首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal remanent magnetization (TRM) and anhysteretic remanent magnetization (ARM) components were imposed on natural rock samples. The artificial laboratory components had different directions and the blocking temperature and/or coercivity spectra were overlapping. Two methods, principal component analysis (PCA) by Kirschvink and analytical modelling of demagnetization data (by Stupavsky and Symons, S&S) were used to resolve these components. The PCA technique calculated lines fitted to the demagnetization path with ASD = 10° (angular standard deviation), and the S&S method used four types of intensity decay curves for calculated components.

Both methods (PCA and S&S) resolved perfectly the one-component case. The two- or three-component case results strongly depended on spectra overlapping, and on the angles between component directions and magnetic minerals in samples. Principal component analysis gave more reliable results for separated spectra of TRM and thermally cleaned samples, whereas the S&S technique was more efficient for the case of strong spectra overlapping of ARM components and the alternative current field (AF) demagnetization method. Remarkable anisotropy of RM was observed which influences the results for the haematite-bearing samples.  相似文献   


2.
A method is presented which can successfully isolate components of remanent magnetization having intermediate relative stability in a single rock sample which contains any number of remanence components with overlapping coercivity or blocking temperature spectra. The approach consists of analysis of the path swept out by the vector destroyed during a detailed alternating field or thermal demagnetization run. The point of intersection determined for any two neighboring great circle segments identified in such a difference vector path defines the direction of such a component. Samples cored from a fragment of a Jurassic pillow basalt, shown to contain several components of magnetization, serve to illustrate the utility of the method for the case when the Zijderveld approach is unsuccessful.  相似文献   

3.
Abstract The < 6 Ma young Taitao ophiolite, exposed at the westernmost promontory of the Taitao Peninsula, is located approximately 40 km southeast of the Chile triple junction and consists of a complete sequence of oceanic lithosphere. Systematic sampling for paleomagnetic study was performed to understand the complex obduction processes of the ophiolite onto the forearc of the South American Plate. Two representative demagnetization paths of remanent magnetization vectors were observed. One is characterized by stable univectorial demagnetization paths and was observed in volcaniclastic rocks and dyke complexes. Orientations of their remanent magnetization vectors indicate various degrees of counterclockwise rotations. The other is characterized by multivectorial demagnetization paths and was observed in the plutonic units (gabbros and ultramafic rocks). From these, two distinct stable remanent magnetization vectors were isolated; one has high coercivity and the other has low coercivity along the demagnetization paths with little influence of viscous magnetizations. This suggests that the complex deformation history involved at least two rotational events. The clockwise rotation, inferred from high coercivity remanent magnetization vectors, was attributed to a ridge collision event and the counterclockwise rotation, inferred from the low coercivity remanent magnetization vectors, was attributed to an accommodation phase into the South American forearc during obduction and final emplacement of the ophiolite. Folds developed during this period. Paleomagnetic restorations of the internal structures of the plutonic units and dyke complexes suggest that they probably originated in a mid‐oceanic ridge environment near a transform fault. The counterclockwise rotation of the plutonic and dyke complex units during the obduction generated tectonic gaps between these and the basement. The volcaniclastic rocks must have been deposited at nearly their present location, filling the tectonic gaps, as less effect of tectonic rotation was identified on these rocks.  相似文献   

4.
Remanent coercivity spectra derived from IRM acquisition curves and thermal demagnetization of the IRM indicate that magnetite, haematite and minor amounts of goethite determine the magnetic properties of the Pliensbachian limestones at Bakonycsernye. These limestones have been sampled at approximately 7-cm intervals along a 10-m stratigraphic section which covers the whole Pliensbachian stage (Lower Jurassic) without any recognizable break in sedimentation. The primary natural remanent magnetization (NRM) is carried by detrital particles of magnetite and haematite, but it is seriously overprinted by a normal magnetization which originates from secondary haematite with a wide range of blocking temperatures. This haematite is believed to have formed diagenetically during one of the Mesozoic periods of normal polarity. However, the reversal pattern obtained after NRM thermal demagnetization at temperatures ≥450°C is thought to be characteristic of the Pliensbachian stage.  相似文献   

