首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Abstract– Hibonite‐bearing Ca,Al‐rich inclusions (CAIs) usually occur in CM and CH chondrites and possess petrographic and isotopic characteristics distinctive from other typical CAIs. Despite their highly refractory nature, most hibonite‐bearing CAIs have little or no 26Mg excess (the decay product of 26Al), but do show wide variations of Ca and Ti isotopic anomalies. A few spinel‐hibonite spherules preserve evidence of live 26Al with an inferred 26Al/27Al close to the canonical value. The bimodal distribution of 26Al abundances in hibonite‐bearing CAIs has inspired several interpretations regarding the origin of short‐lived nuclides and the evolution of the solar nebula. Herein we show that hibonite‐bearing CAIs from Ningqiang, an ungrouped carbonaceous chondrite, also provide evidence for a bimodal distribution of 26Al. Two hibonite aggregates and two hibonite‐pyroxene spherules show no 26Mg excesses, corresponding to inferred 26Al/27Al < 8 × 10?6. Two hibonite‐melilite spherules are indistinguishable from each other in terms of chemistry and mineralogy but have different Mg isotopic compositions. Hibonite and melilite in one of them display positive 26Mg excesses (up to 25‰) that are correlated with Al/Mg with an inferred 26Al/27Al of (5.5 ± 0.6) × 10?5. The other one contains normal Mg isotopes with an inferred 26Al/27Al < 3.4 × 10?6. Hibonite in a hibonite‐spinel fragment displays large 26Mg excesses (up to 38‰) that correlate with Al/Mg, with an inferred 26Al/27Al of (4.5 ± 0.8) × 10?5. Prolonged formation duration and thermal alteration of hibonite‐bearing CAIs seem to be inconsistent with petrological and isotopic observations of Ningqiang. Our results support the theory of formation of 26Al‐free/poor hibonite‐bearing CAIs prior to the injection of 26Al into the solar nebula from a nearby stellar source.  相似文献   

2.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   

3.
Abstract– Mg isotope data were collected by NanoSIMS with high‐precision and high‐spatial resolution from a coarse‐grained type B Ca‐, Al‐rich inclusion (CAI), EK1‐6‐3, in the Allende CV3 chondrite to evaluate the time scale of parent body thermal metamorphism. The CAI melilite and fassaite contain excesses of 26Mg (26Mg*) from the in‐situ decay of 26Al; the inferred initial ratio, (26Al/27Al)0 = (5.8 ± 2.4) × 10?5, is consistent with many previously reported coarse‐grained CAIs from CV chondrites (e.g., MacPherson et al. 1995 ). However, the anorthite has heterogeneous (26Al/27Al)0, ranging from 1.8 × 10?5 to 3.3 × 10?6. The 26Al‐26Mg systematics within the anorthite is consistent with thermal diffusion of Mg isotopes during metamorphism. We also show that the heterogeneous distribution of 26Mg* in anorthite could have resulted from thermal diffusion of 26Mg* over a 0.6–0.8 Ma time span. Mg diffusion thus may be responsible for the (26Al/27Al)0 heterogeneity within anorthite in CAIs.  相似文献   

4.
Abstract— High‐precision Mg isotopic compositions of Ca‐Al‐rich inclusions (CAIs) from both Ningqiang (ungrouped) and Allende (CV3) carbonaceous chondrites and amoeboid olivine aggregations (AOAs) from Allende were analyzed by multicollector inductively coupled plasma mass spectrometry (MC‐ICP‐MS). The CAIs from Allende plot on a line, with an inferred initial 26Al/27Al ratio of (4.77 ± 0.39) × 10?5 close to the canonical value. This indicates a relatively closed Al‐Mg system in the CAIs and no significant Mg isotope exchange with ambient materials, although two of the CAIs are severely altered. The AOAs contain excess 26Mg and plot close to the CAI regression line, which is suggestive of their contemporary formation. The CAIs from Ningqiang define a different line with a lower inferred (26Al/27Al)0 ratio of (3.56 ± 0.08) × 10?5. None of the CAIs and AOAs studied in this work shows significant mass fractionation with enrichment of the heavier Mg isotopes, arguing against an evaporation origin.  相似文献   

