首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report results of an interdisciplinary project devoted to the 26 km‐diameter Ries crater and to the genesis of suevite. Recent laboratory analyses of “crater suevite” occurring within the central crater basin and of “outer suevite” on top of the continuous ejecta blanket, as well as data accumulated during the past 50 years, are interpreted within the boundary conditions imposed by a comprehensive new effort to model the crater formation and its ejecta deposits by computer code calculations (Artemieva et al. 2013). The properties of suevite are considered on all scales from megascopic to submicroscopic in the context of its geological setting. In a new approach, we reconstruct the minimum/maximum volumes of all allochthonous impact formations (108/116 km3), of suevite (14/22 km3), and the total volume of impact melt (4.9/8.0 km3) produced by the Ries impact event prior to erosion. These volumes are reasonably compatible with corresponding values obtained by numerical modeling. Taking all data on modal composition, texture, chemistry, and shock metamorphism of suevite, and the results of modeling into account, we arrive at a new empirical model implying five main consecutive phases of crater formation and ejecta emplacement. Numerical modeling indicates that only a very small fraction of suevite can be derived from the “primary ejecta plume,” which is possibly represented by the fine‐grained basal layer of outer suevite. The main mass of suevite was deposited from a “secondary plume” induced by an explosive reaction (“fuel‐coolant interaction”) of impact melt with water and volatile‐rich sedimentary rocks within a clast‐laden temporary melt pool. Both melt pool and plume appear to be heterogeneous in space and time. Outer suevite appears to be derived from an early formed, melt‐rich and clast‐poor plume region rich in strongly shocked components (melt ? clasts) and originating from an upper, more marginal zone of the melt pool. Crater suevite is obviously deposited from later formed, clast‐rich and melt‐poor plumes dominated by unshocked and weakly shocked clasts and derived from a deeper, central zone of the melt pool. Genetically, we distinguish between “primary suevite” which includes dike suevite, the lower sublayer of crater suevite, and possibly a basal layer of outer suevite, and “secondary suevite” represented by the massive upper sublayer of crater suevite and the main mass of outer suevite.  相似文献   

2.
Abstract— We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ?29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ?8120 km2 ejecta blanket. Because the pre‐impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre‐impact terrain) is ?380 km3 the volume of materials above the pre‐impact terrain is ?425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ?100 m of additional ejecta thickness being deposited down‐range compared to the up‐range value at the same radial distance from the rim crest. Distal ramparts are 60 to 125 m high, comparable to the heights of ramparts measured at other multi‐layered ejecta craters. Tooting crater serves as a fresh end‐member for the large impact craters on Mars formed in volcanic materials, and as such may be useful for comparison to fresh craters in other target materials.  相似文献   

3.
Abstract— The global high‐resolution imaging of asteroid 433 Eros by the Near‐Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft has made it possible to develop the first comprehensive picture of the geology of a small S‐type asteroid. Eros displays a variety of surface features, and evidence of a substantial regolith. Large scale facets, grooves, and ridges indicate the presence of at least one global planar structure. Directional and superposition relations of smaller structural features suggest that fracturing has occurred throughout the object. As with other small objects, impact craters dominate the overall shape as well as the small‐scale topography of Eros. Depth/diameter ratios of craters on Eros average ~0.13, but the freshest craters approach lunar values of ~0.2. Ejecta block production from craters is highly variable; the majority of large blocks appear to have originated from one 7.6 km crater (Shoemaker). The interior morphology of craters does not reveal the influence of discrete mechanical boundaries at depth in the manner of craters formed on lunar mare regolith and on some parts of Phobos. This lack of mechanical boundaries, and the abundant evidence of regolith in nearly every high‐resolution image, suggests a gradation in the porosity and fracturing with depth. The density of small craters is deficient at sizes below ~200 m relative to predicted slopes of empirical saturation. This characteristic, which is also found on parts of Phobos and lunar highland areas, probably results from the efficient obliteration of small craters on a body with significant topographic slopes and a thick regolith. Eros displays a variety of regolith features, such as debris aprons, fine‐grained “ponded” deposits, talus cones, and bright and dark streamers on steep slopes indicative of efficient downslope movement of regolith. These processes serve to mix materials in the upper loose fragmental portion of the asteroid (regolith). In the instance of “ponded” materials and crater wall deposits, there is evidence of processes that segregate finer materials into discrete deposits. The NEAR observations have shown us that surface processes on small asteroids can be very complex and result in a wide variety of morphologic features and landforms that today seem exotic. Future missions to comets and asteroids will surely reveal still as yet unseen processes as well as give context to those discovered by the NEAR Shoemaker spacecraft.  相似文献   

