首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The extinct Pleistocene volcano Muriah, situated behind the main Pleistocene—Recent Sunda magmatic arc in north-central Java, has erupted at least two contrasted groups of lavas. One group forms a well-defined compositional series (Anhydrous Series) from leucite basanite to tephritic phonolite, with olivine and tschermakitic clinopyroxene the main phenocrysts. The other group, the “Hydrous Series”, includes compositionally variable tephrites and high-K andesites with common plagioclase, biotite and amphibole. Lavas of the Anhydrous Series are much richer in LIL trace elements than the most potassic lavas of neighbouring active volcanoes, but relative HFS element enrichment is less pronounced. REE patterns have almost constant slopes from La (250–600 times chondrites) to Yb (5–10 times chondrites), while those of lavas of active centres are less light-enriched, and show flattening in the heavy REE. Anhydrous Series initial 87Sr/86Sr ratios (0.7043–0.7046) are lower than those of active centres (0.7047–0.7053). Hydrous Series lavas are intermediate in all these geochemical characteristics.The most mafic A-series leucite basanite, with Mg/(Mg + Fe2+) 0.69, 140 ppm Ni and 620 ppm Cr was probably derived from the primary magma for the series by fractionation of only 5 wt.% olivine. Its REE pattern suggests derivation from a garnet-bearing source. Experiments on this basanite, with up to 10% olivine and 20% orthopyroxene added, and in the presence of H2O and H2O/CO2 mixtures, have shown that for all but very high magma water contents, the olivine and garnet liquidus fields are widely separated by fields of phlogopite and clinopyroxene. There is no liquidus field of orthopyroxene. Hence, if magma production involved an equilibrium melting process alone, the most probable sources are of garnet-bearing phlogopite clinopyroxenite type. Alternatively, this magma may represent the end-product of interaction between a low-K basanite magma from a garnet lherzolite source in the asthenosphere and a phlogopite-bearing lherzolite zone in the lower lithosphere. Its production was probably related to crustal doming and extension superimposed on the dominant subduction regime. Hydrous Series magmas may have resulted from mixing between Anhydrous Series magmas and high-K calc-alkaline basaltic to andesitic magmas more directly related to subduction processes.  相似文献   

2.
The morphology and composition of spinel in rapidly quenched Pu’u ’O’o vent and lava tube samples are described. These samples contain glass, olivine phenocrysts (3–5 vol.%) and microphenocrysts of spinel (0.05 vol.%). The spinel surrounded by glass occurs as idiomorphic octahedra 5–50 μm in diameter and as chains of octahedra that are oriented with respect to each other. Spinel enclosed by olivine phenocrysts is sometimes rounded and does not generally form chains. The temperature before quenching was calculated from the MgO content of the glass and ranges from 1150°C to 1180°C. The oxygen fugacity before quenching was calculated by two independent methods and the log fO2 ranged from −9.2 to −9.9 (delta QFM=−1). The spinel in the Pu’u ’O’o samples has a narrow range in composition with Cr/(Cr+Al)=0.61 to 0.73 and Fe2+/(Fe2++Mg)=0.46 to 0.56. The lower the calculated temperature for the samples, the higher the average Fe2+/(Fe2++Mg), Fe3+ and Ti in the spinel. Most zoned spinel crystals decrease in Cr/(Cr+Al) from core to rim and, in the chains, the Cr/(Cr+Al) is greater in the core of larger crystals than in the core of smaller crystals. The occurrence of chains and hopper crystals and the presence of Cr/(Cr+Al) zoning from core to rim of the spinel suggest diffusion-controlled growth of the crystals. Some of the spinel crystals may have grown rapidly under the turbulent conditions of the summit reservoir and in the flowing lava, and the crystals may have remained in suspension for a considerable period. The rapid growth may have caused very local (μm) gradients of Cr in the melt ahead of the spinel crystal faces. The crystals seem to have retained the Cr/(Cr+Al) ratio that developed during the original growth of the crystal, but the Fe2+/(Fe2++Mg) ratio may have equilibrated fairly rapidly with the changing melt composition due to olivine crystallization. Six of the samples were collected on the same day at various locations along a 10-km lava tube and the calculated pre-collection temperatures of the samples show a 5°C drop with distance from the vent. The average Fe2+/(Fe2++Mg) of the spinel in these samples shows a weak positive correlation with decreasing MgO in the glass of these samples. The range in Cr2O3 (0.041–0.045 wt.%) of the glass for these six samples is too small to distinguish a consistent change along the lava tube. The spinel in the Pu’u ’O’o samples shows a zoning trend in a Cr–Al–Fe3+ diagram almost directly away from the Cr apex. This compares with a zoning trend in rapidly quenched MORB samples away from Cr coupled with decreasing Fe3+. The trend away from Cr displayed by spinel in rapidly quenched samples is in marked contrast to the trend of increasing Fe3+ shown by spinel in slowly cooled lava.  相似文献   

