首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous summit and parasitic eruptions of moderate potassium magnesian and high-alumina basalts and basaltic andesites, their mineralogic and geochemical features, and the composition of in situ chilled melt inclusions in the olivine of cinder lapilli discharged by Klyuchevskoi Volcano all provide evidence of the presence of magma chambers beneath the volcano. This is also supported by a dualism in the variation of CaO and Al2O3 concentrations in olivine and clinopyroxene during crystallization. The mineralogic features in the high-alumina basalts that were discharged by all parasitic eruptions of Klyuchevskoi provide evidence of magnesian magma being emplaced from a deeper chamber into a shallow high-alumina chamber. The distribution of incoherent elements in the volcano’s magnesian and aluminiferous rocks shows that they came from a single mantle source. The geochemical and mineralogic data are in good agreement with the results of geophysical surveys that concern the structure and properties of the lithosphere beneath Klyuchevskoi.  相似文献   

2.
Island arc and continental margin (i.e. western Americas) lavas are divided (based on raw data from literature) into basalts (defined by absence of Ca-poor pyroxene, dominated by quartz-normative tholeiites); basaltic andesites and andesites (subdivided on basis of breaks in SiO2 histogram and taken as <56% and 56–63% SiO2; Ca-poor pyroxene present; amphibole and biotite absent); and hornblende (±biotite) lavas, which prove to be mainly relatively silicic andesites. Relative proportions of these types are (576 samples): 23% basalts, 29% basaltic andesites; 30% andesites; 18% hornblende andesites. The compilation emphasizes the dominance of calcic plagioclase (labradorite-anorthite) amongst the phenocryst phases. Pyroxenes are largely augite and hypersthene (En60–75); olivine (Fo65–85) is common through all compositions. There is an overall close similarity in chemistry and mineralogy between continental margin and island arc lavas, although small consistent differences are apparent (e.g. K2O, TiO2, P2O5).Modal data indicate that 70% of lavas are phenocryst-rich (20–60 vol.%), and that phenocryst contents show a bimodal distribution. Statistically and petrologically significant correlations are found between mineralogy and rock chemistry, most notably between total rock Al2O3 and modal phenocrystic plagioclase (found in all data groups, except hornblende andesites). This, and related data and correlations, indicate that the majority of orogenic magmas are modified by crystal fractionation (including crystal accumulation) processes dominated by plagioclase, and interpreted to occur under relatively low pressures. Dominance of plagioclase suggests phenocryst precipitation occurs typically in water-undersaturated magmas.  相似文献   

3.
 Lava drainback has been observed during many eruptions at Kilauea Volcano: magma erupts, degasses in lava fountains, collects in surface ponds, and then drains back beneath the surface. Time series data for melt inclusions from the 1959 Kilauea Iki picrite provide important evidence concerning the effects of drainback on the H2O contents of basaltic magmas at Kilauea. Melt inclusions in olivine from the first eruptive episode, before any drainback occurred, have an average H2O content of 0.7±0.2 wt.%. In contrast, many inclusions from the later episodes, erupted after substantial amounts of surface degassed lava had drained back down the vent, have H2O contents that are much lower (≥0.24 wt.% H2O). Water contents in melt inclusions from magmas erupted at Pu'u 'O'o on the east rift zone vary from 0.39–0.51 wt.% H2O in tephra from high fountains to 0.10–0.28 wt.% H2O in spatter from low fountains. The low H2O contents of many melt inclusions from Pu'u 'O'o and post-drainback episodes of Kilauea Iki reveal that prior to crystallization of the enclosing olivine host, the melts must have exsolved H2O at pressures substantially less than those in Kilauea's summit magma reservoir. Such low-pressure H2O exsolution probably occurred as surface degassed magma was recycled by drainback and mixing with less degassed magma at depth. Recognition of the effects of low-pressure degassing and drainback leads to an estimate of 0.7 wt.% H2O for differentiated tholeiitic magma in Kilauea's summit magma storage reservoir. Data for MgO-rich submarine glasses (Clague et al. 1995) and melt inclusions from Kilauea Iki demonstrate that primary Kilauean tholeiitic magma has an H2O/K2O mass ratio of ∼1.3. At transition zone and upper mantle depths in the Hawaiian plume source, H2O probably resides partly in a small amount of hydrous silicate melt. Received: 31 March 1997 / Accepted: 17 November 1997  相似文献   