5.
强剩磁强退磁条件下的二维井中磁测反演   总被引:5,自引:4,他引:1       下载免费PDF全文
强剩磁、强退磁改变了总磁化强度的大小和方向,给磁测资料解释带来困难.为此,本文利用二维井中磁测数据反演磁化强度矢量的二维分布.首先利用井中磁测的磁异常模量反演磁化强度大小的分布.然后,在已知磁化强度大小分布的前提下,拟合磁场分量,反演磁化强度方向的分布.其中,磁化强度大小和方向均用共轭梯度法求解,并通过预优矩阵改善磁化强度大小的反演效果.理论模拟说明,该方法能准确获得磁化强度矢量分布.磁化强度矢量反演结果包括感磁、剩磁及退磁的影响,这为研究强剩磁、高磁化率矿床提供了一种有效方法.  相似文献   

6.
A single-heating procedure is presented which makes possible the determination of two partially independent values of paleofield intensity for a given sample, one serving as a check to the other. The approach combines data required for Shaw-type and “ARM-method” determinations and in so doing furnishes a value of the ratio of TRM to ARM acquisition efficiency (f′) corrected for any physicochemical alteration to the magnetic carriers which may have occurred during laboratory heating.

Applicability of the Shaw-method to Fe-bearing samples is favorably demonstrated through simulated paleointensity determinations conducted on synthetic samples containing multi-domain grains. Moreover, coercivity spectra corresponding to anhysteretic remanent magnetization (ARM) are found to be considerably more sensitive to thermally induced alteration when compared with those corresponding to thermoremanent magnetization (TRM).

The combined Shaw-ARM procedure was successfully applied to lunar basalt sample 10017,135 rendering a paleointensity of 0.82 ± 0.11 Oe. The Thellier-Thellier method, however, was not able to provide a meaningful determination on the neighboring chip (number 136). These apparently conflicting findings may be explained by one or more of the following possible interpretations: (1) multiple step-wise heatings cause considerably more damage to the carriers of remanence than does a single-heating procedure; (2) the rock possesses extreme variability in magnetic properties from one sub-sample to the other; (3) the natural remanent magnetization in this lunar basalt is not a simple TRM.  相似文献   


7.
Alternating field (a.f.) demagnetization has proved to be a very reliable technique for separating the magnetization components of rock samples. The method is subject to errors caused by either imperfection of the technique or by intrinsic properties of a rock. Recently, Stephenson [1,2] introduced the term gyroremanent magnetization (GRM) for a disturbing remanent magnetization that can be acquired by magnetic material during tumbling or stationary a.f. demagnetization. The implications for the routine a.f. demagnetization of anisotropic rock samples seemed to be very serious. Here, however, a method is presented on how to avoid the effect of GRM on results obtained from stationary a.f. demagnetization.  相似文献   

8.
Abstract Magnetic measurements were carried out to investigate rock magnetic properties and paleomagnetic directions of late and middle Miocene sediments recovered from the land side of the Japan Trench during the Ocean Drilling Program Leg 186. Because the low coercive component in natural remanent magnetization (NRM) normalized by anhysteretic remanent magnetization shows that the drilling‐induced magnetization is severe in the sections obtained by the advanced hydraulic piston coring method, careful analyses of demagnetization of NRM using the ‘demagnetization plane’ were carried out to decompose the direction and intensity. Magnetostratigraphic correlation down to the upper Miocene, supplemented by biostratigraphic data, revealed that the sedimentation rates are characterized by drastic changes, with the early Pliocene having the highest rate. This high sedimentation rate is related to the subsidence of the southern deep‐sea terrace of the Japan Trench.  相似文献   

9.
Summary High resolution isothermal remanent magnetisation (IRM) acquisition was performed on forty-one Chinese loess samples with the aim of investigating the effects of weathering on the remanence carrying mineralogy. Magnetic susceptibility was taken as a measure of the degree of weathering. This is a valid assumption based on previous studies which have demonstrated a close relationship between climate and magnetic susceptibility in the Chinese loess. Detailed analysis, based on fitting accumulative log-gaussian curves to IRM acquisition data, reveals up to four distinct coercivity components. The remanences of the two harder coercivity components are found to be almost independent of magnetic susceptibility. On the other hand, the remanences of the two softer coercivity components are found to be positively correlated with magnetic susceptibility. Most probably the two harder components are associated with detrital iron-oxides in the primary dustfall, whereas the softer components were created during pedogenesis.  相似文献   