3.
The Hasan Dagi volcano is one of the two large Plio-Quaternary volcanoes in Cappadocia (Central Anatolia, Turkey). Three stages of edifice construction have been identified for this volcano: Paleovolcano, Mesovolcano and Neovolcano. Most samples from Hasan Dagi volcano are calc-alkaline and define an almost complete trend from basaltic andesite to rhyolite. However, the more recent (Neovolcano) mafic samples are alkaline basalts. The mineralogical and geochemical characteristics of the oldest lavas (Keçikalesi (13 Ma) and Paleo-Hasan Dagi (7 Ma)) are significantly different from those of the younger lavas (Meso- and Neo-Hasan Dagi (<1 Ma)). Calcic plagioclase and pigeonite are typically observed in these older lavas. The Paleovolcano basalts are depleted in alkalis and display a tholeiitic tendency whereas the differentiated lavas are depleted in Na2O but enriched in K2O compared to younger lavas. There is an evolution through time towards higher TiO2, Fe2O3*, MgO, Na2O and K2O and lower Al2O3 and SiO2 which is reflected in the basalt compositions. All the basalts display multi-element patterns typical of continental margin magmas with a significant enrichment in LILE (K, Rb, Ba and Th) and LREE and strong (Paleovolcano) to moderate (Meso- and Neovolcano) negative Nb, Zr and Ti anomalies. However, the younger basalts are the most enriched in incompatible elements, in agreement with their alkaline affinities and do not systematically display negative HFSE anomalies. REE data suggest an hydrous amphibole-bearing crystallization history for both Meso- and Neovolcano lavas. The distinction between the older and younger lavas is also apparent in trace element ratios such as Nb/Y, Ti/Y and Th/Y. These ratios indicate the role of a subducted component±crustal contamination in the genesis of the Hasan Dagi lavas, particularly for the oldest lavas (Keçikalesi and Paleo-Hasan Dagi). The decreasing influence of this component through time, over the last 6–7 m.y., has been accompanied by an increasing contribution of melt-enriched lithosphere. Although the range of variation of Sr, Nd and Pb isotopic ratios is small (0.70457–0.70515; 0.51262–0.51273; 18.80–18.94; 15.64–15.69; 38.87–39.10), it also reflects the evolution of the magma sources through time. Indeed, the youngest (Neovolcano) and most primitive basalts display significantly lower 87Sr/86Sr than the Paleo- and Mesovolcano basalts, whereas the Mesovolcano basalts display more radiogenic Pb than Paleovolcano samples. Magma mixing processes between initially heterogeneous and/or variably contaminated magmas may account for the genesis of the less differentiated and intermediate lavas (48–57% SiO2). Meso- and Neovolcano differentiated lavas (60–68% SiO2) are either derived from the analyzed basalts or from more primitive and more depleted magmas by fractional crystallization±some crustal contamination (AFC). Furthermore, the highly differentiated samples (72–75% SiO2) are not strongly contaminated. The strong calc-alkaline character of Hasan Dagi lavas, in the absence of contemporaneous subduction, must reflect the heritage of the early subduction of the Afro–Arabian plate under the Eurasian plate. The evolution towards alkaline compositions through time is clearly related to the development of extensional tectonics in Central Anatolia in the Late Miocene.  相似文献   

4.
Volcanism in the Taupo Volcanic Zone (TVZ) and the Kermadec arc-Havre Trough (KAHT) is related to westward subduction of the Pacific Plate beneath the Indo-Australian Plate. The tectonic setting of the TVZ is continental whereas in KAHT it is oceanic and in these two settings the relative volumes of basalt differ markedly. In TVZ, basalts form a minor proportion (< 1%) of a dominant rhyolite (97%)-andesite association while in KAHT, basalts and basaltic andesites are the major rock types. Neither the convergence rate between the Pacific and Indo-Australian Plates nor the extension rates in the back-arc region or the dip of the Pacific Plate Wadati-Benioff zone differ appreciably between the oceanic and continental segments. The distance between the volcanic front and the axis of the back-arc basin decreases from the Kermadec arc to TVZ and the distance between trench and volcanic front increases from around 200 km in the Kermadec arc to 280 km in TVZ. These factors may prove significant in determining the extent to which arc and backarc volcanism in subduction settings are coupled.All basalts from the Kermadec arc are porphyritic (up to 60% phenocrysts) with assemblages generally dominated by plagioclase but with olivine, clinopyroxene and orthopyroxene. A single dredge sample from the Havre Trough back arc contains olivine and plagioclase microphenocrysts in glassy pillow rind and is mildly alkaline (< 1% normative nepheline) contrasting with the tholeiitic nature of the other basalts. Basalts from the TVZ contain phenocryst assemblages of olivine + plagioclase ± clinopyroxene; orthopyroxene phenocrysts occur only in the most evolved basalts and basaltic andesites from both TVZ and the Kermadec Arc.Sparsely porphyritic primitive compositions (Mg/(Mg+Fe2) > 70) are high in Al2O3 (>16.5%), and project in the olivine volume of the basalt tetrahedron. They contain olivine (Fo87) phenocrysts and plagioclase (> An60) microphenocrysts. These magmas have ratios of CaO/Al2O3, A12O3/TiO2 and CaO/TiO2 in the range of MORB and MORB picrites and can evolve to the low-pressure MORB cotectic by crystallisation of olivine±plagiociase. Such rocks may be the parents of other magmas whose evolutionary pathways are complicated by interaction of crystal fractionation, crystal accumulation and mixing processes and the filtering action of crust of variable density and thickness. The interplay of these processes likely accounts for the scatter of data about the cotectic. More evolved rocks from both TVZ and KAHT contain clinopyroxene and orthopyroxene phenocrysts and their compositions merge with basaltic andesites and andesites. Stepwise least-squares modelling using phenocryst assemblages in proportions observed in the rocks suggest that crystal fractionation and accumulation processes can account for much of the diversity observed in the major-element compositions of all lavas.We conclude that the parental basaltic magmas for volcanism in the TVZ and KAHT segments are similar thereby implying grossly similar source mineralogy. We attribute the diversity to secondary processes influencing liquids as they ascended through complex plumbing systems in the sub arc mantle and cross.  相似文献   