4.
Masaya-Granada area is located in the middle part of the Central American volcanic zone. A basaltic shield volcano with a caldera, an acidic pyroclastic flow plateau with a caldera, cinder cones, maars, a lava dome and a composite andesitic volcano were formed by recent volcanic activities. Magmas of basic and intermediate ejecta are supposed to be formed by partial melting of the upper mantle material. Most of basalts and andesites was derived from common parental magma after crystallization differentiation history, but some basalts, which have extremely high MgO content and low K2O content might be derived from primary magma of different type. There is no evidence to deny the possibility of differentiation product of acidic rock from basic magma, but compositional gap on variation diagram suggest the possibility of partial melting origin. Strike-slip fault systems might have been formed in association with plate movement, and fluidal basaltic magma was erupted also along these fault zones.  相似文献   

5.
Volcanism in the Taupo Volcanic Zone (TVZ) and the Kermadec arc-Havre Trough (KAHT) is related to westward subduction of the Pacific Plate beneath the Indo-Australian Plate. The tectonic setting of the TVZ is continental whereas in KAHT it is oceanic and in these two settings the relative volumes of basalt differ markedly. In TVZ, basalts form a minor proportion (< 1%) of a dominant rhyolite (97%)-andesite association while in KAHT, basalts and basaltic andesites are the major rock types. Neither the convergence rate between the Pacific and Indo-Australian Plates nor the extension rates in the back-arc region or the dip of the Pacific Plate Wadati-Benioff zone differ appreciably between the oceanic and continental segments. The distance between the volcanic front and the axis of the back-arc basin decreases from the Kermadec arc to TVZ and the distance between trench and volcanic front increases from around 200 km in the Kermadec arc to 280 km in TVZ. These factors may prove significant in determining the extent to which arc and backarc volcanism in subduction settings are coupled.All basalts from the Kermadec arc are porphyritic (up to 60% phenocrysts) with assemblages generally dominated by plagioclase but with olivine, clinopyroxene and orthopyroxene. A single dredge sample from the Havre Trough back arc contains olivine and plagioclase microphenocrysts in glassy pillow rind and is mildly alkaline (< 1% normative nepheline) contrasting with the tholeiitic nature of the other basalts. Basalts from the TVZ contain phenocryst assemblages of olivine + plagioclase ± clinopyroxene; orthopyroxene phenocrysts occur only in the most evolved basalts and basaltic andesites from both TVZ and the Kermadec Arc.Sparsely porphyritic primitive compositions (Mg/(Mg+Fe2) > 70) are high in Al2O3 (>16.5%), and project in the olivine volume of the basalt tetrahedron. They contain olivine (Fo87) phenocrysts and plagioclase (> An60) microphenocrysts. These magmas have ratios of CaO/Al2O3, A12O3/TiO2 and CaO/TiO2 in the range of MORB and MORB picrites and can evolve to the low-pressure MORB cotectic by crystallisation of olivine±plagiociase. Such rocks may be the parents of other magmas whose evolutionary pathways are complicated by interaction of crystal fractionation, crystal accumulation and mixing processes and the filtering action of crust of variable density and thickness. The interplay of these processes likely accounts for the scatter of data about the cotectic. More evolved rocks from both TVZ and KAHT contain clinopyroxene and orthopyroxene phenocrysts and their compositions merge with basaltic andesites and andesites. Stepwise least-squares modelling using phenocryst assemblages in proportions observed in the rocks suggest that crystal fractionation and accumulation processes can account for much of the diversity observed in the major-element compositions of all lavas.We conclude that the parental basaltic magmas for volcanism in the TVZ and KAHT segments are similar thereby implying grossly similar source mineralogy. We attribute the diversity to secondary processes influencing liquids as they ascended through complex plumbing systems in the sub arc mantle and cross.  相似文献   