5.
High‐precision bulk aluminum‐magnesium isotope measurements of calcium‐aluminum‐rich inclusions (CAIs) from CV carbonaceous chondrites in several laboratories define a bulk 26Al‐26Mg isochron with an inferred initial 26Al/27Al ratio of approximately 5.25 × 10?5, named the canonical ratio. Nonigneous CV CAIs yield well‐defined internal 26Al‐26Mg isochrons consistent with the canonical value. These observations indicate that the canonical 26Al/27Al ratio records initial Al/Mg fractionation by evaporation and condensation in the CV CAI‐forming region. The internal isochrons of igneous CV CAIs show a range of inferred initial 26Al/27Al ratios, (4.2–5.2) × 10?5, indicating that CAI melting continued for at least 0.2 Ma after formation of their precursors. A similar range of initial 26Al/27Al ratios is also obtained from the internal isochrons of many CAIs (igneous and nonigneous) in other groups of carbonaceous chondrites. Some CAIs and refractory grains (corundum and hibonite) from unmetamorphosed or weakly metamorphosed chondrites, including CVs, are significantly depleted in 26Al. At least some of these refractory objects may have formed prior to injection of 26Al into the protosolar molecular cloud and its subsequent homogenization in the protoplanetary disk. Bulk aluminum and magnesium‐isotope measurements of various types of chondrites plot along the bulk CV CAI isochron, suggesting homogeneous distribution of 26Al and magnesium isotopes in the protoplanetary disk after an epoch of CAI formation. The inferred initial 26Al/27Al ratios of chondrules indicate that most chondrules formed 1–3 Ma after CAIs with the canonical 26Al/27Al ratio.  相似文献   

6.
Abstract— Textures, mineral assemblages, and Al‐Mg isotope systematics indicate a protracted, episodic secondary mineralization history for Allende Ca‐Al‐rich inclusions (CAIs). Detailed observations from one type B1 CAI, one B2, one compact type A (CTA), and one fluffy type A (FTA) indicate that these diverse types of CAIs are characterized by two distinct textural and mineralogic types of secondary mineralization: (1) grossular‐rich domains, concentrated along melilite grain boundaries in CAI interiors, and (2) feldspathoid‐bearing domains, confined mostly to CAI margins just interior to the Wark‐Lovering rim sequence. The Al‐Mg isotopic compositions of most secondary minerals in the type B1 CAI, and some secondary minerals in the other CAIs, show no resolvable excesses of 26Mg, whereas the primary CAI phases mostly yield correlated excesses of 26Mg with increasing Al/Mg corresponding to “canonical” initial 26Al/27Al ~ 4.5–5 × 10?5. These secondary minerals formed at least 3 Ma after the primary CAI minerals. All but two analyses of secondary minerals from the fluffy type‐A CAI define a correlated increase in 26Mg/24Mg with increasing Al/Mg, yielding (26Al/27Al)0 = (4.9 ± 2.8) × 10?6. The secondary minerals in this CAI formed 1.8–3.2 Ma after the primary CAI minerals. In both cases, the timing of secondary alteration is consistent with, but does not necessarily require, alteration in an asteroidal setting. One grossular from the type B2 CAI, and several grossular and secondary feldspar analyses from the compact type A CAI, have excesses of 26Mg consistent with initial 26Al/27Al ~ 4.5 × 10?5. Especially in the compact type A CAI, where 26Mg/24Mg in grossular correlates with increasing Al/Mg, these 26Mg excesses are almost certainly due to in situ decay of 26Al. They indicate a nebular setting for formation of the grossular. The preservation of these diverse isotopic patterns indicates that heating on the Allende parent body was not pervasive enough to reset isotopic systematics of fine‐grained secondary minerals. Secondary mineralization clearly was not restricted to a short time interval, and at least some alteration occurred coincident with CAI formation and melting events (chondrule formation) in the nebula. This observation supports the possibility that alteration followed by melting affected the compositional evolution of CAIs.  相似文献   