5.
An Aleutian high-alumina basalt from the island of Atka at one atmosphere crystallizes plagioclase (1275°C) followed by olivine (1170°C) and clinopyroxene (1115°C). At oxygen fugacities along NNO, magnetite crystallizes below 1070°C, but its liquidus increases to at least 1175°C at an oxygen fugacity two log units above NNO. Phase relations at two kilobars pressure of melts containing small amounts of water are similar, although orthopyroxene and magnetite are observed to follow clinopyroxene. Amphibole crystallizes at near-liquidus temperatures only at water contents of melts approaching 4.5%. Amphibole assumes the liquidus in melts containing 5% water.Anhydrous melts crystallize plagioclase to 19 kbar, where garnet and clinopyroxene assume the liquidus. Olivine yields to clinopyroxene as the highest-temperature subliquidus phase at about 9 kbar.The array of compositions of basaltic Atka rocks, as displayed on appropriate pseudoternary projections, can be interpreted as a crystal fractionation path at moderate pressure (8 kbar) and small melt-water contents. The interpreted fractionating minerals are olivine, clinopyroxene, plagioclase, and (probably) magnetite. (The actual phenocrysts in Atka basalts like AT-1, which lacks phenocrystic clinopyroxene, must have crystallized at pressure less than 8 kbar, however.) The compositions of two-pyroxene andesites from Atka can be interpreted to lie on a lower-pressure fractionation trend at melt water contents of 2–3%. Such water contents are consistent with the complete absence of amphibole in any Atka rocks and are suggestive that water contents of the basaltic magmas, if the basalts are parental to the andesites, were 1–2%.  相似文献   

6.
The origin of Arenal basaltic andesite can be explained in terms of fractional crystallization of a parental high-alumina basalt (HAB), which assimilates crustal rocks during its storage, ascent and evolution. Contamination of this melt by Tertiary calc-alkalic intrusives (quartz–diorite and granite, with 87Sr/86Sr ratios ranging 0.70381–0.70397, nearly identical with those of the Arenal lavas) occurs at upper crustal levels, following the interaction of ascending basaltic magma masses with gabbroic–anorthositic layers. Fragments of these layers are found as inclusions within Arenal lavas and tephra and may show reaction rims (1–5 mm thick, consisting of augite, hypersthene, bytownitic–anorthitic plagioclase, and granular titanomagnetite) at the gabbro–lava interface. These reaction rims indicate that complete `assimilation' was prevented since the temperature of the host basaltic magma was not high enough to melt the gabbroic materials (whose mineral phases are nearly identical to the early formed liquidus phases in the differentiating HAB). Olivine gabbros crystallized at pressure of about 5–6 kbar and equilibrated with the parental HAB at pressures of 3–6 kbar (both under anhydrous and hydrous conditions), and temperatures ranging 1000–1100°C. In particular, `deeper' interactions between the mafic inclusions and the hydrous basaltic melt (i.e., with about 3.5 wt.% H2O) are likely to occur at 5.4 (±0.4) kbar and temperatures approaching 1100°C. The olivine gabbros are thus interpreted as cumulates which represent crystallized portions of earlier Arenal-type basalts. Some of the gabbros have been `mildly' tectonized and recrystallized to give mafic granulites that may exhibit a distinct foliation. Below Arenal volcano a zoned magma chamber evolved prior the last eruptive cycle: three distinct andesitic magma layers were produced by simple AFC of a high-alumina basalt (HAB) with assimilation of Tertiary quartz–dioritic and granitic rocks. Early erupted 1968 tephra and 1969 lavas (which represent the first two layers of the upper part of a zoned magma chamber) were produced by simple AFC, with fractionation of plagioclase, pyroxene and magnetite and concomitant assimilation of quartz–dioritic rocks. Assimilation rates were constant (r1=0.33) for a relative mass of magma remaining of 0.77–0.80, respectively. Lavas erupted around 1974 are less differentiated and represent the `primitive andesitic magma type' residing within the middle–lower part of the chamber. These lavas were also produced by simple AFC: assimilation rates and the relative mass of magma remaining increased of about 10%, respectively (r1=0.36, and F=0.89). Ba enrichment of the above lavas is related to selective assimilation of Ba from Tertiary granitic rocks. Lava eruption occurred as a dynamic response to the intrusion of a new magma into the old reservoir. This process caused the instability of the zoned magma column inducing syneruptive mixing between portions of two contiguous magma layers (both within the column itself and at lower levels where the new basalt was intruded into the reservoir). Syneruptive mixing (mingling) within the middle–upper part of the chamber involved fractions of earlier gabbroic cumulitic materials (lavas erupted around 1970). On the contrary, within the lower part of the chamber, mixing between the intruded HAB and the residing andesitic melt was followed by simple fractional crystallization (FC) of the hybrid magma layer (lavas erupted in 1978–1980). By that time the original magma chamber was completely evacuated. Lavas erupted in 1982/1984 were thus modelled by means of `open system' AFCRE (i.e., AFC with continuous recharge of a fractionating magma batch during eruption): in this case assimilation rates were r1=0.33 and F=0.86. Recharge rates are slightly higher than extrusion rates and may reflect differences in density (between extruded and injected magmas), together with dynamic fluctuations of these parameters during eruption. Ba and LREE (La, Ce) enrichments of these lavas can be related to selective assimilation of Tertiary granitic and quartz–dioritic rocks. Calculated contents for Zr, Y and other REE are in acceptable agreement with the observed values. It is concluded that simple AFC occurs between two distinct eruption cycles and is typical of a period of repose or mild and decreasing volcanic activity. On the contrary, magma mixing, eventually followed by fractional crystallization (FC) of the hybrid magma layer, occurs during an ongoing eruption. Open-system AFCRE is only operative when the original magma chamber has been totally replenished by the new basaltic magma, and seems a prelude to the progressive ceasing of a major eruptive cycle.  相似文献   