4.
Abstract– The <1,100 yr old Whitecourt meteorite impact crater, located south of Whitecourt, Alberta, Canada, is a well‐preserved bowl‐shaped structure having a depth and diameter of approximately 6 and 36 m, respectively. There are fewer than a dozen known terrestrial sites of similar size and age. Unlike most of these sites, however, the Whitecourt crater contains nearly all of the features associated with small impact craters including meteorites, ejecta blanket, observable transient crater boundary, raised rim, and associated shock indicators. This study indicates that the crater formed from the impact of an approximately 1 m diameter type IIIAB iron meteoroid traveling east‐northeast at less than approximately 10 km s?1, striking the surface at an angle between 40° and 55° to horizontal. It appears that the main mass survived atmospheric transit relatively intact, with fragmentation and partial melting during impact. Most meteoritic material has a jagged, shrapnel‐like morphology and is distributed downrange of the crater.  相似文献   

5.
Abstract— We present numerical simulations of crater formation under Martian conditions with a single near‐surface icy layer to investigate changes in crater morphology between glacial and interglacial periods. The ice fraction, thickness, and depth to the icy layer are varied to understand the systematic effects on observable crater features. To accurately model impact cratering into ice, a new equation of state table and strength model parameters for H2O are fitted to laboratory data. The presence of an icy layer significantly modifies the cratering mechanics. Observable features demonstrated by the modeling include variations in crater morphometry (depth and rim height) and icy infill of the crater floor during the late stages of crater formation. In addition, an icy layer modifies the velocities, angles, and volumes of ejecta, leading to deviations of ejecta blanket thickness from the predicted power law. The dramatic changes in crater excavation are a result of both the shock impedance and the strength mismatch between layers of icy and rocky materials. Our simulations suggest that many of the unusual features of Martian craters may be explained by the presence of icy layers, including shallow craters with well‐preserved ejecta blankets, icy flow related features, some layered ejecta structures, and crater lakes. Therefore, the cratering record implies that near‐surface icy layers are widespread on Mars.  相似文献   

6.
Abstract— The Lockne impact event took place in a Middle Ordovician (455 Ma) epicontinental sea. The impact resulted in an at least 13.5 km wide, concentric crater in the sea floor. Lockne is one of very few locations where parts of an ejecta layer have been preserved outside the crater structure. The ejecta from the Lockne impact rests on progressively higher stratigraphic levels with increasing distance from the crater, hence forming a slightly inclined discontinuity surface in the pre‐impact strata. We report on a ~30 cm thick sandy layer at Hallen, 45 km south of the crater centre. This layer has a fining upward sequence in its lower part, followed by low‐angle cross‐laminations indicating two opposite current directions. It is rich in quartz grains with planar deformation features and contains numerous, up to 15 cm large, granite clasts from the crystalline basement at the Lockne impact site. The layer is within a sequence dated to the Baltoniodus gerdae conodont subzone. The dating is corroborated by chitinozoans indicating the latest Kukruse time below and the late Idavere above the impact layer. According to the chitinozoans biostratigraphy, some erosion may have occurred because of deposition of the impact layer. The Hallen outcrop, today 45 km from the centre of the Lockne crater, is at present the most distant accessible occurrence of ejecta from the Lockne impact. It is also the most distant location so far found where the resurge of water towards the crater has affected the bottom sediments. A greater crater diameter than hitherto assumed, thus representing greater impact energy, might explain the extent of the ejecta blanket. Fluidisation of ejecta, to be expected at a marine‐target impact, might furthermore have facilitated the wide distribution of ejecta.  相似文献   