7.
Abstract— We report in situ magnesium isotope measurements of 7 porphyritic magnesium‐rich (type I) chondrules, 1 aluminum‐rich chondrule, and 16 refractory inclusions (14 Ca‐Al‐rich inclusions [CAIs] and 2 amoeboid olivine aggregates [AOAs]) from the ungrouped carbonaceous chondrite Acfer 094 using a Cameca IMS 6f ion microprobe. Both AOAs and 9 CAIs show radiogenic 26Mg excesses corresponding to initial 26Al/27Al ratios between ~5 × 10?5 ~7 × 10?5 suggesting that formation of the Acfer 094 CAIs may have lasted for ~300,000 years. Four CAIs show no evidence for radiogenic 26Mg; three of these inclusions (a corundum‐rich, a grossite‐rich, and a pyroxene‐hibonite spherule CAI) are very refractory objects and show deficits in 26Mg, suggesting that they probably never contained 26Al. The fourth object without evidence for radiogenic 26Mg is an anorthite‐rich, igneous (type C) CAI that could have experienced late‐stage melting that reset its Al‐Mg systematics. Significant excesses in 26Mg were observed in two chondrules. The inferred 26Al/27Al ratios in these two chondrules are (10.3 ± 7.4) × 10?6 (6.0 ± 3.8) × 10?6 (errors are 2σ), suggesting formation 1.6+1.2‐0.6 and 2.2+0.4‐0.3 Myr after CAIs with the canonical 26Al/27Al ratio of 5 × 10?5. These age differences are consistent with the inferred age differences between CAIs and chondrules in primitive ordinary (LL3.0–LL3.1) and carbonaceous (CO3.0) chondrites.  相似文献   

8.
Abstract— We performed a systematic high‐precision secondary ion mass spectrometry 26Al‐26Mg isotopic study for 11 ferromagnesian chondrules from the highly unequilibrated ordinary chondrite Bishunpur (LL3.1). The chondrules are porphyritic and contain various amounts of olivine and pyroxene and interstitial plagioclase and/or glass. The chemical compositions of the chondrules vary from FeO‐poor to FeO‐rich. Eight chondrules show resolvable 26Mg excesses with a maximum δ26Mg of ?1% in two chondrules. The initial 26Al/27Al ratios inferred for these chondrules range between (2.28 ± 0.73) × 10?5 to (0.45 ± 0.21) × 10?5. Assuming a homogeneous distribution of Al isotopes in the early solar system, this range corresponds to ages relative to CAIs between 0.7 ± 0.2 Ma and 2.4+0.7?0.4 Ma. The inferred total span of the chondrule formation ages is at least 1 Ma, which is too long to form chondrules by the X‐wind. The initial 26Al/27Al ratios of the chondrules are found to correlate with the proportion of olivine to pyroxene suggesting that olivine‐rich chondrules formed earlier than pyroxene‐rich chondrules. Though we do not have a completely satisfactory explanation of this correlation we tentatively interpret it as a result of evaporative loss of Si from earlier generations of chondrules followed by addition of Si to the precursors of later generation chondrules.  相似文献   

9.
Abstract— In order to investigate the distribution of 26A1 in chondrites, we measured aluminum‐magnesium systematics in four calcium‐aluminum‐rich inclusions (CAIs) and eleven aluminum‐rich chondrules from unequilibrated ordinary chondrites (UOCs). All four CAIs were found to contain radiogenic 26Mg (26Mg*) from the decay of 26A1. The inferred initial 26Al/27Al ratios for these objects ((26Al/27Al)0 ? 5 × 10?5) are indistinguishable from the (26Al/27Al)0 ratios found in most CAIs from carbonaceous chondrites. These observations, together with the similarities in mineralogy and oxygen isotopic compositions of the two sets of CAIs, imply that CAIs in UOCs and carbonaceous chondrites formed by similar processes from similar (or the same) isotopic reservoirs, or perhaps in a single location in the solar system. We also found 26Mg* in two of eleven aluminum‐rich chondrules. The (26Al/27Al)0 ratio inferred for both of these chondrules is ~1 × 10?5, clearly distinct from most CAIs but consistent with the values found in chondrules from type 3.0–3.1 UOCs and for aluminum‐rich chondrules from lightly metamorphosed carbonaceous chondrites (~0.5 × 10?5 to ~2 × 10?5). The consistency of the (26Al/27Al)0 ratios for CAIs and chondrules in primitive chondrites, independent of meteorite class, implies broad‐scale nebular homogeneity with respect to 26Al and indicates that the differences in initial ratios can be interpreted in terms of formation time. A timeline based on 26Al indicates that chondrules began to form 1 to 2 Ma after most CAIs formed, that accretion of meteorite parent bodies was essentially complete by 4 Ma after CAIs, and that metamorphism was essentially over in type 4 chondrite parent bodies by 5 to 6 Ma after CAIs formed. Type 6 chondrites apparently did not cool until more than 7 Ma after CAIs formed. This timeline is consistent with 26Al as a principal heat source for melting and metamorphism.  相似文献   