7.
Major-element, Cl, S, F analyses have been performed on a wide selection of melt inclusions trapped in olivine (Fo81–87) from scoria and crystal-rich lapilli samples of Piton de la Fournaise volcano. As a whole, they display a transitional basaltic composition. The melt inclusions (8–9 wt.% MgO, 0.62–0.73 wt.% K2O) are in equilibrium with olivines (Fo81–85) in the samples from the Central Feeding Zone and the South-East Feeding Zone and show a slight alkaline affinity. The melt inclusions in olivines (Fo85–87) from the North-West Rift (NWR) contain 9.3–9.7 wt.% MgO and 0.54–0.58 wt.% K2O, with a more tholeiitic tendency. In oceanitic lavas and crystal-rich lapilli, the olivine xenocrysts are recognisable by the presence of one or more secondary shear plane fracture(s) filled up with CO2 and alkali-rich basaltic melt inclusions. In dunite nodules, olivines present also contain several secondary shear plane fracture(s) filled up with CO2 and high-SiO2 melt inclusions. Secondary CO2-rich fluid inclusions in olivine (Fo85–87) from the NWR samples indicate PCO2 up to 500 MPa whereas, PCO2 ranges from 95 MPa to few tenths of bars in the other samples. Both the primary melt inclusions and the secondary fluid inclusions strongly suggest that the olivine crystallises and accumulates over a wide depth range (15 km). It is envisioned that cumulative pockets with low residual porosity are repeatedly percolated with a CO2-rich fluid phase, possibly associated with basaltic to SiO2-rich melts, and are finally disrupted and entrained to the surface when vigorous magma transfer occurs. The SiO2-rich residual melts in early-formed dunitic or gabbroic bodies may have acted as contaminant agents for the more alkali character of magmas vented through the central feeding system, where a well-developed cumulative system is thought to exist. Finally, the existence of secondary fluid and melt inclusions in olivines implies that the dunitic bodies are weakened on the micrometric scale.  相似文献   

8.
Three groups of spinels have been identified in dredged basalts from the Mid-Atlantic Ridge in the Azores region (30–40°N): (1) magnesiochromites with 0.4–0.5 Cr/(Cr + Al) are most common and characteristic of olivine tholeiites of the region; (2) titaniferous magnesiochromites are found in an olivine basalt with alkali affinities, of local occurrence and evolved in relatively high fugacity of oxygen; (3) chromian spinels with 0.23 Cr/(Cr + Al) occur in unusual high-Al picrites of local occurrence and possible high-pressure origin. Spinels are restricted in occurrence to the least fractionated lavas, with FeO*/FeO* + MgO ratio less than 0.575 and with Cr content greater than 350 ppm. A close relationship between Al content of liquidus spinel and Al content of magma has been observed for basaltic types. High-Al spinels deviating from this relationship, such as those found in picritic lavas from the Mid-Atlantic Ridge, may have crystallized at high pressure. The use of spinels as geobarometers in magmas of a restricted compositional range seems a promising prospect. There is no evidence of systematic variation in spinel chemistry of occurrence along the Mid-Atlantic Ridge, such as could be related to different mantle sources of the basalts, plume versus non-plume or binary mantle mixing.  相似文献   

9.
Tholeiitic basalt glasses from the FAMOUS area of the Mid-Atlantic Ridge are among the most primitive basaltic liquids reported from the ocean basins. One of the more primitive of these[Mg/(Mg+Fe2+) = 0.68;Ni= 232ppm;TiO2 = 0.61] glasses (572-1-1) was selected for an experimental investigation. This study found olivine to be the liquidus phase from 1 atm to 10.5 kbar where it is replaced by clinopyroxene. The sequence of appearance of phases at 1 atm pressure is olivine (1268°C), plagioclase (1235°C) and clinopyroxene (1135°C). The sample is multiply saturated at 10.5 kbar with olivine (Fo88), clinopyroxene (Wo32En60Fs9), and orthopyroxene (Wo5En83Fs12). From the 1-atm data we have measured (FeO/MgO) olivine/(FeO*/MgO) liquid (K′D) for olivine-melt pairs equilibrated at 12 temperatures in the range 1268–1205°C.K′D varies from 0.30 at 1205°C to 0.27 at 1268°C. Analysis of high-pressure olivine melt pairs indicates a systematic increase inK′D with pressure.Evaluation of the 1-atm experiments reveals that fractionation of olivine followed by olivine + plagioclase can generate much of the variation in major element chemistry observed in the FAMOUS basalt glasses. However, it cannot account for the entire spectrum of glass compositions — particularly with respect to TiO2 and Na2O. The variations in these components are such as to require different primary liquids.Comparison of clinopyroxene microphenocrysts/xenocrysts found in oceanic tholeiites with experimental clinopyroxenes reveal that the majority of those in the tholeiites may have crystallized from the magma at pressures greater than ~ 10 kbar and are not accidental xenocrysts. Clinopyroxene fractionation at high pressures may be a viable mechanism for fractionating basaltic magmas.The major and minor element mineral/meltK′d's from our experiments have been used to model the source region residual mineralogy for given percentages of partial melting. These data suggest that ~20% partial melting of a lherzolite source containing 0–10% clinopyroxene can generate the major and minor element concentrations in the parental magmas of the Project FAMOUS basalt glasses.  相似文献   