7.
The Lonar impact crater, India, is one of the few known terrestrial impact craters excavated in continental basaltic target rocks (Deccan Traps, ~65 Ma). The impactites reported from the crater to date mainly include centimeter‐ to decimeter‐sized impact‐melt bombs, and aerodynamically shaped millimeter‐ and submillimeter‐sized impact spherules. They occur in situ within the ejecta around the crater rim and show schlieren structure. In contrast, non–in situ glassy objects, loosely strewn around the crater lake and in the ejecta around the crater rim do not show any schlieren structure. These non–in situ fragments appear to be similar to ancient bricks from the Daityasudan temple in the Lonar village. Synthesis of existing and new major and trace element data on the Lonar impact spherules show that (1) the target Lonar basalts incorporated into the spherules had undergone minimal preimpact alteration. Also, the paleosol layer as preserved between the top‐most target basalt flow and the ejecta blanket, even after the impact, was not a source component for the Lonar impactites, (2) the Archean basement below the Deccan traps were unlikely to have contributed material to the impactite parental melts, and (3) the impactor asteroid components (Cr, Co, Ni) were concentrated only within the submillimeter‐sized spherules. Two component mixing calculations using major oxides and Cr, Co, and Ni suggest that the Lonar impactor was a EH‐type chondrite with the submillimeter‐sized spherules containing ~6 wt% impactor components.  相似文献   

8.
Preliminary measurements of craters and boulders have been made in various locations on Eros from images acquired during the first nine months of NEAR Shoemaker's orbital mission, including the October 2000 low altitude flyover. (We offer some very preliminary, qualitative analysis of later LAF images and very high-resolution images obtained during NEAR's landing on 12 February 2001). Craters on Eros >100 m diameter closely resemble the saturated crater population of Ida; Eros is more heavily cratered than Gaspra but lacks the saturated giant craters of Mathilde. These craters and the other large-scale geological features were formed over a duration of very roughly 2 Gyr while Eros was in the main asteroid belt, between the time when its parent body was disrupted and Eros was injected into an Earth-approaching orbit (probably tens of Myr ago). Saturation equilibrium had been expected to shape Eros' crater population down to very small sizes, as on the lunar maria. However, craters <200 m diameter are instead progressively depleted toward smaller sizes and are a factor of ∼200 below empirical saturation at diameters of 4 m. Conversely, boulders and positive relief features (PRFs) rise rapidly in numbers (differential power-law index ∼−5) and those <10 m in size dominate the landscape at high resolutions. The pervasive boulders and minimal craters on Eros is radically different from the lunar surface at similar scales. This may be partly explained by a major depletion of meter-scale projectiles in the asteroid belt (due to the Yarkovsky Effect: Bell 2001), which thus form few small craters and destroy few boulders. Additionally, the small size and low gravity of Eros may result in redistribution or loss of ejecta due to seismic shaking, thus preferentially destroying small craters formed in such regolith. Possibly Eros has only a patchy, thin regolith of mobile fines; the smaller PRFs may then reflect exposures of fractured bedrock or piles of large ejecta blocks, which might further inhibit formation of craters <10 m in size. Eros may well have been largely detached dynamically and collisionally from the main asteroid belt for the past tens of Myr, in which case its cratering rate would have dropped by two orders of magnitude, perhaps enhancing the relative efficacy of other processes that would normally be negligible in competition with cratering. Such processes include thermal creep, electrostatic levitation and redistribution of fines, and space weathering (e.g., bombardment by micrometeorites and solar wind particles). Combined with other small-body responses to impact cratering (e.g., greater widespread distribution of bouldery ejecta), such processes may also help explain the unexpected small-scale character of geology on Eros. If there was a recent virtual hiatus in cratering of Eros (during which only craters <∼300 m diameter would be expected to have formed), space weathering may have reached maturity, thus explaining Eros' remarkable spectral homogeneity compared with Ida.  相似文献   