6.
Batur is an active stratovolcano on the island of Bali, Indonesia, with a large, well-formed caldera whose formation is correlated with the eruption about 23,700 years ago of a thick ignimbrite sheet. Our study of the volcanic stratigraphy and geochemistry of Batur shows the formation of the caldera was signalled by a change in the composition of the erupting material from basaltic and andesitic to dacitic. The dacitic rocks are glassy, possess equilibrium phenocryst assemblages, and display compositional characteristics consistent with an origin by crystal-liquid fractionation from more mafic parent magmas in a shallow chamber, possibly at 1.5 km depth and 1000–1070°C.However, although separated by a gap of 6 wt.% SiO2, the dacitic rocks are clearly related in their minor- and trace-element geochemistry to those basalts and basaltic andesites erupted after the caldera was formed rather than to the andesites erupted immediately before the dacites first appeared. We infer from this and published experimental modelling of the possible crystallization behaviour of basaltic magma chambers that a magmatic cycle involving caldera formation began independently of the previous activity of Batur by formation of a new, closed-system magma chamber beneath the volcano. Fractional crystallization, possibly at the walls of the chamber, led to the early production of derivative siliceous magmas and, consequently, to caldera formation, while most of the magma retained its original composition. The postcaldera Batur basalts represent the largely undifferentiated core liquids of this chamber.This model contrasts with the traditional evolutionary model for stratovolcano calderas but may be applicable to the origins of calderas similar to that of Batur, particularly those in volcanic island arcs.  相似文献   

7.
Tertiary volcanic rocks of Carriacou occupy two-thirds of the island. The volcanics include volcaniclastics, lava flows and dome lavas and range in composition from basalts to andesites. Carriacou basalts fall into two petrographic types (a) clinopyroxene-plagioclase-phyric basalts and (b) olivine microphyric basalts; the latter having higher MgO and lower Al2O3 than the clinopyroxene basalts. Both types are unusually rich in mafic minerals compared with Lesser Antilles basalts in general, although similar types have been reported from the nearby island of Grenada. The potash to silica ratios are relatively high and confirm the similarity between Carriacou and Grenada basalts and the differences between these basalts and basalts from other islands of the Lesser Antilles. The basaltic andesites and andesites from Carriacou correspond closely in mineralogical and chemical composition with typical andesites found elsewhere in the Lesser Antilles. The geochemistry of the volcanics shows that the olivine microphyric basalts display tholeiitic affinities whereas the clinopyroxeneplagioclase-phyric basalt, basaltic andesites and andesites are calcalkaline. The compositional gradation in both the geochemistry and mineralogy of these volcanics suggests that fractional crystallization played an important role in the derivation of the various magma.  相似文献   

8.
Krakatau Volcano is located along a N35E volcanic lineament running through the Sunda straits (Indonesia). Its last activity has been characterized by successive phases, each beginning with the construction of a cone, and ending with its destruction and the formation of a caldera. The two last (pre- and post-1883) cycles are well known, but the more ancient ones are not so clearly defined.Lavas of Krakatau belong to an andesitic series, in which fractional crystallization plays the most important role. The petrologic evolution is characterized by a cyclicity in good agreement with the structural evolution: the succession is regular: basalts, basic andesites, acid andesites, dacites. A gap between acid and basic andesites occurs in each cycle. The destructive stages correspond to the occurrence of dacitic terms.The Anak cycle was characterized from 1927 to 1979 by basalts and basic andesites; the 1981 eruption involved a more differentiated magma (close to dacitic). Detailed study of the petrologic evolution since 1883 emphasizes the predominant role of fractional crystallization. This process occurred during a very short period, between 1979 and 1981. Separation of labradorite, augite, olivine and magnetite from parental basic andesite may generate the dacitic descendant, in a shallow reservoir (PH2O estimated about 0.5 kbar). Implications for a future activity are considered.  相似文献   

