首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The Isabela ophiolite, the Philippines, is characterized by a lherzolite‐dominant mantle section, which was probably formed beneath a slow‐spreading mid‐ocean ridge. Several podiform chromitites occur in the mantle section and grade into harzburgite to lherzolite. The chromitites show massive, nodular, layered and disseminated textures. Clinopyroxene (±orthopyroxene/amphibole) inclusions within chromian spinel (chromite hereafter) are commonly found in the massive‐type chromitites. Large chromitites are found in relatively depleted harzburgite hosts having high‐Cr? (Cr/(Cr + Al) atomic ratio = ~0.5) chromite. Light rare earth element (LREE) contents of clinopyroxenes in harzburgites near the chromitites are higher than those in lherzolite with low‐Cr? chromite, whereas heavy REE (HREE) contents of clinopyroxenes are lower in harzburgite than in lherzolite. The harzburgite near the chromitites is not a residual peridotite after simple melt extraction from lherzolite but is formed by open‐system melting (partial melting associated with influx of primitive basaltic melt of deeper origin). Clinopyroxene inclusions within chromite in chromitites exhibit convex‐shaped REE patterns with low HREE and high LREE (+Sr) abundances compared to the host peridotites. The chromitites were formed from a hybridized melt enriched with Cr, Si and incompatible elements (Na, LREE, Sr and H2O). The melt was produced by mixing of secondary melts after melt–rock interaction and the primitive basaltic melts in large melt conduits, probably coupled with a zone‐refining effect. The Cr? of chromites in the chromitites ranges from 0.65 to 0.75 and is similar to those of arc‐related magmas. The upper mantle section of the Isabela ophiolite was initially formed beneath a slow‐spreading mid‐ocean ridge, later introduced by arc‐related magmatisms in response to a switch in tectonic setting during its obduction at a convergent margin.  相似文献   

2.
Possible sub-arc origin of podiform chromitites   总被引:6,自引:1,他引:6  
Abstract The sub-arc mantle condition possibly favors the formation of podiform chromitites. The Cr/(Cr + Al) atomic ratio (= Cr#) of their chromian spinel frequently is higher than 0.7, which is comparable with the range for arc-related primitive magmas. This almost excludes the possibility of their sub-oceanic origin, because both oceanic peridotites and MORB have chromian spinel with the Cr# < 0.6. Precipitation of chromitite and associated dunite enhances a relative depletion of high-field strength elements (HFSE) to large-ion lithophile elements (LILE), one of chemical characteristics of arc magmas, for the involved magma. This cannot alter completely, however, the MORB to the arc-type magma, especially for Ti and Zr. The presence of chromitite xenoliths, similar both in texture and in chemistry to podiform chromitites of some ophiolitic complexes, in some Cenozoic alkali basalts from the southwest Japan arc indicates directly that the upper mantle beneath the Japan arcs has chromitites.  相似文献   

3.
Small euhedral chromite crystals are found in olivine macrophenocrysts (Fo80–84) from the basaltic andesites (150 ppm Cr) erupted in 1943–1947, and in orthopyroxene macrophenocrysts of the andesites (75 ppm Cr) erupted in 1947–1952. The majority of the chromite octahedra are 5–20 μm in diameter, and some are found in clusters and linear chains of three or more oriented chromite crystals. The composition of the majority of the chromite grains within olivine and orthopyroxene macrophenocrysts is Fe2+/(Fe2++Mg)=0.5–0.6, Cr/(Cr+Al)=0.5–0.6 and Fe3+/(Fe3++Al+Cr)=0.2–0.3. The chromite crystals in contact with the groundmass are larger, subhedral, and grade in composition from chromite cores to magnetite rims. Comparison of the composition of chromite with those of other volcanic rocks shows that the most primitive Paricutin chromite is richer in total iron and higher in Fe3+/(Fe3++Al+Cr) than primary chromite in most lavas. The linear chains of oriented chromite octahedra are found in olivine and orthopyroxene macrophenocrysts, and in the groundmass. These chromite chains are thought to result from diffusion-controlled crystallization because of the very high partition coefficient (1000) of Cr between chromite and melt. We conclude that chromite was a primary phase in the lavas at the time of extrusion and that magnetite only crystallized after extrusion during cooling of the lava flows. The presence of chromite microphenocrysts in andesitic lavas containing as little as 70 ppm Cr can be explained by dissolved H2O in the melt depressing the liquidus temperature for orthopyroxene such that chromite becomes a liquidus phase. The influence of dissolved H2O can also explain the lack of plagioclase macrophenocrysts in most of the lavas and the relatively high partition coefficient (20) of Ni between olivine and melt and the high partition coefficient (40) of Cr between orthopyroxene and melt. The liquidus temperature of the basaltic andesite is estimated to have been less than 1140°C, assuming H2O>1 wt.%, and the log fO2 to have been above that of the QFM buffer. The chromite and orthopyroxene liquidus temperature of the andesites, assuming H2O>1 wt.%, is estimated to have been 1100°C or less. The derivation of the later andesites from the earlier basaltic andesites has been explained by a combination of fractional crystallization of olivine, orthopyroxene and plagioclase, and assimilation of xenoliths. The significantly lower Cr, Ni and Mg of the andesites may have been in part due to the separation of olivine macrophenocrysts plus enclosed chromite crystals from the earlier basaltic andesites.  相似文献   

