首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We continue the study of the properties of non-radial pulsations of strange dwarfs. These stars are essentially white dwarfs with a strange quark matter (SQM) core. We have previously shown that the spectrum of oscillations should be formed by several, well-detached clusters of modes inside which the modes are almost evenly spaced. Here, we study the relation between the characteristics of these clusters and the size of the SQM core. We do so assuming that, for a given cluster, the kinetic energy of the modes is constant. For a constant amplitude of the oscillation at the stellar surface, we find that the kinetic energy of the modes is very similar for the cases of models with Log Q SQM=−2, −3 and −4, while it is somewhat lower for  Log Q SQM=−5  (here   Q SQM≡ M SQM/ M ; M SQM  and M are the masses of the SQM core and the star, respectively). Remarkably, the shape (amplitude of the modes versus period of oscillation) of the clusters of periods is very similar. However, the number of modes inside each cluster is strongly (and non-monotonously) dependent upon the size of the SQM core.
The characteristics of the spectrum of oscillations of strange dwarf stars are very different from the ones corresponding to normal white dwarfs and should be, in principle, observable. Consequently, the stars usually considered as white dwarfs may indeed provide an interesting and affordable way to detect SQM in an astrophysical environment.  相似文献   

2.
In this work, we first obtain the hydrostatic equilibrium equation in dilaton gravity. Then, we examine some of the structural characteristics of a strange quark star in dilaton gravity in the context of Einstein gravity. We show that the variations of dilaton parameter do not affect the maximum mass, but variations in the cosmological constant lead to changes in the structural characteristics of the quark star. We investigate the stability of strange quark stars by applying the MIT bag model with dilaton gravity. We also provide limiting values for the dilaton field parameter and cosmological constant. We also study the effects of dilaton gravity on the other properties of a quark star such as the mean density and gravitational redshift.We conclude that the last reported value for the cosmological constant does not affect the maximum mass of a strange quark star.  相似文献   

3.
The stability of strange quark matter in the presence of a strong magnetic field is investigated using a dynamical, density dependent, quark mass approach to confinement. Changes in both the single particle and bulk energies of a system which are due to the strong magnetic field are also calculated. It is shown that the presence of a magnetic field makes strange quark matter energetically more stable.  相似文献   

4.
In this paper, we have studied the magnetized quark matter (QM) and strange quark matter (SQM) distributions in the presence of \(f(R,T)\) gravity in the background of Friedmann-Lemaître-Robertson-Walker (FLRW) metric. To get exact solutions of modified field equations we have used \(f(R,T ) = R + 2 f(T)\) model given by Harko et al. with two different parametrization of geometrical parameters i.e. the parametrization of the deceleration parameter \(q \), and the scale factor \(a \) in hybrid expansion form. Also, we have obtained Einstein Static Universe (ESU) solutions for QM and SQM distributions in \(f(R,T)\) gravity and General Relativity (GR). All models in \(f(R,T)\) gravity and GR for FRW and ESU Universes with QM also SQM distributions, we get zero magnetic field. These results agree with the solutions of Akta? and Aygün in \(f(R,T)\) gravity. However, we have also discussed the physical consequences of our obtained models.  相似文献   

5.
6.
We study quarkand strangequarkmatter in the contextof generalrelativity.For this purpose,we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times,thus we are able to obtain the space-time geometries of quark and strange quark matter. Also,we discuss the features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory,i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).  相似文献   

7.
The fact that a fermion system in an external magnetic field breaks the spherical symmetry suggests that its intrinsic geometry is axisymmetric rather than spherical. In this work we analyze the impact of anisotropic pressures, due to the presence of a magnetic field, in the structure equations of a magnetized quark star.We assume a cylindrical metric and an anisotropic energy momentum tensor for the source. We found that there is a maximum magnetic field that a strange star can sustain, closely related to the violation of the virial relations.  相似文献   

8.
研究了磁场对奇异星模型中夸克直接Urca过程的中微子能量损失率的影响,首先改进了弱场条件下的近似计算方法,这一方法可以推广到其他弱作用过程.在甚强磁场下,严格地计算Urca过程的中微子能量损失率,结果显示辐射率强烈地依赖于磁场,与磁场的二次方成正比,更重要的是对温度的依赖关系不同于弱场及没有磁场时的情形.  相似文献   