9.
Small euhedral chromite crystals are found in olivine macrophenocrysts (Fo80–84) from the basaltic andesites (150 ppm Cr) erupted in 1943–1947, and in orthopyroxene macrophenocrysts of the andesites (75 ppm Cr) erupted in 1947–1952. The majority of the chromite octahedra are 5–20 μm in diameter, and some are found in clusters and linear chains of three or more oriented chromite crystals. The composition of the majority of the chromite grains within olivine and orthopyroxene macrophenocrysts is Fe2+/(Fe2++Mg)=0.5–0.6, Cr/(Cr+Al)=0.5–0.6 and Fe3+/(Fe3++Al+Cr)=0.2–0.3. The chromite crystals in contact with the groundmass are larger, subhedral, and grade in composition from chromite cores to magnetite rims. Comparison of the composition of chromite with those of other volcanic rocks shows that the most primitive Paricutin chromite is richer in total iron and higher in Fe3+/(Fe3++Al+Cr) than primary chromite in most lavas. The linear chains of oriented chromite octahedra are found in olivine and orthopyroxene macrophenocrysts, and in the groundmass. These chromite chains are thought to result from diffusion-controlled crystallization because of the very high partition coefficient (1000) of Cr between chromite and melt. We conclude that chromite was a primary phase in the lavas at the time of extrusion and that magnetite only crystallized after extrusion during cooling of the lava flows. The presence of chromite microphenocrysts in andesitic lavas containing as little as 70 ppm Cr can be explained by dissolved H2O in the melt depressing the liquidus temperature for orthopyroxene such that chromite becomes a liquidus phase. The influence of dissolved H2O can also explain the lack of plagioclase macrophenocrysts in most of the lavas and the relatively high partition coefficient (20) of Ni between olivine and melt and the high partition coefficient (40) of Cr between orthopyroxene and melt. The liquidus temperature of the basaltic andesite is estimated to have been less than 1140°C, assuming H2O>1 wt.%, and the log fO2 to have been above that of the QFM buffer. The chromite and orthopyroxene liquidus temperature of the andesites, assuming H2O>1 wt.%, is estimated to have been 1100°C or less. The derivation of the later andesites from the earlier basaltic andesites has been explained by a combination of fractional crystallization of olivine, orthopyroxene and plagioclase, and assimilation of xenoliths. The significantly lower Cr, Ni and Mg of the andesites may have been in part due to the separation of olivine macrophenocrysts plus enclosed chromite crystals from the earlier basaltic andesites.  相似文献   

10.
Three composite cones have grown on the southern edge of the previously existing Atitlán Cauldron, along the active volcanic axis of Guatemala. Lavas exposed on the flanks of these cones are generally calc-alkaline andesites, but their chemical compositions vary widely. Atitlán, the largest and most southerly of the three cones, has recently erupted mainly pyroclastic basaltic andesites, while the flanks of San Pedro and Tolimán are mantled by more silicic lava flows. On Tolimán, 74 different lava units have been mapped, forming the basis for sequential sampling. Rocks of all three cones are consistently higher in K2O, Rb, Ba and REE than other Guatemalan andesites. Atitlán’s rocks and late lavas from Tolimán have high Al2O3 content, compared to similar andesites from other nearby cones. All major and trace element data on the rocks are shown to be consistent with crystal fractionation involving phases observed in the rocks. If such models are correct, significant differences in the relative proportions of fractionation phases are necessary to explain the varied compositions, in particular higher Al2O3 rocks have fractionated less plagioclase. We speculate that inhibition of plagioclase fractionation could occur in chambers where PH2O is greater and when repose intervals are shorter. The distribution of volcanic vents throughout Guatemala which show this postulated «inhibition of plagioclase fractionation» is systematic with such vents lying just to the south of the main axis. The andesites of the three cones cannot be simply related to the late-Pleistocene rhyolites which are apparently associated with cauldron formation, because unlike the andesites, the rhyolites have markedly depleted heavy REE abundances. Recent dacitic lavas from vents south of San Pedro volcano and silicic pyroclastic rocks which mantle the slopes the San Pedro may reflect residual post-cauldron rhyolitic volcanism.  相似文献   