4.
Chromite in the mantle section of the Oman ophiolite: A new genetic model   总被引:9,自引:0,他引:9  
Hugh  Rollinson 《Island Arc》2005,14(4):542-550
Abstract   This paper reviews the compositional data (major elements, platinum group element [PGE] concentrations, Os- and O-isotopes) for chromites from the mantle section of the Oman ophiolite. Chromites in chromitite from the Oman ophiolite lie on a compositional spectrum between high-Cr♯, boninite-like and low-Cr♯, mid-oceanic ridge basalt-like end-members. The high-Cr♯ end-member is low in Ti, has a fractionated PGE pattern and is enriched in iridium group-platinum group elements (IPGE). The low-Cr♯ end-member has higher Ti and an unfractionated PGE pattern. The compositional variation in the chromitites reflects their crystallization from a range of different melt compositions. It is proposed that this wide variation in melt compositions was produced by the process of a melt–rock reaction, whereby a basaltic melt has reacted with harzburgitic mantle to yield successively more Cr-rich melts. In contrast to previous models, this approach does not require a change in the tectonic environment to explain the different chromite types.  相似文献   

5.
The Cenozoic basaltic province of the Vogelsberg area (central Germany) is mainly composed of intercalated olivine to quartz tholeiites and near-primary nephelinites to basanites. The inferred mantle source for the alkaline and tholeiitic rocks is asthenospheric metasomatized garnet peridotite containing some amphibole as the main hydrous phase. Trace element modelling indicates 2 to 3% partial melting for the alkaline rocks and 5 to 7% partial melting for the olivine tholeiites. Incompatible trace element abundances and ratios as well as Nd and Sr radiogenic isotope compositions lie between plume compositions and enriched mantle compositions and are similar to those measured in Ocean Island Basalts (OIB) and the Central European Volcanic Province elsewhere. The mafic olivine tholeiites have similar Ba/Nb, Ba/La and Nd–Sr isotope ratios to the alkaline rocks indicating derivation of both magma types from chemically comparable mantle sources. However, Zr/Nb ratios are slightly higher in olivine tholeiites than in basanites reflecting some fractionation of Zr relative to Nb during partial melting. Quartz tholeiites have higher Ba/Nb, Zr/Nb, La/Nb, but lower Ce/Pb ratios and lower Nd isotope compositions than the alkaline rocks which can be explained by interaction of the basaltic melt with lower (granulite facies) crustal material or partial melts thereof during stagnation within the lower crust. It appears most likely that upwelling of hot, asthenospheric material results in the generation of primitive alkaline rocks at the base of the lithosphere at depths of 75–90 km. Lithospheric extension together with minor plume activity and probably lower lithosphere erosion induced melting of shallower heterogenous upper mantle generating a spectrum of olivine tholeiitic melts. These olivine tholeiitic rocks evolved via crystal fractionation and probably limited contamination to quartz tholeiites.  相似文献   