9.
Abstract— From April 24 to May 14, 2000, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker mission's near infrared spectrometer (NIS) obtained its highest resolution data of 433 Eros. High signal‐to‐noise ratio NIS reflectance spectra cover a wavelength range of 800–2400 nm, with footprint sizes from 213 times 427 m to 394 times 788 m. This paper describes improvement in instrument calibration by remediation of internally scattered light; derivation of a “pseudo channel” for NIS at 754 nm using Multispectral Imager (MSI) Eros approach maps at 951 and 754 nm; synthesis of a 3127‐spectrum high‐resolution data set with the improved calibration and expanded wavelength coverage; and investigation of global and localized spectral variation with respect to mineralogy, composition, and space weathering of Eros, comparing the findings with previous analyses. Scattered light removal reduces the “red” slope of Eros spectra, though not to the level seen by telescopic observations. The pseudo channel completes sampling of Eros' 1 micron (Band I) absorption feature, enabling direct comparison of NIS data with other asteroid and meteorite spectra without additional scaling or correction. Following scattered light removal and wavelength range extension, the spectral parameters of average Eros plot well inside the S(IV) field of Gaffey et al. (1993) and are consistent with the L6 chondrite meteorite fields of Gaffey and Gilbert (1998). Although Eros shows no evidence of mineralogical heterogeneity, modest spectral variations correlate with morphologically and geographically distinct areas of the asteroid. Eros bright‐to‐dark spectral ratios are largely consistent with laboratory “space weathering” experiment results and modeling of space weathering effects. Eros brightness variation unaccompanied by significant spectral variation departs from “lunar‐type”—where band depths, slopes, and albedoes all correlate—and “Ida‐type”—where significant spectral variation is unaccompanied by corresponding brightness variation. The brightest areas on Eros—steep crater walls—have lesser spectral slope and deeper Band I, consistent with exposure of “fresher,” less space weathered materials. Bright crater slope materials have opx/(opx + olv) of 0.24–0.29 and may be more representative of the subsurface mineralogy than “average” Eros, which is probably affected by space weathering. The floors of the large craters Psyche and Himeros have lower albedo and contain the most degraded or altered looking materials. NIS spectra retain a “red” spectral slope at greater than 2 microns. The recalibrated and expanded NIS spectra show better agreements with mixing models based on space weathering of chondritic mixtures.  相似文献   

10.
Abstract— We present combined multi‐spectral imager (MSI) (0.95 μm) and near‐infrared spectrometer (NIS) (0.8–2.4 μm) observations of Psyche crater on S‐type asteroid 433 Eros obtained by the Near‐Earth Asteroid Rendezvous (NEAR)—Shoemaker spacecraft. At 5.3 km in diameter, Psyche is one of the largest craters on Eros which exhibit distinctive brightness patterns consistent with downslope motion of dark regolith material overlying a substrate of brighter material. At spatial scales of 620 m/ spectrum, Psyche crater wall materials exhibit albedo contrasts of 32–40% at 0.946 μm. Associated spectral variations occur at a much lower level of 4–8% (±2–4%). We report results of scattering model and lunar analogy investigations into several possible causes for these albedo and spectral trends: grain size differences, olivine, pyroxene, and troilite variations, and optical surface maturation. We find that the albedo contrasts in Psyche crater are not consistent with a cause due solely to variations in grain size, olivine, pyroxene or lunar‐like optical maturation. A grain size change sufficient to explain the observed albedo contrasts would result in strong color variations that are not observed. Olivine and pyroxene variations would produce strong band‐correlated variations that are not observed. A simple lunar‐like optical maturation effect would produce strong reddening that is not observed. The contrasts and associated spectral variation trends are most consistent with a combination of enhanced troilite (a dark spectrally neutral component simulating optical effects of shock) and lunar‐like optical maturation. These results suggest that space weathering processes may affect the spectral properties of Eros materials, causing surface exposures to differ optically from subsurface bedrock. However, there are significant spectral differences between Eros' proposed analog meteorites (ordinary chondrites and/or primitive achondrites), and Eros' freshest exposures of subsurface bright materials. After accounting for all differences in the measurement units of our reflectance comparisons, we have found that the bright materials on Eros have reflectance values at 0.946 μm consistent with meteorites, but spectral continua that are much redder than meteorites from 1.5 to 2.4 μm. Most importantly, we calculate that average Eros surface materials are 30–40% darker than meteorites.  相似文献   