11.
The petrology of the highly phyric two-pyroxene andesitic to dacitic pyroclastic rocks of the November 13, 1985 eruption of Nevado del Ruiz, Colombia, reveals evidence of: (1) increasingly fractionated bulk compositions with time; (2) tapping of a small magma chamber marginally zoned in regard to H2O contents (1 to 4%), temperature (960–1090°C), and amount of residual melt (35 to 65%); (3) partial melting and assimilation of degassed zones in the hotter less dense interior of the magma chamber; (4) probable heating, thermal disruption and mineralogic and compositional contamination of the magma body by basaltic magma “underplating”; and (5) crustal contamination of the magmas during ascent and within the magma chamber. Near-crater fall-back or “spill-over” emitted in the middle of the eruptive sequence produced a small pyroclastic flow that became welded in its central and basal portions because of ponding and thus heat conservation on the flat glaciated summit near the Arenas crater. The heterogeneity of Ruiz magmas may be related to the comparatively small volume (0.03 km3) of the eruption, nearly ten times less than the 0.2 km3 of the Plinian phase of Mount St. Helens, and probable steep thermal and PH2O gradients of a small source magma chamber, estimated at 300 m long and 100 m wide for an assumed ellipsoidal shape.  相似文献   

12.
Merapi Volcano (Central Java, Indonesia) has been frequently active during Middle to Late Holocene time producing basalts and basaltic andesites of medium-K composition in earlier stages of activity and high-K magmas from 1900 14C yr BP to the present. Radiocarbon dating of pyroclastic deposits indicates an almost continuous activity with periods of high eruption rates alternating with shorter time spans of distinctly reduced eruptive frequency since the first appearance of high-K volcanic rocks. Geochemical data of 28 well-dated, prehistoric pyroclastic flows of the Merapi high-K series indicate systematic cyclic variations. These medium-term compositional variations result from a complex interplay of several magmatic processes, which ultimately control the periodicity and frequency of eruptions at Merapi. Low eruption rates and the absence of new influxes of primitive magma from depth allow the generation of basaltic andesite magma (56–57 wt% SiO2) in a small-volume magma reservoir through fractional crystallisation from parental mafic magma (52–53 wt% SiO2) in periods of low eruptive frequency. Magmas of intermediate composition erupted during these stages provide evidence for periodic withdrawal of magma from a steadily fractionating magma chamber. Subsequent periods are characterised by high eruption rates that coincide with shifts of whole-rock compositions from basaltic andesite to basalt. This compositional variation is interpreted to originate from influxes of primitive magma into a continuously active magma chamber, triggering the eruption of evolved magma after periods of low eruptive frequency. Batches of primitive magma eventually mix with residual magma in the magmatic reservoir to decrease whole-rock SiO2 contents. Supply of primitive magma at Merapi appears to be sufficiently frequent that andesites or more differentiated rock types were not generated during the past 2000 years of activity. Cyclic variations also occurred during the recent eruptive period since AD 1883. The most recent eruptive episode of Merapi is characterised by essentially uniform magma compositions that may imply the existence of a continuously active magma reservoir, maintained in a quasi-steady state by magma recharge. The whole-rock compositions at the upper limit of the total SiO2 range of the Merapi suite could also indicate the beginning of another period of high eruption rates and shifts towards more mafic compositions.  相似文献   

13.
High-magnesium andesites associated with basalts erupted after the opening of the Sea of Japan are present at Saga–Futagoyama in northwest Kyushu, southwest Japan. High Mg/(Mg + Fe) [=0.84] of orthopyroxene phenocrysts and bulk rock Mg–Fe–Ni compositions suggest that these high-magnesium andesites were originally primitive melts insignificantly modified in crustal magma chambers. KDCa–Na [= (Ca/Na)pl/(Ca/Na)bulk rock] ranges from 1.21 to 0.97 and suggests that the high-magnesium andesite magmas would originally have contained H2O less than 1.8 wt.%. Nb/La does not show a negative correlation with respect to SiO2. These lines of evidence indicate that hydrous components derived from the subducting slab would not have played a significant role in the genesis of the high-magnesium andesite magmas. Instead, the normative olivine − quartz − [CaTs + Jd] compositions and a negative correlation between Sr/Nd and SiO2 indicate that the basalt-high-magnesium andesite association would have been formed by multi-stage partial melting of relatively anhydrous source at pressure ranging from 1.5 to 0.5 GPa.  相似文献   