10.
Measurement of the remanent magnetization of samples of Jurassic oceanic red sediments recovered in the western Atlantic on Leg 11, site 105 of the Deep Sea Drilling Project yields quite different results, depending on the demagnetization processes used. Both the Jurassic section and the Berriasian-Valanginian part of the Lower Cretaceous were measured, but with less satisfactory results for the Lower Cretaceous. The natural remanent magnetization of the Jurassic section is almost entirely normal, with 44.6° inclinations (standard deviation = 13.9°) and is not changed by 1000 Oe alternating field (AF) demagnetization. Thermal demagnetization to temperatures of 630°C brings the inclination and polarity sequence in line with that expected for Oxfordian through Tithonian time at this site. The average inclination after thermal demagnetization is 22.1°, standard deviation = 12.1°, and the polarity pattern is one of frequently alternating polarity, much more similar to published reversal patterns for this time than the all normal results of AF demagnetization. The polarity pattern is not identical to the published ones as a result of insufficiently detailed sampling. Thermomagnetic and X-ray analyses were ambiguous, but suggest the presence of titanomagnetite, hematite, and possibly titanomaghemite and pyrrhotite. The primary remanence is carried by hematite.  相似文献   

11.
We present results of paleomagnetic and sedimentological studies carried out on three cores Lmor1, Lmo98-1, Lmor98-2 from bottom sediments of Lake Moreno (south-western Argentina), and integrate them with data from our previous studies. Measurements of directions (declination D and inclination I) and mass specific intensity of natural remanent magnetization (NRM intensity), magnetic susceptibility (specific, χ and volumetric, κ), isothermal remanent magnetization (IRM), saturation of isothermal remanent magnetization (SIRM), and back field remanent coercivity (B0CR) were performed. The stability of the NRM was investigated using alternating-field demagnetization. The results show that these sediments meet the criteria required to construct a reliable paleomagnetic record. The cores were correlated very well based on magnetic parameters, such as χ and NRM intensity, as well as with lithological features. Tephra layers were identified from the lithological profiles and magnetic susceptibility logs. We obtained the D and I logs of the characteristic remanent magnetization for the cores as a function of shortened depth. The data from the three cores were combined to form a composite record using the Fisher method. A comparison between stacked inclination and declination records of Lake Moreno and those obtained in previous works on Lake Escondido and Lake El Trébol shows good agreement. This agreement made it possible to transform the stacked curves into time series spanning the interval 12–20 kyr. The results obtained improved our knowledge of SV and the behaviour of the geomagnetic field and also allowed us to determine the range of past inclination variations from −70° to −45° for the southern hemisphere, where data are scarce.  相似文献   

12.
Deposition experiments have been carried out to measure the effect of particle size variation on the relationship between detrital remanent magnetization (DRM), anhysteretic remanent magnetization (ARM), and geomagnetic field intensity in sediments.Foraminiferal ooze from a box core taken in the Columbian Basin south of Jamaica was separated into several particle size ranges and redeposited in the laboratory in known magnetic fields. The intensity and alternating field (AF) demagnetization characteristics of the DRM and a subsequently applied ARM were compared for the various particle size ranges.The results show a variation of DRM/ARM ratios with particle size. The DRM intensities and directions indicate that particle sizes greater than 38 μm do not contribute significantly to the DRM of the total sediment. ARM intensities for larger particle sizes and particle size analysis of the whole sediment indicate that the fraction greater than 38 μm does make a significant contribution to the total ARM of a sample. Use of the DRM/ARM ratio in experimental measurements of magnetic paleointensity indicates that the method is unsatisfactory for sediments having a significant fraction of magnetic particles larger than 38 μm. It is also shown that, for sediments having a significant fraction of high-coercivity magnetic grains, the relative orientation of the ARM and DRM will affect ARM intensities, making necessary the use of corrected ARM and DRM intensities for ratio calculations.  相似文献   

13.
The behaviour of some magnetic properties of natural and synthetic haematite of different grain size is examined. The natural haematite was obtained from the hydrothermal deposit Kada (Czech and Slovak Federal Rep.). Six grain-size fractions ranging from 120 to 40 μm were prepared by means of sieving and two further fractions down to 5 μm by wet ultrasonic sieving. Since the behaviour of the fractions is similar, that of only four representative samples is reported. In addition, the behaviour of one submicron synthetic haematite fraction (0.5 μm) prepared by oxidation of ferrous sulphate (uniform in size and shape) was investigated.

The initial remanence value (Jr) seems to increase with decreasing grain size. During alternating field (AF) demagnetization, all fractions behaved similarly, except for the submicron fraction which is considerably softer than the others. Normalized (isothermal remanent magnetization) IRM acquisition curves were similar for all fractions.