11.
Abstract— If impact stress reverberation is the primary gradational process on an asteroid at global scales, then the largest undegraded crater records an asteroid's seismological response. The critical crater diameter Dcrit is defined as the smallest crater whose formation disrupts all previous craters globally up to its size; it is solved for by combining relationships for crater growth and for stress attenuation. The computation for Dcrit gives a simple explanation for the curious observation that small asteroids have only modest undegraded craters, in comparison to their size, whereas large asteroids have giant undegraded craters. Dcrit can even exceed the asteroid diameter, in which case all craters are “local” and the asteroid becomes crowded with giant craters. Dcrit is the most recent crater to have formed on a blank slate; when it is equated to the measured diameter of the largest undegraded crater on known asteroids, peak particle velocities are found to attenuate with the 1.2–1.3 power of distance—less attenuative than strong shocks, and more characteristic of powerful seismic disturbances. This is to be expected, since global degradation can result from seismic (cm s?1) particle velocities on small asteroids. Attenuation, as modeled, appears to be higher on asteroids known to be porous, although these are also bodies for which different crater scaling rules might apply.  相似文献   

12.
We investigate the depth, variability, and history of regolith on asteroid Vesta using data from the Dawn spacecraft. High‐resolution (15–20 m pixel?1) Framing Camera images are used to assess the presence of morphologic indicators of a shallow regolith, including the presence of blocks in crater ejecta, spur‐and‐gully–type features in crater walls, and the retention of small (<300 m) impact craters. Such features reveal that the broad, regional heterogeneities observed on Vesta in terms of albedo and surface composition extend to the physical properties of the upper ~1 km of the surface. Regions of thin regolith are found within the Rheasilvia basin and at equatorial latitudes from ~0–90°E and ~260–360°E. Craters in these areas that appear to excavate material from beneath the regolith have more diogenitic (Rheasilvia, 0–90°E) and cumulate eucrite (260–360°E) compositions. A region of especially thick regolith, where depths generally exceed 1 km, is found from ~100–240°E and corresponds to heavily cratered, low‐albedo surface with a basaltic eucrite composition enriched in carbonaceous chondrite material. The presence of a thick regolith in this area supports the idea that this is an ancient terrain that has accumulated a larger component of exogenic debris. We find evidence for the gardening of crater ejecta toward more howarditic compositions, consistent with regolith mixing being the dominant form of “weathering” on Vesta.  相似文献   

13.
Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ∼800 km north-northwest of the Huygens landing site. The crater rim-crest diameter is ∼90 km; its floor diameter is ∼60 km. A central pit/peak, 20-30 km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15 km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21° and 122° east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk “bench.” Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk’s ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest.  相似文献   

