‰, n = 38 for the Li6-N and 10.1 ± 0.2‰, n = 46 for LiCl-N at the 2s level of confidence). The deviation of measured composition relative to the nominal value for the Li6-N solution might be explained by either contamination during preparation or an error during sample weighing. These secondary reference materials, previously passed through ion exchange resin or directly analysed, may be used for checking the accuracy of Li isotopic measurements over a range of almost 40‰ and will be available to the scientific community upon request to J. Carignan or N. Vigier, CRPG.  相似文献   

4.
Abstract. Primary fluid inclusions in quartz and carbonates from the Kanggur gold deposit are dominated by aqueous inclusions, with subsidiary CO2-H2O inclusions that have a constant range in CO2 content (10–20 vol %). Microthermometric results indicate that total homogenization temperatures have a wide but similar range for both aqueous inclusions (120 to 310C) and CO2-H2O inclusions (140 to 340C). Estimates of fluid salinity for CO2-H2O inclusions are quite restricted (5.9∼10.3 equiv. wt% NaCl), whereas aqueous inclusions show much wider salinity ranging from 2.2 to 15.6 equivalent wt %NaCl.
The 6D values of fluid inclusions in carbonates vary from -45 to -61 %, in well accord with the published δD values of fluid inclusions in quartz (-46 to -66 %). Most of the δ18O and δD values of the ore-forming fluids can be achieved by exchanged meteoric water after isotopic equilibration with wall rock by fluid/rock interaction at a low water/rock ratio. However, the exchanged meteoric water alone cannot explain the full range of δ18O and δD values, magmatic and/or meta-morphic water should also be involved. The wide salinity in aqueous inclusions may also result from mixing of meteoric water and magmatic and/or metamorphic water.  相似文献   

5.
This paper presents an adapted anion exchange column chemistry protocol which allowed separation of high-purity fractions of Cu and Zn from geological materials. Isobaric and non-spectral interferences were virtually eliminated for consequent multiple-collector ICP-MS analysis of the isotopic composition of these metals. The procedure achieved ∼ 100% recoveries, thus ensuring the absence of column-induced isotopic fractionation. By employing these techniques, we report isotopic analyses for Cu and Zn from five geological reference materials: BCR-027 blende ore (BCR), δ65Cu = 0.52 ± 0.15‰ (n = 10) and δ66Zn = 0.33 ± 0.07‰ (n = 8); BCR-030 calcined calamine ore (BCR), δ66Zn = -0.06 ± 0.09‰ (n = 8); BCR-1 basalt (USGS), δ66Zn = 0.29 ± 0.12‰ (n = 8); NOD-P-1 manganese nodule (USGS), δ65Cu = 0.46 ± 0.08‰ (n = 10) and δ66Zn = 0.78 ± 0.09‰ (n = 9); SU-1 Cu-Co ore (CCRMP), δ65Cu = -0.018 ± 0.08‰ (n = 10) and δ66Zn = 0.13 ± 0.17‰ (n = 6). All uncertainties are ± 2s; copper isotope ratios are reported relative to NIST SRM-976, and zinc isotope ratios relative to the Lyon-group Johnson Matthey metal (batch 3-0749 L) solution, JMC Zn. These values agree well with the limited data previously published, and with results reported for similar natural sample types. Samples were measured using a GVi IsoProbe MC-ICP-MS, based at the Natural History Museum, London. Long-term measurement reproducibility has been assessed by repeat analyses of both single element and complex matrix samples, and was commonly better than ± 0.07‰ for both δ66Zn and δ65Cu.  相似文献   