Parameters of the anisotropy of magnetic susceptibility (AMS) display significant changes, mainly during IRM acquisition. During AF demagnetization, the anisotropy degree P exhibits a slight increase (some %), while the behaviour of the shape factor T is complicated. The anisotropy ellipsoid exhibits a tendency to rotate. Significant changes in the AMS parameters occur during IRM acquisition. Curves of P and T vs. IRM acquisition field, for various grain-size fractions, show no coherent pattern. For all the samples studied, the T vs. H curve exhibits a threshold value at which change in the type of arrangement of easy axis of magnetization occurs. For the IRM acquisition fields higher than some 320 kA m−1, the minimum susceptibility axis parallels the direction of the IRM acquisition field.

Hysteresis curves of the fractions are similar to each other. The Preisach distribution function was determined and it indicates that the reversible part of the magnetization process plays an important role comparatively. Based on the coercivity data presented no unambiguous conclusion could be drawn from the single-domain (SD)-multidomain (MD) transition, associated with a coercivity maximum.  相似文献   


14.
A combined study of magnetic parameters of basalt and andesite samples is performed in the framework of geological investigations of the Franz Josef Land at the paleomagnetic laboratory of Munich University. The study included the determination of the coercivity, saturation magnetization, Curie points, natural remanent magnetization (NRM), and magnetic susceptibility and the examination of ferromagnetic minerals with a microscope. Data on the chemical composition of rocks are obtained for all samples, and radiological ages are determined for the majority of rocks.Thermomagnetic curves of samples are subdivided into four types depending on the composition of ferromagnetic NRM carriers.The data obtained point to multiple changes in the predominant composition of igneous rocks. Each stage of magmatism is characterized by a specific type of the ferromagnetic component in the rocks and, therefore, magnetomineralogical investigations can be used for differentiation and correlation of the igneous rocks.  相似文献   

15.
Relative directions of magnetization have been measured within individual pillow basalts collected from the Atlantic Ocean and Caribbean Sea. The angle between the magnetic directions was determined and is referred to as the directional difference. Although one pillow contained a directional difference of 44°, the remaining ten pillows had differences less than 14°. The maximum orientation and measurement error was 7°. Dispersion on the scale found in these fine-grained pillow basalts would not appreciably affect the magnetic anomaly pattern on the sea floor. We detected no reversals of magnetization despite the sometimes large and variable low-temperature oxidation. Comparison of directions within homogeneous segments of the pillow, viscous remanent magnetization (VRM) acquisition experiments, and alternating field (AF) demagnetization indicate a large portion of the dispersion was due to the acquisition of a viscous component in the larger grained, less oxidized portion of the pillows. Evidence from one variably weathered pillow suggests that extreme low-temperature oxidation may lead to the acquisition of a secondary component with high coercivities (20–80 mT). We could not determine whether this was a chemical remanent magnetization (CRM) or a VRM acquired by single domain grains near the superparamagnetic threshold. Hysteresis properties confirmed by microscopic examination indicated that the magnetic grain size in all the pillows was at least as small as pseudo-single domain.  相似文献   

16.
A comprehensive rock magnetic, magnetic anisotropy and paleomagnetic study has been undertaken in the brecciated LL6 Bensour ordinary chondrite, a few months only after its fall on Earth. Microscopic observations and electronic microprobe analyses indicate the presence of Ni-rich taenite, tetrataenite and rare Co-rich kamacite. Tetrataenite is the main carrier of remanence. Magnetization and anisotropy measurements were performed on mutually oriented 125 mm3 sub-samples. A very strong coherent susceptibility and remanence anisotropy is evidenced and interpreted as due to the large impact responsible for the post-metamorphic compaction of this brecciated material and disruption of the parent body. We show that the acquisition of remanent magnetization postdates metamorphism on the parent body and predates the entering of the meteorite in Earth’s atmosphere. Three components of magnetization could be isolated. A soft coherent component is closely related to the anisotropy of the meteorite and is interpreted as a shock remanent magnetization acquired during the same large impact on the parent body. Two harder components show random directions at a few mm scale. This randomness is attributed either to the formation mechanism of tetrataenite or to post-metamorphic brecciation. All components are likely acquired in very low (≈μT) to null ambient magnetic field, as demonstrated by comparison with demagnetization behavior of isothermal remanent magnetization. Two other LL6 meteorites, Kilabo and St-Mesmin, have also been studied for comparison with Bensour.  相似文献   