10.
Abstract— We have made aluminum‐magnesium isotopic measurements on 4 melilite‐bearing calcium‐aluminum‐rich inclusions (CAIs), 1 plagioclase‐olivine inclusion (POI), and 2 ferromagnesian chondrules from the Ningqiang carbonaceous chondrite. All of the CAIs measured contain clear evidence for radiogenic 26Mg* from the decay of 26Al ( = 1.05 Ma). Although the low Al/Mg ratios of the melilites introduce large uncertainties, the inferred initial 26Al/27Al ratios for the CAIs are generally consistent with the value of 5 times 10?5. There is clear evidence of 26Al* in one POI and two chondrules, but with considerable uncertainties in the value of (26Al/27Al)0. The (26Al/27Al)0 ratios for the POI and the chondrules are 0.3–0.6 times 10?5, roughly an order of magnitude lower than the canonical value. Ningqiang shows very little evidence of metamorphism as a bulk object and the (26Al/27Al)0 ratios in its refractory inclusions and chondrules are consistent with those found in other unmetamorphosed chondrites of several different classes. Our observations and those of other workers support the view that 26Al was widely and approximately homogeneously distributed throughout the condensed matter of the solar system. The difference in (26Al/27Al)0 between CAIs and less refractory materials seems reasonably interpreted in terms of a ~2 million year delay between the formation of CAIs and the onset of formation of less refractory objects. The POI shows clear differences in 25Mg/24Mg between its constituent spinels and olivine, which confirms that they are partially reprocessed material from different sources that were rapidly quenched.  相似文献   

11.
Abstract— Correlated in situ analyses of the oxygen and magnesium isotopic compositions of aluminum‐rich chondrules from unequilibrated enstatite chondrites were obtained using an ion microprobe. Among eleven aluminum‐rich chondrules and two plagioclase fragments measured for 26Al‐26Mg systematics, only one aluminum‐rich chondrule contains excess 26Mg from the in situ decay of 26Al; the inferred initial ratio (26Al/27Al)o = (6.8 ± 2.4) × 10?6 is consistent with ratios observed in chondrules from carbonaceous chondrites and unequilibrated ordinary chondrites. The oxygen isotopic compositions of five aluminum‐rich chondrules and one plagioclase fragment define a line of slope ?0.6 ± 0.1 on a three‐oxygen‐isotope diagram, overlapping the field defined by ferromagnesian chondrules in enstatite chondrites but extending to more 16O‐rich compositions with a range in δ18O of about ?12‰. Based on their oxygen isotopic compositions, aluminum‐rich chondrules in unequilibrated enstatite chondrites are probably genetically related to ferromagnesian chondrules and are not simple mixtures of materials from ferromagnesian chondrules and calcium‐aluminum‐rich inclusions (CAIs). Relative to their counterparts from unequilibrated ordinary chondrites, aluminum‐rich chondrules from unequilibrated enstatite chondrites show a narrower oxygen isotopic range and much less resolvable excess 26Mg from the in situ decay of 26Al, probably resulting from higher degrees of equilibration and isotopic exchange during post‐crystallization metamorphism. However, the presence of 26Al‐bearing chondrules within the primitive ordinary, carbonaceous, and now enstatite chondrites suggests that 26Al was at least approximately homogeneously distributed across the chondrite‐forming region.  相似文献   