6.
Topaz granite is alkali-feldspar granite that contains essential albite, quartz, K-feldspar, lithium-mica, and topaz. As a group topaz granites are characterized by their extreme enrichment in F (up to 3 wt%) and a wide variety of lithophile elements. They can be subdivided into a 'low-P2O5 subtype' (P2O5 < 0.1 wt%, Al2O3 < 14.5 wt%, SiO2 > 73 wt%) and a 'high-P2O5 subtype' (P2O5 > 0.4 wt%, Al2O3 > 14.5 wt%, SiO2 < 73 wt%), the δ18O values of which indicate a dichotomy of source rock: the low-P2O5 subtype (δ18O < 10‰) having a meta-igneous protolith and the high-P2O5 subtype (δ18O > 10 ‰) a source with a significant component of pelitic material. The unusually high F contents enhance the efficacy of melt segregation and crystal-melt fractionation and so facilitate extreme differentiation in topaz granite magmas. Very low melt volumes restrict the bulk composition of the partial melts regardless of the nature of the source; and extreme fractionation forces them along a path of magmatic convergence, to produce a group of granitic rocks with near-minimum compositions so enriched in a variety of lithophile elements (Li, Nb, Ta, Sn) that economic mineralization often results.  相似文献   

7.
Abstract. 40Ar-39Ar analyses of two alunite samples from phreatic craters in the Pliocene Muine volcano in southwest Hokkaido, Japan, were carried out. The alunite with 17.4 permil δ34SV_CDT value in hydrothermal breccia from the Nagaoyama crater and that with 14.3 permil δ34SV_CDT value in silicified andesite from the Konuma crater give total fusion ages of 1.40 ± 0.04 Ma (la uncertainty) and 1.24 ± 0.08 Ma, respectively. However, the spectra of these samples indicate they have been effected by thermal overprinting and/or the existence of excess argon. These preliminary 40Ar-39A analyses suggest that the alunite underwent multiple hydrothermal activity by magmatic gas and vapor subsequent to the main hydrothermal activity.  相似文献   

8.
The carbon (δ13 C) and oxygen (δ18O) isotopic composistion in mollusc shells in mainly determined by the isotopic composition of water and dissolved bicarbonate. The δ18O values of water show a good correlation with the salinity of the Baltic. This correlation served as a basis for reconstructing palaeosalinity and for stratifying the marine sediments according to the δ18O values of the carbonate skeletons of subfossil shells. The δ13C values in shells are mainly determined by the isotopic composition of land-originating bicarbonate, especially in the carbonate skeleton of Lymnaea balthica , which inhabits the immediate coastal zone. According to the δ18O data, salinity in the investigated area (the coastal area of W and NW Estonia) was highest (about 9–11%) during the Littorina stage. The Limnae a stage had, in general, a salinity similar to the contemporary one, but during some phases possibly exceeding it by 2–3%.  相似文献   

9.
Stable carbon and oxygen isotopic compositions of essentially unmetamorphosed Archean (> 2.6 Gyr old) cherts and carbonates of the Dharwar Sequence of southern India, from the northernmost part of the Dharwar-Shimoga supracrustal belt (Kalche and Nagargali), have been determined. The cherts from the Nagargali area, which preserve oolitic texture and cryptocrystalline silica, show highly enriched δ18O values ranging from 28 to 31.4%o relative to SMOW. Such values are the highest yet reported from Archean nondetrital sediments, but are similar to those of modern marine cherts. On the assumption of a seawater δ18O of 0%0, calculation of temperature based on the maximum δ18O value of 31.4%0 yields a value of 40°C. This is significantly less than 70–80°C reported for the Archean oceans based on cherts and chert-phosphate pairs. Diagenetically recrystallized microcrystalline chert-dolomite pairs of Kalche area exhibit a range of oxygen isotopic ratios similar to those reported for Archean cherts and carbonates from other parts of the world. The temperature of diagenesis is estimated to be about 68°C.  相似文献   

10.
Abstract: The physical and chemical mechanism of gold precipitation in the typical low-sulfidation epithermal gold deposit at the Hishikari mine was quantified by submillimeter scale oxygen isotope analyses of vein quartz. In situ CO2 laser-ablated fluorination was used to measure temporal δ18O excursions. The calculated oxygen isotopic compositions of the ore-forming fluid indicate a dynamic process of epithermal vein formation. Intermittent opening of the vein allowed introduction of metal-bearing deep fluid to the epithermal system, and associated boiling and subsequent mixing with meteoric water caused precipitation of precious metals.  相似文献   