6.
粤北小水矿床是下庄矿田典型的交点型铀矿床。通过对矿床内发育的花岗岩、辉绿岩及铀矿石采样分析.发现小水矿床矿石具有轻稀土富集的稀土元素特征和富集大离子亲石元素Rb、Th的微量元素特征。与辉绿岩的相应特征十分吻合,与花岗岩的相应特征差异很大,推测其成矿物质来源于深部地幔流体(富含U、F、CO2),且交点型矿石的形成很有可能伴有幔源成矿流体对与花岗岩有关的早期红化矿石的叠加改造作用。  相似文献   

7.
The Early Permian mafic-ultramafic concentrically zoned Gaositai intrusion at Chengde, on the northern margin of the North China Craton (NCC), is a cumulative complex emplaced along a giant fracture that penetrates deeply into the continental lithosphere. Melt inclusions are present in chromite crystals from the inner dunite and chromitite zones of the Gaositai complex. The melt inclusions have experienced post-trap crystallization and resulted in multiple mineral phases, including melilite, garnet, phlogopite, magnesite and apatite, which can indicate the liquidus minerals of the primitive magma. The characteristics of the melilite+melanite+clinopyxene assemblage indicate that the primary parental magma was highly undersaturated and derived from an alkali-rich mantle source. The crystallization of phlogopite, magnesite and apatite suggests a primary magma rich in K, H2O and CO2. When compared with experimental data, the primary magma of the Gaositai intrusion is concordant with a kamafugite magma originating from partial melting of enriched mantle with H2O and CO2 at pressures greater than 2.7 GPa. This magmatic process would have been related to extensional thinning of the continental lithosphere. The Gaositai primary magmas have high Nb/La ratios, which are similar to those of ocean island basalts, but different from arc-related magmas. This suggests that the northern margin of the NCC was not an active continental margin of the Paleo-Asian Ocean subduction zone during the Early Permian: an extensional tectonic setting during the emplacement of the Gaositai intrusion is more likely.  相似文献   

8.
Seismic anisotropy has been widely used to constrain deformation and mantle flow within the upper mantle of the Earth's interior, and is mainly affected by crystallographic preferred orientation(CPO)of anisotropic mineral in lithosphere. Anisotropy of peridotites caused by deformation is the main source of seismic anisotropy in the upper mantle. Olivine is the most abundant and easily deformed mineral to form CPO in peridotite, thus the CPO of olivine controls seismic anisotropy in the upper mantle. Based on simple shear experiments and studies of natural peridotites deformation, several CPO types of olivine have been identified, including A, B, C, D, E and AG-type. Studies on the deformation of olivine have shown that the CPO of olivine is mainly related to stress, water content, temperature, pressure, partial melting and melt/fluid percolation. Most of the seismic anisotropy has been explained by the A-type olivine CPO in the upper mantle, which is commonly found in upper-mantle peridotites and produced by the simple shear in dry conditions. Previous studies showed that anisotropy was attributed to the CPO of mica and amphibole in the middle-lower crust. The comparison between mantle anisotropy calculated from mineral CPO and regional anisotropy deduced from geophysical methods is therefore particularly useful for interpreting the deformation mechanisms and geodynamic processes which affect the upper mantle in different tectonic units such as subduction system, continental rift and continental collision zone in the world. The paper summarizes the characteristics of CPO and anisotropy of major anisotropic minerals in the upper mantle. Taking the lithosphere mantle xenoliths in the southeastern Tibetan plateau as an example, we perform detailed studies on the microstructures and seismic anisotropy to better understand the deformation mechanisms and upper mantle anisotropy in this region. Results show that the CPO of olivine in peridotite xenoliths in southeastern Tibetan plateau are A-type and AG-type. The mechanisms proposed for the formation of AG-type are different from that for the A-type. Therefore, the occurrence of AG-type olivine CPO pattern suggests that this CPO may record a change in deformation mechanism and tectonic environment of the lithosphere in southeastern Tibetan plateau. Provided that the strong SKS(shear wave splitting)observed in southeastern Tibetan plateau results from lithosphere mantle, the lithosphere mantle in this region is expected to be at least 130km thick and characterized by vertical foliation. Considering that the thickness of lithosphere in southeastern Tibetan plateau is much less than 130km and the lithosphere mantle cannot explain the anisotropy measured by SKS, other anisotropy sources should be considered, such as anisotropy in the asthenosphere and the oriented melt pockets(MPO)in the upper mantle. Therefore, detailed study of CPO of anisotropic mineral is essential for constraining geophysical measurements and analyzing the dynamic process of the lithosphere reasonably.  相似文献   