9.
The single glitch observed in PSR B1821−24, a millisecond pulsar in M28, is unusual on two counts. First, the magnitude of this glitch is at least an order of magnitude smaller  (Δν/ν∼ 10−11)  than the smallest glitch observed to date. Secondly, all other glitching pulsars have strong magnetic fields with   B ≳ 1011 G  and are young, whereas PSR B1821−24 is an old recycled pulsar with a field strength of  2.25 × 109 G  . We have earlier suggested that some of the recycled pulsars could actually be strange quark stars. In this work, we argue that the crustal properties of such a strange pulsar are just right to give rise to a glitch of this magnitude, explaining the scarcity of larger glitches in millisecond pulsars.  相似文献   

10.
Taking into account the peculiar properties of hybrid stars, stars containing both a core of strange quark matter and the solid crust of a neutron star, and employing a fully self-consistent second-order correction technique, we study the time scale of bulk viscosity dissipation at the low temperature limit (T < 109 K) and with this time scale we calculate the critical spin frequency of the hybrid star. It is found that its minimal value is 704.42 Hz (corresponding to a pulse period of 1.42 ms). When this is compared with the periods of neutron and strange stars, a better interpretation of the observational data is obtained.  相似文献   

11.
在模拟超新星演化时,考虑非奇异一奇异夸克相变因素,与没有考虑奇异相变的情况相比,得到了更强的激波.这可能是奇异相变增加了星核区对流不稳定性所致在本文的计算环境里,一阶奇异夸克相变的结果使具有128MO铁星核的WW(88)模型爆发,打破了瞬发机制只能使约1.1MO铁星核模型爆发的上限,并支持了戴子高等人所作出的奇异夸克相变能提高超新星爆发机会的论断.  相似文献   

12.
Barry LaBonte 《Solar physics》2004,221(2):191-207
The scattering of light over the field of view of a solar spectropolarimeter affects all Stokes parameters. The magnetic field vector inferred from the Stokes spectra then has systematic error. The reason is that scattering affects polarized radiation as well as unpolarized. Accurate correction of the Stokes spectra from the Imaging Vector Magnetograph (IVM) of the Mees Solar Observatory illustrates the problem and the solutions.  相似文献   

13.
Observations of the submillimeter polarized dust emission is an important tool to study the role of the magnetic fields in the evolutions of molecular clouds and in the star formation processes. The Submillimeter Array (SMA) is the first imaging submillimeter interferometer. The installation of quarter wave plates in front of the 345 GHz receivers has allowed to carry out polarimetric observations. We present high angular resolution 345 GHz SMA observations of polarized dust emission towards the low-mass protostellar system NGC 1333 IRAS 4A. We show that in this system the observed magnetic field morphology is in agreement with the standard theoretical models of formation of low-mass stars in magnetized molecular clouds at scales of a few hundred AU; gravity has overcome magnetic support and the magnetic field traces a clear hourglass shape. The magnetic field is substantially more important than turbulence in the evolution of the system and the initial misalignment of the magnetic and spin axes may have been important in the formation of the binary system.  相似文献   

14.
We have found that the introduction of strange quark phase transition in the simulation of the evolution of supernovae results in a stronger shock wave. This is probably due to an increased convective instability in the core. For our range of calculation we found that a first-order strange phase transition can induce explosion in a WW(88) model with a 1.28 M iron core (the upper bound for prompt explosion was about 1.1 M). Our result supports DAI Zi-gao et al.'s thesis that strange quark phase transition can raise the probability of supernova explosion.  相似文献   

15.
Using a realistic equation of state(EOS) of strange quark matter, namely,the modified bag model, and considering the constraints on the parameters of EOS by the observational mass limit of neutron stars, we investigate the r-mode instability window of strange stars, and find the same result as in the brief study of Haskell,Degenaar and Ho in 2012 that these instability windows are not consistent with the spin frequency and temperature observations of neutron stars in low mass X-ray binaries.  相似文献   