11.
ABSTRACT
The mineralogy and isotope geochemistry of carbonate minerals in the Coorong area are determined by the water chemistry of different depositional environments ranging from seawater to evaporitically modified continental water. The different isotopic compositions of coexisting calcite and dolomite suggest that each of the above two minerals was formed from water of composition and origin unique to that specific mineral. In addition, the dolomite was not formed by simple solid state cation exchange.
The occurrence of two types of dolomite was shown by isotope analysis and SEM observations. The dolomite, which is isotopically light (δ13C = -1 to -2% 0 ; δ18O=+3 to +5%0) and of fine grain size (˜ 0·5 μm) probably precipitated under the influence of evaporitically modified continental water. Coarser grained dolomite (up to 4 μm) is isotopically heavier (δ13C=+3 to +4%0; δ18O=+5 to + 6%0) contains Mg in excess of Ca and was formed in or close to equilibrium with atmospheric CO2 probably by the dolomitization of aragonite.  相似文献   

12.
Two sections of the Upper Cenomanian and Lower Turonian in central and south-east Poland were investigated for foraminifers, CaCO3content, carbon content insoluble in HCl (Corg) and in the carbonates (Ccarb), carbon and oxygen isotopic composition of bulk-rock carbonates and elemental abundances. The Cenomanian/Turonian boundary interval is characterized by the appearance of more marly facies, a δ13C and δ18O stable isotope anomaly, a considerable increase in Corg content and decrease in Ccarb content and substantial changes in the foraminiferal assemblages. A major carbon stable isotope excursion with a shift of +2 (PDB) occurs in the lowermost Whiteinella archaeocretacea Zone. The late Cenomanian δ13C anomaly is associated with heavy δ18O values. The peak value of δ13C corresponds to the minima in P/B ratio and in diversity of foraminiferal assemblages. A late Cenomanian anoxic event is thought to be responsible for changes in foraminiferal assemblages. However, elemental abundance analyses do not show changes in the concentrations of trace elements. This may be explained by the long distance between studied area and a source of enrichment which was probably located in the western hemisphere.  相似文献   

13.
ABSTRACT The Tripoli Formation (Lower Messinian) in Sicily includes diatomites irregularly alternating with marl and carbonate beds and lies, stratigraphically, between the Tortonian pelagic marls and the evaporitic Calcare di base. The relationships between mineralogy, textural features and oxygen-carbon isotopic compositions of carbonate components point to a wide variability of depositional conditions and suggest that Tripoli sedimentation occurred in small basins characterized by periodic and marked restriction from the open sea.
The isotopic values of calcite and dolomite in the diatomites suggest an evolution from normal marine towards more restricted environments. Evaporating conditions are also indicated by the occurrence of anhydrite, length-slow chalcedonic quartz and moulds of gypsum. In a more advanced stage, the precipitation of heavy δ180 dolomite in the interstitial pores of fossil-poor diatomites denotes an environment with highly evaporated water. Mixing of meteoric and marine waters, on the other hand, might have favoured the precipitation of a dolomite characterized by relatively low δ180 and δ13C values.
The deposition of marl and carbonate beds alternating with or overlying the diatomites took place in an environment with highly evaporated marine waters on the basis of δl18O values of dolomite (up to + 9.10‰) and aragonite (up to + 5.83‰), occurrence of evaporitic minerals and lack of fossils. The presence at these levels of calcite with extremely negative δ13C values (down to - 38.40‰), filling gypsum moulds, suggests activity of sulphate-reducing bacteria. Some aragonitic marls, however, bear evidence of deposition in relatively normal marine conditions.  相似文献   