14.
The basaltic ocean crust, metasomatized and metamorphosed during and after generation at the ocean ridge, contains H2O stored in minerals and pore fluid. Phase equilibrium data establish the conditions for dehydration, and the conditions for melting of amphibole-gabbro or amphibole-quartz-eclogite, or for quartz-eclogite or mantle peridotite if aqueous fluids are available. But there is no concensus about the temperature distribution through the subducted crust, or within the overlying mantle wedge. Therefore, a variety of magmatic models can be derived from the experimental data. According to some calculations, endothermic dehydration reactions in the depth interval 75–125 km cool the oceanic crust to such an extent that it cannot be a major source of magmas; instead, concentrated aqueous fluids released from the crust generate magmas in the overlying peridotite. However, according to most existing thermal models, if temperatures in ocean crust are cool enough to prohibit melting of amphibolite, then temperatures in the mantle above the main sources of expelled fluids are too low for hydrous melting. The ocean crust appears to be effectively dehydrated by 100–125 km depth. Dense hydrous magnesian silicates are not likely candidates for deeper H2O transport. The extent to which H2O can be fixed in metasomatic phlogopite in crust or mantle is a significant but undetermined factor. Experimental data on minerals and liquid compositions do not support the concept of primary magmas for andesites and associated lavas from mantle or subducted crust. Complex, multi-stage processes appear to be more likely, which is consistent with recent interpretations of geochemical data.  相似文献   

15.
An analysis by difference technique yields estimates of H2O in basaltic and andesitic glasses, which are sufficiently accurate (± 1.4 percent absolute) to be useful. Glass inclusions trapped in large olivine crystals from tephra-rich eruptions have 1 to 5 percent H2O. The highest H2O contents are found in basaltic inclusions in magnesium rich olivines from Mount Shasta, California. Andesitic inclusions have less H2O. It seems probable that tephra-rich high-alumina magmas evolve in a vapor saturated environment at fairly shallow depths (few kilometers). This depth appears to be less for Medicine Lake Highlands than for Mount Shasta. Vapor saturation probably inhibits the rise of magma, thus the initial vapor content of a magma may govern its stagnation level. Volatile-rich parental magmas like Mount Shasta basalt probably tend to stagnate at deeper levels, crystallize early amphibole and produce comparatively calcic differentiates.  相似文献   

16.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   

17.
Three rocks representing the calc-alkaline rock series gabbro-tonalite-granite or basalt-andesite-rhyolite were reacted with varying percentages of water in sealed capsules between 600 and 1300°C and pressures to 36 kbars, corresponding to depths of more than 120 km within the earth. For each rock we present complete P-T diagrams with excess water, and the water-undersaturated liquids surface projected from P-T-XH2O space mapped with contours for constant H2O contents and with the fields for near-liquidus minerals. All changes in liquidus and solidus slopes can be correlated with changes in mineralogy from less dense to more dense, or with expansion of crystallization fields, without appeal to changes in molar volume of H2O in liquid and vapor phases. The results indicate that tholeiites and andesites of the calc-alkaline series with compositions similar to the rocks studied are not primary magmas from mantle peridotite at depths greater than about 50 km. Primary andesitic magmas from shallower levels would require very high water contents and we do not believe such magmas could normally reach the surface. The liquids results are consistent with the derivation of andesites with little dissolved water as primary magmas from subducted ocean crust (quartz eclogite), but multi-stage models are preferred. Temperatures required for the generation of andesites by fusion of continental crust are higher than considered reasonable. The evidence precludes the generation of primary rhyolites or granites from the mantle of subducted oceanic crust at mantle depths. Primary rhyolite or granite magmas with moderate water contents (saturated or undersaturated) can be generated in the crust at reasonable temperatures, and could reach near-surface levels before vesiculation. Water-undersaturated granite liquid with residual crustal minerals could constitute plutonic magmas of intermediate composition.  相似文献   