10.
Crystallization paths of basaltic (1763 eruption) and hawaiitic (1865 and 1329 eruptions) scoria from Etna were deduced from mineralogy and melt inclusion chemistry. The volatile behaviour was investigated through the study of melt inclusions trapped in the phenocrysts and those of the whole rocks and the matrix glasses. The results from the 1763 eruption point to the early crystallization of olivine Fo 81.7 from a water-rich alkaline basalt, with high Cl (1750–2000 ppm) and S (2100–2400 ppm) concentrations. The hawaiitic melt inclusions trapped in olivine Fo 74, salite and plagioclase are characterized by a decrease in Cl/K2O and S/K2O ratios. In each investigated system there is good correlation between K2O and P2O5. In the whole rocks, Cl ranges from 980 to 1680 ppm, from basaltic to hawaiitic lavas, whereas S (110–136 ppm) remains low. Cl and S behaviour in the 1763 magma suggests an early degassing stage of Cl and S, with CO2 and a water-rich gaseous phase for a pressure close to 100 MPa, consistent with a permanent outgassing at the summit craters of Etna. During the eruption, the sulphur remaining in the hawaiitic liquid is lost, and the degassing of chlorine is limited. Such a degassing model can be extended to the 1865 and 1329a.d. eruptions.  相似文献   

11.
Sr and Nd isotope and geochemical investigations were performed on a remarkably homogeneous, high-silica rhyolite magma reservoir of the Aira pyroclastic eruption (22,000 years ago), southern Kyushu, Japan. The Aira caldera was formed by this eruption with four flow units (Osumi pumice fall, Tsumaya pryoclastic flow, Kamewarizaka breccia and Ito pyroclastic flow). Quite narrow chemical compositions (e.g., 74.0–76.5 wt% of SiO2) and Sr and Nd isotopic values (87Sr/86Sr=0.70584–0.70599 and Nd=−5.62 to −4.10) were detected for silicic pumices from the four units, with the exception of minor amounts of dark pumices in the units. The high Sr isotope ratios (0.7065–0.7076) for the dark pumices clearly suggest a different origin from the silicic pumices. Andesite to basalt lavas in pre-caldera (0.37–0.93 Ma) and post-caldera (historical) eruptions show lower 87Sr/86Sr (0.70465–0.70540) and higher Nd (−1.03 to +0.96) values than those of the Aira silicic and dark pumices. Both andesites of pre- and post-caldera stages are very similar in major- and trace-element characteristics and isotope ratios, suggesting that the both andesites had a same source and experienced the same process of magma generation (magma mixing between basaltic and dacitic magmas). Elemental and isotopic signatures deny direct genetic relationships between the Aira pumices and pre- and post-caldera lavas. Relatively upper levels of crust (middle–upper crust) are assumed to have been involved for magma generation for the Aira silicic and dark pumices. The Aira silicic magma was derived by partial melting of a separate crust which had homogeneous chemistry and limited isotope compositions, while the magma for the Aira dark pumice was generated by AFC mixing process between the basement sedimentary rocks and basaltic parental magma, or by partial melting of crustal materials which underlay the basement sediments. The silicic magma did not occupy an upper part of a large magma body with strong compositional zonation, but formed an independent magma body within the crust. The input and mixing of the magma for dark pumices to the base of the Aira silicic magma reservoir might trigger the eruptions in the upper part of the magma body and could produce a slight Sr isotope gradient in the reservoir. An extremely high thermal structure within the crust, which was caused by the uprise and accumulation of the basaltic magma, is presumed to have formed the large volume of silicic magma of the Aira stage.  相似文献   