14.
Abstract— We surveyed the impact crater populations of Venus and the Moon, dry targets with and without an atmosphere, to characterize how the 3‐dimensional shape of a crater and the appearance of the ejecta blanket varies with impact angle. An empirical estimate of the impact angle below which particular phenomena occur was inferred from the cumulative percentage of impact craters exhibiting different traits. The results of the surveys were mostly consistent with predictions from experimental work. Assuming a sin2θ dependence for the cumulative fraction of craters forming below angle θ, on the Moon, the following transitions occur: >?45 degrees, the ejecta blanket becomes asymmetric; >?25 degrees, a forbidden zone develops in the uprange portion of the ejecta blanket, and the crater rim is depressed in that direction; >?15 degrees, the rim becomes saddle‐shaped; >?10 degrees, the rim becomes elongated in the direction of impact and the ejecta forms a “butterfly” pattern. On Venus, the atmosphere causes asymmetries in the ejecta blanket to occur at higher impact angles. The transitions on Venus are: >?55 degrees, the ejecta becomes heavily concentrated downrange; >?40 degrees, a notch in the ejecta that extends to the rim appears, and as impact angle decreases, the notch develops into a larger forbidden zone; >?10 degrees, a fly‐wing pattern develops, where material is ejected in the crossrange direction but gets swept downrange. No relationship between location or shape of the central structure and impact angle was observed on either planet. No uprange steepening and no variation in internal slope or crater depth could be associated with impact angle on the Moon. For both planets, as the impact angle decreases from vertical, first the uprange and then the downrange rim decreases in elevation, while the remainder of the rim stays at a constant elevation. For craters on Venus >?15 km in diameter, a variety of crater shapes are observed because meteoroid fragment dispersal is a significant fraction of crater diameter. The longer path length for oblique impacts causes a correlation of clustered impact effects with oblique impact effects. One consequence of this correlation is a shallowing of the crater with decreasing impact angle for small craters.  相似文献   

15.
We present the results of numerical modeling of the formation of the Ries crater utilizing the two hydrocodes SOVA and iSALE. These standard models allow us to reproduce crater shape, size, and morphology, and composition and extension of the continuous ejecta blanket. Some of these results cannot, however, be readily reconciled with observations: the impact plume above the crater consists mainly of molten and vaporized sedimentary rocks, containing very little material in comparison with the ejecta curtain; at the end of the modification stage, the crater floor is covered by a thick layer of impact melt with a total volume of 6–11 km3; the thickness of true fallback material from the plume inside the crater does not exceed a couple of meters; ejecta from all stratigraphic units of the target are transported ballistically; no separation of sedimentary and crystalline rocks—as observed between suevites and Bunte Breccia at Ries—is noted. We also present numerical results quantifying the existing geological hypotheses of Ries ejecta emplacement from an impact plume, by melt flow, or by a pyroclastic density current. The results show that none of these mechanisms is consistent with physical constraints and/or observations. Finally, we suggest a new hypothesis of suevite formation and emplacement by postimpact interaction of hot impact melt with water or volatile‐rich sedimentary rocks.  相似文献   

16.
Cover     
Cover: Top left: Numerical model of an impact into a sandstone target. The simulation is an iSALE model that uses a material model developed and validated in MEMIN for wet and dry porous sandstones. In this simulation, 25% water saturation of the pore space is modeled. Top right: Plan view of an 18 cm diameter impact crater formed in sandstone by a 1 cm steel projectile at 3.4 km/s. (Experiment 3232) Bottom left: A high speed image of an impact of a 1.2 cm iron meteorite at 4.6 km/s into a 50% water‐saturated sandstone target (Experiment E3‐3384). The image (3.36 microseconds after impact) shows a well‐developed ejecta cone that has transitioned into the “ejecta tube,” a phenomenon that may be connected to pressure wave refl ections in the target. (High speed video courtesy of Fraunhofer EMI.) Bottom right: The experimental setup of a cratering experiment at Fraunhofer EMI’s “Space” light gas gun. The photo shows the target chamber after experiment A11‐5181. The back of a 20 cm sandstone cube that was saturated with water to 90% is visible. Three different types of ultrasound and pressure sensors are attached to the target’s surfaces that measured the pressure wave of the impact. In the background, an “ejecta catcher”, composed of Vaseline‐coated tiles and phenolic foam blocks, shows an imprint of the ejecta cone. (Photograph courtesy of Fraunhofer EMI.)  相似文献   

17.
Abstract— The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near‐surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3–50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5–2.0 times deeper (≥5s?o difference) with >50% larger cavities (≥2s?o) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ?6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45–70% of their transient cavity volumes, while highland craters preserve only 25–50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9–12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ?1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.  相似文献   