16.
From recent reports on terrestrial heavy ion collision experiments it appears that one may not obtain information about the existence of asymptotic freedom (AF) and chiral symmetry restoration (CSR) for quarks of QCD at high density. This information may still be obtained from compact stars – if they are made up of strange quark matter (SQM).
Very high gravitational redshift lines (GRL), seen from some compact stars, seem to suggest high ratios of mass and radius ( M / R ) for them. This is suggestive of strange stars (SS) and can in fact be fitted very well with SQM equation of state (EOS) deduced with built in AF and CSR. In some other stars broad absorption bands (BAB) appear at about  ∼0.3 keV  and multiples thereof, that may fit in very well with resonance with harmonic compressional breathing mode frequencies of these SS. Emission at these frequencies are also observed in six stars.
If these two features of large GRL and BAB were observed together in a single star, it would strengthen the possibility for the existence of SS in nature and would vindicate the current dogma of AF and CSR that we believe in QCD. Recently, in 4U  1700 − 24  , both features appear to be detected, which may well be interpreted as observation of SS – although the group that analyzed the data did not observe this possibility. We predict that if the shifted lines, that has been observed, are from neon with GRL shift   z = 0.4  – then the compact object emitting it is a SS of mass 1.2   M  and radius 7 km. In addition the fit to the spectrum leaves a residual with broad dips at 0.35 keV and multiples thereof, as in 1E  1207 − 5209  which is again suggestive of SS.  相似文献   

17.
Lesovoi  S.V.  Kardapolova  N.N. 《Solar physics》2003,216(1-2):225-238
An analysis of solar radio bursts with temporal fine structure (TFS) at 5730 MHz in relation to the magnetic configuration of the corresponding active regions (AR) is presented. We found that the occurrence of TFS bursts increases with increasing complexity of the AR's magnetic configuration. The degree of polarization of TFS bursts varies over a wide range. Most of these fast bursts with a high degree of polarization were observed in active regions with a simple magnetic configuration β. Most of the unpolarized fast bursts were observed in active regions with the most complicated configuration βγδ. Because bursts that are polarized in different modes have different displacements of position with respect to that of associated microwave bursts, we conclude that there are at least two types of TFS bursts at 5730 MHz. We think that fast bursts that are polarized in the ordinary mode are due to microwave type III bursts.  相似文献   

18.
考虑到混杂星既具有奇异夸克物质核,又具有中子星固体壳层的特殊结构,运用完全自洽的二级修正方法,研究了在低温极限下(T<109K)混杂星的体粘滞耗散时标,并利用该时标计算了混杂星的临界旋转频率,发现其最小值为704.42 Hz(对应1.42 ms脉冲周期).与中子星和奇异星比较,更好地解释了观测数据.  相似文献   

19.
The behaviour of the magnetic field of a neutron star with a superconducting quark matter core is investigated in the framework of the Ginzburg-Landau theory. We take into account the simultaneous coupling of the diquark condensate field to the usual magnetic and to the gluomagnetic gauge fields. We solve the Ginzburg-Landau equations by properly taking into account the boundary conditions, in particular, the gluon confinement condition. We found the distribution of the magnetic field in both the quark and hadronic phases of the neutron star and show that the magnetic field penetrates into the quark core in the form of quark vortices due to the presence of Meissner currents.  相似文献   

20.
Lee  Jeongwoo  White  Stephen M.  Kundu  M. R.  Mikić  Zoran  McClymont  A. N. 《Solar physics》1998,180(1-2):193-211
It is well recognized that the phenomenon of depolarization (the conversion of polarized radio emission into unpolarized emission) of microwaves over solar active regions can be used to infer the coronal electron density once the coronal magnetic field is known. In this paper we explore this technique using an active region for which we have excellent radio data showing depolarization at two frequencies, and for which we have an excellent magnetic field model which has been tested against observations. We show that this technique for obtaining coronal densities is very sensitive to a number of factors. When Cohen's (1960) theory where depolarization is due to magnetic field rotation alone is used, the result is particularly sensitive to the location of the surface on which the magnetic field is orthogonal to the line of sight. Depending on whether we take into account the presence of electric currents in the photosphere or not, their extrapolation into the corona can result in very different heights being deduced for the location of the depolarization strip, and this changes the density which is then deduced from the depolarization condition. Such extreme sensitivity to the magnetic field model requires that field extrapolations be able to accurately predict the polarity of magnetic fields up to coronal heights as high as 105 km in order to exploit depolarization as a density diagnostic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号