12.
The Torfajökull central volcano in south-central Iceland contains the largest volume of exposed silicic extrusives in Iceland (225 km3). Within SW-Torfajökull, postglacial mildly alkalic to peralkalic silicic lavas and lava domes (67–74 wt.% SiO2) have erupted from a family of fissures 1–2.5 km apart within or just outside a large caldera (12×18 km). The silicic lavas show a fissure-dependent variation in composition, and form five chemically distinct units. The lavas are of low crystallinity (0–7 vol.%) and contain phenocrysts in the following order of decreasing abundance: plagioclase (An10-40), Na-rich anorthoclase (<Or23), clinopyroxene (Fs37-20), FeTi oxides (Usp32-60; Ilm93-88), hornblende (edenitic–ferroedenitic) and olivine (Fo22-37), with apatite, pyrrhotite and zircon as accessory phases. The phenocryst assemblage (0.2–4.0 mm) consistently exhibits pervasive disequilibrium with the host melt (glass). Xenoliths include sparse, disaggregated, and partially fused leucocratic fragments as well as amphibole-bearing rocks of broadly intermediate composition. The values of the silicic lavas are in the range 3.6–4.4, and these are lower than the values of comagmatic, contemporaneous basaltic extrusives within SW-Torfajökull, implying that the former can not be derived from the latter by simple fractional crystallization. FeTi-oxide geothermometry reveals temperatures as low as 750–800°C. To explain the fissure-dependent chemical variations, depletions, low FeTi-oxide temperatures and pervasive crystal-melt disequilibrium, we propose the extraction and collection of small parcels of silicic melt from originally heterogeneous basaltic crustal rock through heterogeneous melting and wall rock collapse (solidification front instability, SFI). The original compositional heterogeneity of the source rock is due to (1) silicic segregations, in the form of pods and lenses characteristically formed in the upper parts of gabbroic intrusives, and (2) extreme isostatic subsidence of the earlier, less differentiated lavas of the Torfajökull central volcano. Ridge migration into older crustal terranes, coupled with establishment of concentrated volcanism at central volcanoes like Torfajökull due to propagating regional fissure swarms, supplies the heat source for this overall process. Continued magmatism in these fissures promotes extensive prograde heating of older crust and the progressive vitality and rise of the central volcano magmatic system that leads to, respectively, SFI and subsidence melting. The ensuing silicic melts (with relict crystals) are extracted, collected and extruded before reaching complete internal equilibrium. Chemically, this appears as a two-stage process of crystal fractionation. In general, the accumulation of high-temperature basaltic magmas at shallow depths beneath the Icelandic rift zones and major central volcanoes, coupled with unique tectonic conditions, allows large-scale reprocessing and recycling of the low- , hydrothermally altered Icelandic crust. The end result is a compositionally bimodal proto-continental crust.  相似文献   

13.
Some recent calc-alkaline andesites and dacites from southern and central Martinique contain basic xenoliths belonging to two main petrographic types:
  • The most frequent one has a hyalodoleritic texture (« H type ») with hornblende + plagioclase + Fe-Ti oxides, set in an abundant glassy and vacuolar groundmass.
  • The other one exhibits a typical porphyritic basaltic texture (« B type ») and mineralogy (olivine + plagioclase + orthopyroxene + clinopyroxene + Fe-Ti oxides and scarce, or absent hornblende).
  • Gradual textural and mineralogical transitions occur between these two types (« I type ») with the progressive development of hornblende at the expense of olivine and pyroxenes. Mineralogical and chemical studies show no primary compositional correlations between the basaltic xenoliths and their host lavas, thus demonstrating that the former are not cognate inclusions; they are remnants of basaltic liquids intruded into andesitic to dacitic magma chambers. This interpretation is strengthened by the typical calc-alkaline basaltic composition of the xenoliths, whatever their petrographic type (« H », « I » or « B »). The intrusion of partly liquid, hot basaltic magma into colder water-saturated andesitic to dacitic bodies leads to drastic changes in physical conditions. The two components; the basaltic xenoliths are quenched and homogeneized with their host lavas with respect to To;fO2 andpH2O conditions. « H type » xenoliths represent original mostly liquid basalts in which such physical changes lead to the formation of hornblende and the development of a vacuolar and hyalodoleritic texture. The temperature increase of the acid magma depends on the amount of the intruding basalt and on the thermal contrast between the two components. The textural diversity which characterizes the xenoliths reflects the cooling rate of the basaltic fragments and/or their position relative to the basaltic bodies (chilled margins or inner, more crystallized, portions). In addition to physical equilibration (T, fO2) between the magmas, mixing involves:
  • mechanical transfer of phenocrysts from one component to another, in both directions;
  • volatile transfer to the basaltic xenoliths, with chemical exchanges.
  • It is here demonstrated that a short period of time (some ten hours to a few days) separates the mixing event from the eruption, outlining the importance of magma mixing in the triggering of eruption. The common occurrence of basaltic xenoliths (generally of « H » type) in calc-alkaline lavas is emphasized, showing that this mechanism is of first importance in calc-alkaline magma petrogenesis.  相似文献   

    14.
    Island arc and continental margin (i.e. western Americas) lavas are divided (based on raw data from literature) into basalts (defined by absence of Ca-poor pyroxene, dominated by quartz-normative tholeiites); basaltic andesites and andesites (subdivided on basis of breaks in SiO2 histogram and taken as <56% and 56–63% SiO2; Ca-poor pyroxene present; amphibole and biotite absent); and hornblende (±biotite) lavas, which prove to be mainly relatively silicic andesites. Relative proportions of these types are (576 samples): 23% basalts, 29% basaltic andesites; 30% andesites; 18% hornblende andesites. The compilation emphasizes the dominance of calcic plagioclase (labradorite-anorthite) amongst the phenocryst phases. Pyroxenes are largely augite and hypersthene (En60–75); olivine (Fo65–85) is common through all compositions. There is an overall close similarity in chemistry and mineralogy between continental margin and island arc lavas, although small consistent differences are apparent (e.g. K2O, TiO2, P2O5).Modal data indicate that 70% of lavas are phenocryst-rich (20–60 vol.%), and that phenocryst contents show a bimodal distribution. Statistically and petrologically significant correlations are found between mineralogy and rock chemistry, most notably between total rock Al2O3 and modal phenocrystic plagioclase (found in all data groups, except hornblende andesites). This, and related data and correlations, indicate that the majority of orogenic magmas are modified by crystal fractionation (including crystal accumulation) processes dominated by plagioclase, and interpreted to occur under relatively low pressures. Dominance of plagioclase suggests phenocryst precipitation occurs typically in water-undersaturated magmas.  相似文献   