9.
Water plays a crucial role in the melting of Earth’s mantle. Mantle magmatisms mostly occur at plate boundaries (including subduction zones and mid-ocean ridges) and in some intraplate regions with thermal anomaly. At oceanic subduction zones, water released by the subducted slab may induce melting of the overlying mantle wedge or even the slab itself, giving rise to arc magmatism, or may evolve into a supercritical fluid. The physicochemical conditions for the formation of slab melt and supercritical fluid are still under debate. At mid-ocean ridges and intraplate hot zones, water and CO2 cause melting of the upwelling mantle to occur at greater depths and in greater extents. Low degree melting of the mantle may occur at boundaries between Earth’s internal spheres, including the lithosphere-asthenosphere boundary (LAB), the upper mantletransition zone boundary, and the transition zone-lower mantle boundary, usually attributed to contrasting water storage capacity across the boundary. The origin for the stimulating effect of water on melting lies in that water as an incompatible component has a strong tendency to be enriched in the melt (i.e., with a mineral-melt partition coefficient much smaller than unity), thereby lowering the Gibbs free energy of the melt. The partitioning of water between melt and mantle minerals such as olivine, pyroxenes and garnet has been investigated extensively, but the effects of hydration on the density and transport properties of silicate melts require further assessments by experimental and computational approaches.  相似文献   

10.
The study of glass inclusions inside mantle minerals provides direct information about the chemistry of naturally occurring mantle-derived melts and the fine-scale complexity of the melting process responsible for their genesis. Minerals in a spinel lherzolite nodule from Grande Comore island contain glass inclusions which, after homogenization by heating, exhibit a continuous suite of chemical compositions clearly distinct from that of the host basanitic lava. The compositions range from silicic, with nepheline–olivine normative, 64 wt% SiO2 and 11 wt% alkali oxides, to almost basaltic, with quartz normative, 50 wt% SiO2 and 1–2 wt% alkali oxides. Within a single mineral phase, olivine, the inferred primary melt composition varies from 54 to 64 wt% SiO2 for MgO content ranging from 8 to 0.8 wt%. An experimental study of the glass and fluid inclusions indicates that trapped melts represent liquids that are in equilibrium with their host phases at moderate temperature and pressure (T≈1230°C and P≈1.0 Gpa for melts trapped in olivine). Quantitative modelling of the compositional trends defined in the suite shows that all of the glasses are part of a cogenetic set of melts formed by fractional melting of spinel lherzolite, with F varying between 0.2 and 5%. The initial highly silicic, alkali-rich melts preserved in Mg-rich olivine become richer in FeO, MgO, CaO and Cr2O3 and poorer in SiO2, K2O, Na2O, Al2O3 and Cl with increasing melt fractions, evolving toward the basaltic melts found in clinopyroxene. These results confirm the connection between glass inclusions inside mantle minerals and partial mantle melts, and indicate that primary melts with SiO2 >60 wt%, alkali oxides >11%, FeO <1 wt% and MgO <1 wt% are generated during incipient melting of spinel peridotite. The composition of the primary melts is inferred to be dependent on pressure, and to reflect both the speciation of dissolved CO2 and the effect of alkali oxides on the silica activity coefficient in the melt. At pressures around 1 GPa, low-degree melts are characterized by alkali and silica-rich compositions, with a limited effect of dissolved CO2 and a decreased silica activity coefficient caused by the presence of alkali oxides, whereas at higher pressures alkali oxides form complexes with carbonates and, consequently, alkali-rich silica-poor melts will be generated.  相似文献   

11.
A surprisingly simple and precise major element mass balance is consistent with derivation of average upper mantle peridotite from a partially molten chondritic Earth by subtraction of perovskite and addition of olivine. Majorite involvement is precluded unless some as yet unidentified components play a role. Perovskite subtraction during a primordial melting event is expected to occur by crystal fractionation at depth, while olivine addition is accomplished by a combination of buoyancy mechanisms: crystal flotation from a deep layer of melt buried by its own compressibility to the base of the solidifying upper mantle and subsequent solid state convection of this buoyant magnesian olivine upward. These processes are consistent with known density relations of crystals and liquid at very high pressure. Mass balance predicts that the residual magma body at depth after supplying olivine by flotation upward can be komatiitic. Distribution of originally C1 chrondritic bulk Earth material a few 100 m.y. after primordial differentiation is solid peridotite upper mantle, perovskite lower mantle, and a komatiitic liquid sandwich horizon.  相似文献   