18.
Abstract— Crater‐ejecta correlation is an important element in the analysis of crater formation and its influence on the geological evolution. In this study, both the ejecta distribution and the internal crater development of the Jurassic/Cretaceous Mjølnir crater (40 km in diameter; located in the Barents Sea) are investigated through numerical simulations. The simulations show a highly asymmetrical ejecta distribution, and underscore the importance of a layer of surface water in ejecta distribution. As expected, the ejecta asymmetry increases as the angle of impact decreases. The simulation also displays an uneven aerial distribution of ejecta. The generation of the central high is a crucial part of crater formation. In this study, peak generation is shown to have a skewed development, from approximately 50–90 sec after impact, when the peak reaches its maximum height of 1‐1.5 km. During this stage, the peak crest is moved about 5 km from an uprange to a downrange position, ending with a final central position which has a symmetrical appearance that contrasts with its asymmetrical development.  相似文献   

19.
We find evidence, by both observation and analysis, that primary crater ejecta play an important role in the small crater (less than a few km) populations on the saturnian satellites, and more broadly, on cratered surfaces throughout the Solar System. We measure crater populations in Cassini images of Enceladus, Rhea, and Mimas, focusing on image data with scales less than 500 m/pixel. We use recent updates to crater scaling laws and their constants (Housen, K.R., Holsapple, K.A. [2011]. Icarus 211, 856–875) to estimate the amount of mass ejected in three different velocity ranges: (i) greater than escape velocity, (ii) less than escape velocity and faster than the minimum velocity required to make a secondary crater (vmin), and (iii) velocities less than vmin. Although the vast majority of mass on each satellite is ejected at speeds less than vmin, our calculations demonstrate that the differences in mass available in the other two categories should lead to observable differences in the small crater populations; the predictions are borne out by the measurements we have made to date. In particular, Rhea, Tethys, and Dione have sufficient surface gravities to retain ejecta moving fast enough to make secondary crater populations. The smaller satellites, such as Enceladus but especially Mimas, are expected to have little or no traditional secondary populations because their escape velocities are near the threshold velocity necessary to make a secondary crater. Our work clarifies why the Galilean satellites have extensive secondary crater populations relative to the saturnian satellites. The presence, extent, and sizes of sesquinary craters (craters formed by ejecta that escape into temporary orbits around Saturn before re-impacting the surface, see Dobrovolskis, A.R., Lissauer, J.J. [2004]. Icarus 169, 462–473; Alvarellos, J.L., Zahnle, K.J., Dobrovolskis, A.R., Hamill, P. [2005]. Icarus 178, 104–123; Zahnle, K., Alvarellos, J.L., Dobrovolskis, A.R., Hamill, P. [2008]. Icarus 194, 660–674) is not yet well understood. Finally, our work provides further evidence for a “shallow” size–frequency distribution (slope index of ~2 for a differential power-law) for comets a few kilometers diameter and smaller.  相似文献   

20.
D.G Korycansky  Erik Asphaug 《Icarus》2004,171(1):110-119
We have carried out a set of Monte Carlo simulations of the placement of impact ejecta on Asteroid 433 Eros, with the aim of understanding the distribution and accumulation of regolith. The simulations consisted of two stages: (1) random distribution of primary impact sites derived from a uniform isotropic flux of impactors, and (2) integration of the orbits of test particle ejecta launched from primary impact points until their re-impact or escape. We integrated the orbits of a large number of test particles (typically 106 per individual case). For those particles that did not escape we collected the location of their re-impact points to build up a distribution on the asteroid surface. We find that secondary impact density is mostly controlled by the overall topography of the asteroid. A gray-scale image of the density of secondary ejecta impact points looks, in general, like a reduced-scale negative of the topography of the asteroid's surface. In other words, regolith migration tends to fill in the topography of Eros over time, whereas topographic highs are denuded of free material. Thus, the irregular shape of Eros is not a steady-state configuration, but the result of larger stochastic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号