    15.
    Abstract The Isabela ophiolite, the Philippines, is characterized by a lherzolite‐dominant mantle section, which was probably formed beneath a slow‐spreading mid‐ocean ridge. Several podiform chromitites occur in the mantle section and grade into harzburgite to lherzolite. The chromitites show massive, nodular, layered and disseminated textures. Clinopyroxene (±orthopyroxene/amphibole) inclusions within chromian spinel (chromite hereafter) are commonly found in the massive‐type chromitites. Large chromitites are found in relatively depleted harzburgite hosts having high‐Cr? (Cr/(Cr + Al) atomic ratio = ~0.5) chromite. Light rare earth element (LREE) contents of clinopyroxenes in harzburgites near the chromitites are higher than those in lherzolite with low‐Cr? chromite, whereas heavy REE (HREE) contents of clinopyroxenes are lower in harzburgite than in lherzolite. The harzburgite near the chromitites is not a residual peridotite after simple melt extraction from lherzolite but is formed by open‐system melting (partial melting associated with influx of primitive basaltic melt of deeper origin). Clinopyroxene inclusions within chromite in chromitites exhibit convex‐shaped REE patterns with low HREE and high LREE (+Sr) abundances compared to the host peridotites. The chromitites were formed from a hybridized melt enriched with Cr, Si and incompatible elements (Na, LREE, Sr and H2O). The melt was produced by mixing of secondary melts after melt–rock interaction and the primitive basaltic melts in large melt conduits, probably coupled with a zone‐refining effect. The Cr? of chromites in the chromitites ranges from 0.65 to 0.75 and is similar to those of arc‐related magmas. The upper mantle section of the Isabela ophiolite was initially formed beneath a slow‐spreading mid‐ocean ridge, later introduced by arc‐related magmatisms in response to a switch in tectonic setting during its obduction at a convergent margin.  相似文献   

    16.
    Pyroclastic deposits from the 1982–1983 eruption of Galunggung volcano (Java, Indonesia) reflect preeruptive magmatic evolution which is of interest because of: (1) its duration of nine months, compared to a few hours or days for most historical eruptions; (2) the diversity of eruptive styles, from ash and scoria flows to phreatomagmatic explosions, and to the strombolian activity that marked the end of the eruption; and (3) the progressive variation in chemical composition with time, from andesite (58 wt.% SiO2) to high-Mg basalt (47 wt.% SiO2). The 1982–1983 Galunggung basalts are rather primitive: 10 to 12 wt% MgO, 180 to 200 ppm Ni and 550 to 700 ppm Cr. Despite the presence of about 40% phenocrysts, they may represent the most primitive basalts recognized in western Java. Basalts contain phenocrysts of olivine (Fo90-80), diopside-salite, and plagioclase (An95-75). Andesites contain plagioclase (An80–60), augite, hypersthene (En67-64), and titanomagnetite. The distribution of mineral compositions in each petrographic type is nearly unimodal, although scarce plagioclase and olivine xenocrysts have been observed. Abundance of gabbroic cumulates associated with the pyroclastic flows and evolution of mineral compositions from high-Mg basalts to andesites support crystal fractionation as the main differentiation mechanism, although magma mixing of basaltic andesite and andesite cannot be excluded. Major and trace element trends, which display rough decreases of MgO, CaO, Ni, Cr with increasing degree of differentiation and also linear positive correlations of hygromagmaphile elements, are compatible with both processes. However, some discrepancies are observed between major and trace element modelling, which may be explained to some extent by the influence of in situ crystallization and/or magma mixing. The constancy of 143Nd/144Nd (0.51286±3), 230Th/232Th (0.65±0.02), Th/U (4.08±0.07) ratios, and to a lesser extent 18O values (+5.8 to +6.4 % SMOW) and 87Sr/86Sr ratios (0.70440 to 0.70468) is compatible with a magmatic evolution through fractional crystallization without significant crustal contamination. Nevertheless low-18O and high 87Sr/86Sr values in basaltic andesites may be due to the introduction of meteoric fluids into the Galunggung magma.  相似文献   

    17.
    The November 2002 eruption of Piton de la Fournaise in the Indian Ocean was typical of the activity of the volcano from 1999 to 2006 in terms of duration and volume of magma ejected. The first magma erupted was a basaltic liquid with a small proportion of olivine phenocrysts (Fo81) that contain small numbers of melt inclusions. In subsequent flows, olivine crystals were more abundant and richer in Mg (Fo83–84). These crystals contain numerous melt and fluid inclusions, healed fractures, and dislocation features such as kink bands. The major element composition of melt inclusions in this later olivine (Fo83–84) is out of equilibrium with that of its host as a result of extensive post-entrapment crystallization and Fe2+ loss by diffusion during cooling. Melt inclusions in Fo81 olivine are also chemically out of equilibrium with their hosts but to a lesser degree. Using olivine–melt geothermometry, we determined that melt inclusions in Fo81 olivine were trapped at lower temperature (1,182 ± 1°C) than inclusions in Fo83–84 olivine (1,199–1,227°C). This methodology was also used to estimate eruption temperatures. The November 2002 melt inclusion compositions suggest that they were at temperatures between 1,070°C and 1,133°C immediately before eruption and quenching. This relatively wide temperature range may reflect the fact that most of the melt inclusions were from olivine in lava samples and therefore likely underwent minor but variable amounts of post-eruptive crystallization and Fe2+ loss by diffusion due to their relatively slow cooling on the surface. In contrast, melt inclusions in tephra samples from past major eruptions yielded a narrower range of higher eruption temperatures (1,163–1,181°C). The melt inclusion data presented here and in earlier publications are consistent with a model of magma recharge from depth during major eruptions, followed by storage, cooling, and crystallization at shallow levels prior to expulsion during events similar in magnitude to the relatively small November 2002 eruption.  相似文献   