12.
The study of viscosity in sub-liquidus heterogeneous media, which includes kimberlite magma at the pressures and temperatures that prevail in the mantle, is an urgent task. We have conducted experiments in the serpentine–olivine, serpentine–CaCO3?olivine, and native kimberlite–olivine systems at a pressure of 4 GPa and temperatures of 1400?1600°С in a BARS high-pressure device using the technique of a falling Pt pellet. The samples were examined after experiments to find fine-grained chilled mass of crystals where the Pt pellet was observed at the time of chilling. The concentration of the solid phase was varied in the experiments between 10 and 50 wt %. We showed that when 50 wt % of olivine grains has been introduced, it was not possible to detect the motion of the Pt pellet, while when the concentration of olivine xenocrysts reached 10 wt %, the Pt pellet very rapidly descended to the bottom of the reaction volume. Viscosity was calculated using the Stokes method. We found that the viscosity of a homogeneous kimberlite melt at 4 GPa and 1600°С is below 2 Pa s, with the viscosity of a melt that contained up to 10 wt % of the solid phase being approximately constant. A kimberlite melt that contained 30 wt % of the solid phase had a viscosity on the order of 100 Pa s, while with 50 wt % of the solid phase the relative viscosity of an ultrabasic system increased to reach values over 1000 Pa s.  相似文献   

13.
Abstract Melting experiments have been carried out on an olivine andesite of Mt Yakushi-Yama from the Miocene Setouchi volcanic belt in northeastern Shikoku, Japan. This andesite has been characterized by a low ratio of FeO*/Mg° (= 0.78). Phase relations have been determined within the pressure range of 2.8 to 19.3 kbar at 1000-1300°C under anhydrous and water-saturated conditions. At pressures less than 8.8 kbar, olivine is a liquidus phase. Orthopyroxene appears on the liquidus at 9.3 kbar under the anhydrous conditions. The multiple saturation point rises up to 17.5 kbar for water-saturated experiments. The andesite melt coexists with olivine and orthopyroxene just below the liquidus at 8.8–9.3 kbar and 1230°C for dry conditions, and at 17.5 kbar and 1060°C under water-saturated conditions. These experimental results indicate that the Yakushi-Yama olivine andesite magma could coexist with a harzburgitic mantle at depths between about 30 and 60 km, and at temperatures between 1060 and 1230°C. Experimental data also suggest a possibility that a high magnesian andesite magma would be generated by a direct partial melting of the uppermost harzburgitic mantle under anhydrous conditions.  相似文献   

14.
Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are horizontal, result in apparent isotropy for vertically propagating SKS waves, but strong anisotropy for horizontally propagating surface waves.  相似文献   

15.
In the PREM seismic model, the boundary between the upper and the lower mantle is accepted at a depth of 670 km, where seismic velocities and density increase. However, until recently there was an obvious inconsistency in this model. The density increases abruptly, and the velocities, in addition to the jumps, have also the subsequent zones of increased gradient. The discontinuity between the upper and the lower mantle is related to the transition of olivine from the ringwoodite phase into the mixture of perovskite and magnesiowustite. However, in the pyrolyte model, the transition zone of the upper mantle consists not wholly of olivine, but partly of olivine (60%) and partly of garnet (40%). The latest data of the garnet measurement at high pressures show that it also experiences phase transition, being converted into magnesium perovskite with the impurity of calcium perovskite. In contrast to the sharp transition in olivine (within a depth interval of only 5 km), the transition in garnet is spread over the interval of depths of 660–710 km. In the widely used PREM and AK135 models, this additional transition corresponds to the zone of the increased gradient in seismic velocities, while in the density distribution it is included in the sharp transition of ringwoodite. Thus, the mineralogy data indicate the need for correction of the PREM and AK135 seismic models: the density jump at a depth of 660 km should be reduced by approximately a factor of two, and a subjacent layer with the increased density gradient should be added at the depth interval of 660–710 km. The phase transition in olivine hampers the mantle flows, although in garnet it accelerates them. Therefore, with an allowance for the smaller jump in density, the decelerating effect of the subducting plates, caused by the phase transition in olivine, decreases, and, furthermore, the effect of their acceleration, caused by the phase transition in garnet, is added. The decrease in the density jump by almost a factor of two will lead to essential changes in the results of the majority of recent works addressing the assessment of the deceleration of convection at the upper/lower mantle discontinuity on the basis of the PREM model.  相似文献   