18.
Barren Island (BI) is a subduction-related volcanic island lying in the northeastern Indian Ocean, about 750 km north of the northern tip of Sumatra. Rising from a depth of ∼2300 m on the Andaman Sea floor, BI has a submarine volume estimated at ∼400 km3, but the island is just 3 km across, reaches a maximum elevation of 355 m, and has a subaerial volume of only ∼1.3 km3. The first historical eruption began in 1787 when a cinder cone grew in the center of a pre-historical caldera 2-km in diameter and sent lava flows westward to reach the sea; activity continued intermittently until 1832. Two subsequent eruptions modified the central cone and also sent lava flows westward to reach the sea in 1991 and 1994–1995.A suite of 28 lava, scoria, and ash samples were investigated from various stages of the subaerial eruptive history of BI. Most are basalts (including all 10 samples from the 1994–1995 eruption) and basaltic andesites (including 7 of 8 samples from the 1991 eruption), but 2 pre-1787 andesites were also studied. On multi-element spider diagrams the BI suite shows subparallel trends for most elements that reflect an important role for fractional crystallization, along with the characteristic depletions of Nb–Ta and enrichments of K–Rb–Pb found in other subduction-related island-arc suites. The typical relative enrichment of Ba is not present, likely because the subducted sediments in the Andaman arc are not Ba-rich. Wide compositional ranges for Cs, Th, Rb, U, and Pb may trace different degrees of scavenging from the underlying volcanic pile.BI basalts and basaltic andesites have variable abundances of phenocrystic–microphenocrystic olivine plus Cr–Al–Mg spinel inclusions, plagioclase, and clinopyroxene, embedded in a matrix of glass, the same minerals, and titanomagnetite (mostly exsolved). The most remarkable mineralogical feature of certain BI basalts and basaltic andesites is the presence of abundant (to 40 vol.%) and large (to 5 mm) crystals of relatively homogeneous anorthitic plagioclase (to An95.7). These have inclusions of Mg olivine (to Fo79) and thin (10–150 μm) normally zoned margins that reach to the more sodic compositions of the plagioclase phenocryst and microphenocryst rims. Anorthitic plagioclase crystals are common at many subduction-related volcanoes. At BI, the anorthitic plagioclase and associated olivine crystals are thought to have entered the magmas through disaggregation of troctolitic crystal mushes or plutonic xenoliths. This process affected bulk-rock compositions in many ways, including raising Al2O3 contents to values as high as 22.8 wt.% and Eu / Eu* values up to 1.05. Compared to a large petrological and geochemical database for Indonesian volcanic rocks, the BI suite falls at the most depleted end for levels of K and incompatible trace elements, and Sr, Nd, and Pb isotopic ratios. Consequently, the BI suite defines an excellent primitive baseline against which Indonesian volcanic suites can be compared.  相似文献   

19.
Oxygen isotope analyses have been made on 27 tholeiitic basalts from the Lau and Mariana marginal ocean basins and from mid-ocean ridges. The 18O values are related to the extent of hydration by submarine weathering as indicated by H2O? and total water content. Extrapolation to zero H2O? content gives a δ18O value of 5.5‰ on the SMOW scale for unaltered marginal basin basalts, in exact agreement with the oxygen isotope “signature” of ocean-ridge tholeiites. Three alkali basalts from seamount provinces also fit the tholeiite relationship. A Lau Basin gabbro has the tholeiitic 18O content, but an Indian Ocean gabbro is unusually light (δ18O = 4.0 for whole rock, plagioclase, and amphibole), and resembles the low -18O Iceland basalts. The basalt data confirm petrologic and chemical evidence for origin of marginal basins by extensional processes with production of basalts from depleted mantle material isotopically identical to the source of ocean-ridge tholeiites.  相似文献   

20.
Fluorine contents in about 160 representative Quaternary volcanic rocks and 15 hornblende and biotite phenocrysts in a calc-alkali series in Japan have been determined by a selective ion-electrode method. Tholeiites have the lowest contents and the narrowest range (58–145 ppm), while alkali basalts have the highest contentws and the widest range (301–666 ppm), high-alumina basalts have intermediate values (188–292 ppm). F contents in basalts clearly increase from east to west across the Japanese Islands, as do alkalies, P2O5 REE, U, Th and H2O.The volcanic rocks studied are divided into two groups on the basis of F: (1) witt, increasing % SiO2 or advancing fractionation, F contents show either progressive enrichment; or (2) with increasing fractionation, F contents show rather constant values. The former is produced by fractionation of anhydrous phases from basalt to mafic andesite magmas; the tholeiite series of Nasu volcanic zone (outer zone), northeastern, Japan is a typical example. The latter group is derived through separation of amphibole-bearing phases from basaltic magmas at various depths from upper mantle (about 30 km) to upper crust; the alkali series in southwestern Japan and the calc-alkali series of Chokai volcanic zone (inner zone), northeastern Japan, are examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号