14.
Abstract: Interstitial water expelled from gas hydrate-bearing and -free sediments in the Nankai Trough are analyzed in terms of Cl-, SO42-, δ18O and δD. The baselines for the Cl- concentration and δ18O value are close to seawater values (530 mM and 0%), indicating that the interstitial water is of seawater origin. The δD values decrease with depth, implying isotopic exchange of hydrogen between upwelling biogenic methane depleted in D and interstitial water. The Cl- concentrations in gas hydrate-bearing sediments are anomalously low, while the δ18O and δD values are both high, suggesting that the water forming these gas hydrates was poor in Cl- and enriched in 18O and D during gas hydrate formation. Calculation of the gas hydrate saturations using Cl "and δ18O anomalies gives results of up to 80 % in sand, and shows that the δ18O baseline is not consistent with the Cl" baseline. The δ18O baseline increases by +1% in gas hydrate-free clay and silt. This is considered to be caused by clustering of water molecules after gas hydrate dissociation in response to the upward migration of the base of gas hydrate stability, as indicated by the presence of a double bottom-simulating reflector at this site. The water clusters enriched in 18O are responsible for the increase in the δ18O baseline with normal Cl". The abrupt shallowing of the base of gas hydrate stability may induce the dissociation of gas hydrates and the accumulation of gases in the new stability zone, representing a geological process that increases gas hydrate saturation.  相似文献   

15.
Large amounts of fluid, bound up in the hydrated upper layers of the ocean crust, are consumed at convergent margins and released in subduction zones through devolatilization. The liberated fluids may play an integral role in subduction zone processes, including the generation of arc-magmas. However, exhumed subduction zone rocks often record little evidence of large-scale fluid flow, especially at deeper levels within the subduction zone. Basaltic pillows from the high-pressure Corsican and Zermatt-Saas ophiolites show a range of δ18O values that overall reflect seafloor alteration prior to subduction. However, comparison between the δ18O values of the cores and rims of the pillows suggests that the δ18O values of the pillow rims at least have been modified during subduction and high-pressure metamorphism. Pillows that have not undergone high-pressure metamorphism generally have rims with higher δ18O values than their cores, whereas the converse is the case in pillows that have undergone high-pressure metamorphism. This reversal in the core to rim oxygen isotope relationship between unmetamorphosed and metamorphosed pillows is strong evidence for fluid–rock interaction occurring during subduction and high-pressure metamorphism. However, the preservation of different δ18O values in the cores and rims of individual pillows and within and between different pillows suggests that fluid flow within the subduction zone was strongly channelled. Resetting of the δ18O values in the pillow rims was probably due to fluid-hosted diffusion that occurred over relatively short time-scales (<1 Myr).  相似文献   

16.
Stable oxygen and carbon isotope profiles from modern bivalve shells were investigated in order to reconstruct short-term hydrographical changes in the river-shelf system of the Laptev Sea. Oxygen isotopic profiles obtained from the aragonitic species Astarte borealis exhibit amplitude cycles interpreted as annual hydrographical cycles. These records reflect the strong contrast between summer and winter bottom water conditions in the Laptev Sea. The seasonal variations in δ18O are mainly controlled by the riverine freshwater discharge during summer with 0.5‰ per salinity unit. Corrected for a defined species-dependent fractionation offset of -0.37‰, time-dependent salinity records were reconstructed from these δ18O profiles. They indicate a good correspondence to seasonal hydrographic changes and synoptical data. Persistent trends with shell growth towards more negative δ13C values are observed in all specimens and appear to be related to metabolic changes of the bivalves during ontogeny. In contrast, short-term fluctuations are likely linked to seasonal variabilities of the river water outflow patterns and enhanced phytoplankton productivity during summer. This is corroborated by a clear watermass-related distinction of the various δ13C records made on the basis of water depth and distance from the riverine source.  相似文献   

17.
Calcite and quartz veins have formed, and are forming, in steeply dipping fissures in the actively rising Alpine Schist metamorphic belt of New Zealand. The fluids that deposited these minerals were mostly under hydrostatic pressure almost down to the brittle-ductile transition, which has been raised to 5-6 km depth by rapid uplift. Some fluids were trapped under lithostatic pressures. Fluids in the fissure veins were immiscible H2O + NaCl-CO2 mixtures at 200-350 C. Bulk fluid composition is 15-20 mol% CO2 and <4.3 total mol CH4+ N2+ Ar/100mol H2O. Water hydrogen isotopic ratio δDH2O in the fissure veins spans -29 to -68‰, δ18OH2O -0.7 to 8.5‰, and bulk carbon isotopic ratio δ13C ranges from -3.7 to -11.7‰. The oxygen and hydrogen isotopic data suggest that the water has a predominantly meteoric source, and has undergone an oxygen isotope shift as a result of interaction with the host metamorphic rock. Similar fluids were present during cooling and uplift. Dissolved carbon is not wholly derived from residual metamorphic fluids; part may be generated by oxidation of graphite.  相似文献   