16.
Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon.Here,we present new field data,petrography,and first comprehensible wholerock geochemistry data and discuss the protolith and tectonic significance of these serpentinites in the region.The studied rock samples are characterized by pseudomorphic textures,including mesh microstructure formed by serpentine intergrowths with cores of olivine,bastites after pyroxene.Antigorite constitutes almost the whole bulk of the rocks and is associated(to the less amount) with tremolite,talc,spinel,and magnetite.Whole-rock chemistry of the Eseka serpentinites led to the distinction of two types.Type 1 has high MgO( 40 wt%) content and high Mg#values(88.80) whereas Type 2 serpentinite samples display relatively low MgO concentration and Mg#values(40 and 82.88 wt%,respectively).Both types have low Al/Si and high Mg/Si ratios than the primitive mantle,reflecting a refractory abyssal mantle peridotite protolith.Partial melting modeling indicates that these rocks were derived from melting of spinel peridotite before serpentinization.Bulk rock high-Ti content is similar to the values of subducted serpentinites( 50 ppm).This similarity,associated with the high Cr contents,spinel-peridotite protolith compositions and Mg/Si and Al/Si ratios imply that the studied serpentinites were formed in a subductionrelated environment.The U-shaped chondrite normalizedREE patterns of serpentinized peridotites,coupled with similar enrichments in LREE and HFSE,suggest the refertilized nature due to melt/rock interaction prior to serpentinization.Based on the results,we suggest that the Eseka serpentinized peridotites are mantle residues that suffered a high degree of partial melting in a subductionrelated environment,especially in Supra Subduction Zone setting.These new findings suggest that the Nyong series in Cameroon represents an uncontested Paleoproterozoic suture zone between the Congo craton and the Sao Francisco craton in Brazil.  相似文献   

17.
Neon isotopic ratios measured in olivine and basaltic glass from Iceland are the most primitive observed so far in terrestrial mantle-derived samples. Ratios were measured in gas released from olivine and basaltic glass from a total of 10 samples from the Reykjanes Peninsula, Iceland, and one sample from central Iceland. The neon isotopic ratios include solar-like, mid-ocean ridge basalt (MORB)-like and atmospheric compositions. Neon isotopic ratios near the air–solar mixing line were obtained from the total gas released from glass separates from five samples. MORB-like neon isotopic compositions were measured in the total gas released from olivine and glass separates from four samples. Although there is clear evidence for a solar neon component in some of the Icelandic samples, there is no corresponding evidence for a solar helium ratio (320Ra>3He/4He>100Ra). Instead, 3He/4He ratios are mainly between 12±2(Ra) and 29±3(Ra), similar to the range observed in ocean island basalts, indicating that the He–Ne isotopic systematics are decoupled. The mantle source of Icelandic basalts is interpreted to be highly heterogeneous on a local scale to explain the range in observed helium and neon isotopic ratios. The identification of solar-like neon isotopic ratios in some Icelandic samples implies that solar neon trapped within the Earth has remained virtually unchanged over the past 4.5 Ga. Such preservation requires a source with a high [Nesolar]/[U+Th] ratio so that the concentration of solar neon overwhelms the nucleogenic 21Ne* produced from the decay of U and Th in the mantle over time. High [Nesolar]/[U+Th] ratios are unlikely to be preserved in the mantle if it has experienced substantial melting. An essentially undegassed primitive mantle component is postulated to be the host of the solar neon in the Icelandic plume source. Relatively small amounts of this primitive mantle component are likely to mix with more depleted and degassed mantle such that the primitive mantle composition is not evident in other isotopic systems (e.g. strontium and neodymium). The lower mantle plume source is inferred to be relatively heterogeneous owing to being more viscous and less well stirred than the upper mantle. This discovery of near-solar neon isotopic ratios suggests that relatively primitive mantle may be preserved in the Icelandic plume source.  相似文献   