    18.
    Shirouma-Oike volcano, a Quaternary composite volcano in central Japan, consists mostly of calc-alkaline andesitic lavas and pyroclastic rocks. Products of the earlier stage of the volcano (older group) are augite-hypersthene andesite. Hornblende crystallized during the later stage of this older group, whereas biotite and quartz crystallized in the younger group.Assemblages of phenocrysts in disequilibrium, such as magnesian olivine(Fo30)/quartz, iron-rich hypersthene(En55)/iron-poor augite(Wo43.5, En42.5, Fs14.0), and two different types of zoning on the rim of clinopyroxene are found in a number of rocks. Detailed microprobe analyses of coexisting minerals reveal that phenocrysts belong to two distinctly different groups; one group includes magnesian olivine + augite which crystallized from a relatively high-temperature (above 1000°C) basaltic magma; the second group, which crystallized from relatively low temperature (about 800°C) dacitic to andesitic magma, includes hypersthene + hornblende + biotite + quartz + plagioclase + titanomagnetite ± ilmenite (in the younger group) and hypersthene + augite + plagioclase + titanomagnetite ± hornblende (in the older group). The temperature difference between the two magmas is clarified by Mg/Fe partition between clinopyroxene and olivine, and Fe-Ti oxides geothermometer. The compositional zoning of minerals, such as normal zoning of olivine and magnesian clinopyroxene, and reverse zoning of orthopyroxene, indicate that the basaltic and dacitic-andesitic magmas were probably mixed in a magma reservoir immediately before eruption. It is suggested that the basaltic magma was supplied intermittently from a deeper part to the shallower magma reservoir, in in which dacitic-andesitic magma had been fractionating.  相似文献   

    19.
    Phase equilibria in a natural garnet lherzolite nodule (PHN 1611) from Lesotho kimberlite and its chemical analogue have been studied in the pressure range 45–205 kbar and in the temperature range 1050–1200°C. Partition of elements, particularly Mg2+Fe2+, among coexisting minerals at varying pressures has also been examined. High-pressure transformations of olivine(α) to spinel(γ) through modified spinel(β) were confirmed in the garnet lherzolite. The transformation behavior is quite consistent with the information previously accumulated for the simple system Mg2SiO4Fe2SiO4. At pressures of 50–150 kbar, a continuous increase in the solid solubility of the pyroxene component in garnet was demonstrated in the lherzolite system by means of microprobe analyses. At 45–75 kbar and 1200°C, the Fe2+/(Mg + Fe2+) value becomes greater in the ascending order orthopyroxene, Ca-rich clinopyroxene, olivine and garnet. At 144–146 kbar and 1200°C, garnet exhibits the highest Fe2+/(Mg + Fe2+) value; modified spinel(β) and Ca-poor clinopyroxene follow it. When the modified spinel(β)-spinel(γ) transformation occurred, a higher concentration of Fe2+ was found in spinel(γ) rather than in garnet. As a result of the change in the Mg2+Fe2+ partition relation among coexisting minerals, an increase of about 1% in the Fe2SiO4 component in (Mg,Fe)2SiO4 modified spinel and spinel was observed compared with olivine.These experimental results strongly suggest that the olivine(α)-modified spinel(β) transformation is responsible for the seismic discontinuity at depths of 380–410 km in the mantle. They also support the idea that the minor seismic discontinuity around 520 km is due to the superposition effect of two types of phase transformation, i.e. the modified spinel(β)-spinel(γ) transformation and the pyroxene-garnet transformation. Mineral assemblages in the upper mantle and the upper half of the transition zone are given as a function of depth for the following regions: 100–150, 150–380, 380–410, 410–500, 500–600 and 600–650 km.  相似文献   

    20.
    Role of water in the origin of podiform chromitite deposits   总被引:2,自引:0,他引:2  
    We report experiments in basalt oversaturated with water to duplicate the nodular ore textures of podiform chromitite ores. In immiscible basalt-water systems saturated with olivine and chromite, olivine will reside in the melt while chromite will collect in the fluid phase. Fractionation is physical and is driven by differential wetting properties of melt and fluid against silicate and oxide surfaces. There is no need to suppress olivine from the liquidus of a primitive basaltic melt as suggested by Irvine [Irvine, T.N., Geology 5 (1977) 273-277], to achieve chromite accumulations as observed in natural podiform ore deposits. The results imply that podiform chromitite ores will form where a primitive olivine-chromite-saturated mantle melt is sufficiently water-rich to exsolve a fluid phase during passage through the uppermost mantle. The most likely geodynamic environment for podiform chromite mineralization to take place is a supra-subduction zone setting.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号