18.
The Fairholme carbonate complex is part of the extensively dolomitized Upper Devonian carbonate reefs in west-central Alberta. The studied formations contain moulds (up to 10 cm in diameter), which are filled partially with (saddle) dolomite, quartz and calcite cements. These cements precipitated from a mixture of brines that acquired high salinity by dissolution of halite and brines derived from evaporated sea water. The fluids were warm (homogenization temperature of primary fluid inclusions of 76 to 200 °C) and saline (20 to 25 wt% NaCl equivalent) and testify to thermochemical sulphate reduction processes. The latter is deduced from S in solid inclusions, CO2 and H2S in volatile-rich aqueous inclusions and depleted δ13C values down to −26‰ Vienna Pee Dee Belemnite. High 87Sr/86Sr values (0·7094 to 0·7110) of the cements also indicate interaction of the fluids with siliciclastic sequences. The thermochemical sulphate reduction-related cements probably formed during early Laramide burial. Another (younger) calcite phase, characterized by depleted δ18O values (−23·9‰ to −13·9‰ Vienna Pee Dee Belemnite), low Na (27 to 37 p.p.m.) and Sr (39 to 150 p.p.m.) concentrations and non-saline (∼0 wt% NaCl equivalent) fluid inclusions, is attributed to post-Laramide meteoric water.  相似文献   

19.
A breccia vein sampled from a shear zone in greenschist facies metapelites at Mount Isa, Queensland, Australia, shows a systematic variation in vein geometry that is related to the geometry of folding and faulting within the sample. Calcite vein-fill is coarse grained and equigranular, suggesting precipitation in a fluid-filled space. Partially folded veins suggest that veining occurred during folding and faulting. The breccia vein contains a central zone in which dilation has occurred simultaneously in all directions in the plane of section, implying that this was a zone of high fluid pressure and nearly isostatic differential stress during folding and faulting. From these observations, it can be inferred that the breccia vein was a zone of high permeability and a likely fluid channel during deformation. This hypothesis was tested by stable isotope analysis of veins and host rocks. The calcite veins have δ13C values of -11.1 ± 0.1% and δ18O values of 6-10%o, whereas the host metapelite has δ13C values of -10.62 and -10.11% and δ18O values of 14-15%o. These values are consistent with an igneous-derived, H2O-dominated fluid that exchanged little oxygen with the host rocks, but derived much of its carbon from the wall rock. The isotopic disequilibrium between the veins and the wall rock confirms that the fluid was externally derived, and that the breccia vein acted as a channel for large-volume fluid flow within the shear zone.  相似文献   

20.
We report a new approach to conduct fast and accurate lithium isotope ratio measurements by MC-ICP mass spectrometry after wet chemical sample preparation. In contrast to most previously published methods our MC-ICP-MS set-up did not use a desolvating system to achieve appropriate ion beam intensities and, therefore, was less affected by matrix-induced shifts of the instrumental mass bias. As the total lithium background and build-up in the sample introduction system was low, previous sample residues could be washed out by an extended uptake of the new sample. Elimination of a nitric acid rinse step increased the sample throughput by a factor of two and allowed the instrumental mass bias drift to be tracked more precisely. δ7Li values of powdered silicate rock reference materials and seawater obtained in this study revealed good accuracy and an overall analytical uncertainty of typically 0.5‰ (2s). On the basis of a comparison between our lithium isotope data and compiled literature data, we recommend preliminary average δ7Li values for seawater (+30.8‰) and several silicate rock reference materials (BHVO-1: +5.0‰; JA-1: +5.6‰; JB-2: +4.8‰). The compilation of published δ7Li values for seawater suggests that the observed large lithium isotope differences are due to inter-method and/or interlaboratory bias. Most recently published δ7Li values for seawater show little variation and confirm a constant lithium isotope composition (at the sub ‰ level) of seawater in well mixed ocean basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号