18.
The electrical properties of rocks and minerals are controlled by thermodynamic parameters like pressure and temperature and by the chemistry of the medium in which the charge carriers move. Four different charge transport processes can be distinguished. Electrolytic conduction in fluid saturated porous rocks depends on petrophysical properties, such as porosity, permeability and connectivity of the pore system, and on chemical parameters of the pore fluid like ion species, its concentration in the pore fluid and temperature. Additionally, electrochemical interactions between water dipoles or ions and the negatively charged mineral surface must be considered. In special geological settings electronic conduction can increase rock conductivities by several orders of magnitude if the highly conducting phases (graphite or ores) form an interconnected network. Electronic and electrolytic conduction depend moderately on pressure and temperature changes, while semiconduction in mineral phases forming the Earth’s mantle strongly depends on temperature and responds less significantly to pressure changes. Olivine exhibits thermally induced semiconduction under upper mantle conditions; if pressure and temperature exceed ~ 14 GPa and 1400 °C, the phase transition olivine into spinel will further enhance the conductivity due to structural changes from orthorhombic into cubic symmetry. The thermodynamic parameters (temperature, pressure) and oxygen fugacity control the formation, number and mobility of charge carriers. The conductivity temperature relation follows an Arrhenius behaviour, while oxygen fugacity controls the oxidation state of iron and thus the number of electrons acting as additional charge carriers. In volcanic areas rock conductivities may be enhanced by the formation of partial melts under the restriction that the molten phase is interconnected. These four charge transport mechanisms must be considered for the interpretation of geophysical field and borehole data. Laboratory data provide a reproducible and reliable database of electrical properties of homogenous mineral phases and heterogenous rock samples. The outcome of geoelectric models can thus be enhanced significantly. This review focuses on a compilation of fairly new advances in experimental laboratory work together with their explanation.  相似文献   

19.
The troctolites and olivine‐gabbros from the Dive 6 K‐1147 represent the most primitive gabbroic rocks collected at the Godzilla Megamullion, a giant oceanic core complex formed at an extinct spreading segment of the Parece Vela back‐arc basin (Philippine Sea). Previous investigations have shown that these rocks have textural and major elements mineral compositions consistent with a formation through multistage interaction between mantle‐derived melts and a pre‐existing ultramafic matrix. New investigations on trace element mineral compositions basically agree with this hypothesis. Clinopyroxenes and plagioclase have incompatible element signatures similar to that of typical‐MORB. However, the clinopyroxenes show very high Cr contents (similar to those of mantle clinopyroxene) and rim having sharply higher Zr/REE ratios with respect to the core. These features are in contrast with an evolution constrained by fractional crystallization processes, and suggest that the clinopyroxene compositions are controlled by melt‐rock interaction processes. The plagioclase anorthite versus clinopyroxene Mg#[Mg/(Mg + FeTot)] correlation of the Dive 6 K‐1147 rocks shows a trend much steeper than those depicted by other oceanic gabbroic sections. Using a thermodynamic model, we show that this trend is reproducible by fractionation of melts assimilating 1 g of mantle peridotite per 1 °C of cooling. This model predicts the early crystallization of high Mg# clinopyroxene, consistent with our petrological observation. The melt‐peridotite interaction process produces Na‐rich melts causing the crystallization of plagioclase with low anorthite component, typically characterizing the evolved gabbros from Godzilla Megamullion.  相似文献   

20.
Exsolution of ilmenite and Cr-Ti magnetite from olivine of garnet-wehrlite   总被引:2,自引:0,他引:2  
Since coesite-bearing eclogite was found in the Dabie-Sulu area[1-3], the ultrahigh-pressure (UHP) me- tamorphic belt has become a hot topic studying by domestic and overseas scientists. The studying about the forming depth of UHP metamorphic rocks is ex- tremely important, because the peak-metamorphic depth of UHP metamorphic rocks exhumated back to the crust is the key to discuss the processes of magma formation, fluid activity and metamorphism at bottom of orogenic belt. The discovery o…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号