17.
本文对"鲁科一井"(CCSD-LK-Ⅰ)768.9~1112.3m之间的上白垩统沉积岩样品进行了岩石磁学、磁化率各向异性(AMS)以及天然剩磁组分的研究.在此基础上,分析了利用特征剩磁(ChRM)和黏滞剩磁(VRM)方向恢复岩芯原始方位的可行性.三轴等温剩磁热退磁曲线、磁滞回线、反向场退磁曲线、一阶反转曲线等岩石磁学测量结果表明,沉积岩的主要载磁矿物为磁铁矿和赤铁矿.335块样品的AMS测量结果表明磁化率椭球主轴的最大轴K1和中间轴K2与水平面夹角较小,最小轴K3接近垂直于水平面分布,说明沉积岩保留了原始沉积磁组构特征.系统热退磁实验表明,多数样品在25~350℃和500~690℃温度段分别获得VRM和ChRM分量.利用ChRM偏角方向,并考虑构造旋转量校正,对VRM偏角方向进行恢复,Fisher统计得到DVRM=-1.3°,IVRM=59.6°,与当地现代地磁场方向(D=-6.7°,I=53.9°)基本一致.用ChRM偏角方向对磁化率主轴K1偏角方向进行校正,校正的结果为:D_(ch_K1)=349.2°,I_(ch_K1)=-0.7°.本文研究结果对于地质勘探中利用古地磁学方法恢复钻孔岩芯原始方位具有一定参考意义.  相似文献   

18.
Abstract Several linear magnetic anomalies over continental crust have been identified in and around the Japanese Islands. The anomalies are probably related to island arc tectonic structures, but identifying specific sources has been difficult. Several deep holes were drilled in and around Aso caldera, where a linear anomaly occurs along an active fault. One drillhole located on the linear anomaly encountered a zone of highly magnetized and altered basement rocks at least 100 m thick at a depth of ∼1000 m. The other hole was located away from the anomaly and did not encounter any high-magnetic zones. Rocks from the zone have exceptionally strong remanent magnetization (several tens of A/m) sub-parallel to the present field. AF demagnetization experiments indicated that the magnetization is hard and stable. Magnetic modeling indicates that the linear anomaly is caused mainly by this layer. Microscopic examination of core samples shows that the highly magnetized zone includes secondary magnetic minerals and abundant hydrothermal alterations. Temperatures determined by fluid inclusions and down-hole temperatures show that the temperature of the highly magnetized zone was elevated in the past relative to surrounding rocks. The high temperature could destroy primary magnetic minerals and replace them with secondary magnetic minerals. Thus, the past hydrothermal system may have enhanced thermo-chemical remanent magnetization. The results can produce a model indicating that there was a past hydrothermal system related to the tectonic structure.  相似文献   

19.
Summary With the decreasing magnitude of the initial remanent condition of rocks, their pressure demagnetization gradually changes to pressure remanent magnetic polarization under elastic deformation. In both cases the physical cause of these changes are the irreversible changes of the domain structure of ferrimagnetic minerals. Under directional pressure the natural remanent magnetic polarization is affected namely by the generation of a relatively little stable pressure remanent magnetic polarization. With regard to paleomagnetic research, the essential thing is that secondary magnetization combined with possible elastic deformations of rocks in the Earth's crust can be eliminated relatively easily by magnetic cleaning.  相似文献   

20.
This paper reports the alternating field demagnetization characteristics of glass–ceramic magnetite assemblages carrying weak-field thermoremanent magnetization (TRM), weak-field anhysteretic remanent magnetization (ARM), and saturation remanence (Jrs). Average grain sizes vary from less than 0.1 μm to approximately 100 μm, and hysteresis parameters indicate that these assemblages encompass single-domain (SD) through truly multidomain (MD) behavior. In all assemblages, weak-field TRM and weak-field ARM are more stable to alternating field demagnetization than is (Jrs). This response is especially remarkable in the 100 μm assemblage, which otherwise displays truly MD behavior. Although the SD samples pass the Lowrie–Fuller test for SD behavior, calculations presented here show that populations of noninteracting, uniaxial SD grains should behave in just the opposite sense to that reported originally by Lowrie and Fuller. This discrepancy could indicate that SD, glass–ceramic magnetite populations are more affected by magnetic interactions than would be expected for magnetite crystals that nucleated individually from a silicate matrix. This interpretation is supported by the SD assemblages failing the ‘Cisowski' test: that is, the curves for acquisition and AF demagnetization of (Jrs) intersect well below the 50% mark. However, a second and intriguing explanation of the SD-like results obtained from all samples is that alternating field demagnetization characteristics reflect a strong dependence of local energy minimum domain state, and its associated stability, on the state of magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号