12.
Al–Mg mineral isochron studies using secondary ion mass spectrometry (SIMS) have revealed the initial 26Al/27Al ratios, (26Al/27Al)0, for individual Ca-Al-rich inclusions (CAIs) in meteorites. We find that the relative sensitivity factors of 27Al/24Mg ratio for SIMS analysis of hibonite, one of the major constituent minerals of CAIs, exhibit variations based on their chemical compositions. This underscores the critical need for using appropriate hibonite standards to obtain accurate Al−Mg data. We measured the Al−Mg mineral isochron for hibonite in a fine-grained CAI (FGI) from the Northwest Africa 8613 reduced CV chondrite by SIMS using synthesized hibonite standards with 27Al/24Mg of ~30, ~100, and ~400. The obtained mineral isochron of hibonite in the FGI yields (26Al/27Al)0 of (4.73 ± 0.09) × 10−5, which is identical to that previously obtained from the mineral isochron of spinel and melilite in the same FGI (Kawasaki et al., 2020). The uncertainties of (26Al/27Al)0 indicate that the constituent minerals in the FGI formed within ~0.02 Myr in the earliest solar system. The disequilibrium O-isotope distributions of the minerals in the FGI suggest that the O-isotope compositions of the nebular gas from which they condensed underwent a transitional change from 16O-rich to 16O-poor within ~0.02 Myr in the earliest solar system. Once formed, the FGI may have been removed from the forming region within ~0.02 Myr and transported to the accretion region of the parent body.  相似文献   

13.
We review recent results on O‐ and Mg‐isotope compositions of refractory grains (corundum, hibonite) and calcium, aluminum‐rich inclusions (CAIs) from unequilibrated ordinary and carbonaceous chondrites. We show that these refractory objects originated in the presence of nebular gas enriched in 16O to varying degrees relative to the standard mean ocean water value: the Δ17OSMOW value ranges from approximately ?16‰ to ?35‰, and recorded heterogeneous distribution of 26Al in their formation region: the inferred (26Al/27Al)0 ranges from approximately 6.5 × 10?5 to <2 × 10?6. There is no correlation between O‐ and Mg‐isotope compositions of the refractory objects: 26Al‐rich and 26Al‐poor refractory objects have similar O‐isotope compositions. We suggest that 26Al was injected into the 26Al‐poor collapsing protosolar molecular cloud core, possibly by a wind from a neighboring massive star, and was later homogenized in the protoplanetary disk by radial mixing, possibly at the canonical value of 26Al/27Al ratio (approximately 5 × 10?5). The 26Al‐rich and 26Al‐poor refractory grains and inclusions represent different generations of refractory objects, which formed prior to and during the injection and homogenization of 26Al. Thus, the duration of formation of refractory grains and CAIs cannot be inferred from their 26Al‐26Mg systematics, and the canonical (26Al/27Al)0 does not represent the initial abundance of 26Al in the solar system; instead, it may or may not represent the average abundance of 26Al in the fully formed disk. The latter depends on the formation time of CAIs with the canonical 26Al/27Al ratio relative to the timing of complete delivery of stellar 26Al to the solar system, and the degree of its subsequent homogenization in the disk. The injection of material containing 26Al resulted in no observable changes in O‐isotope composition of the solar system. Instead, the variations in O‐isotope compositions between individual CAIs indicate that O‐isotope composition of the CAI‐forming region varied, because of coexisting of 16O‐rich and 16O‐poor nebular reservoirs (gaseous and/or solid) at the birth of the solar system, or because of rapid changes in the O‐isotope compositions of these reservoirs with time, e.g., due to CO self‐shielding in the disk.  相似文献   

14.
Abstract— We measured 36Cl‐36S and 26Al‐26Mg systematics and O isotopes of secondary phases in a moderately altered type B2 CAI (CAI#2) from the Allende CV3 chondrite. CAI#2 has two distinct alteration domains: the anorthite‐grossular (An‐Grs) domain that mostly consists of anorthite and grossular, and the Na‐rich domain that mostly consists of sodalite, anorthite, and Fe‐bearing phases. Large 36S excesses (up to ~400‰) corresponding to an initial 36Cl/35Cl ratio of (1.4 ± 0.3) × 10?6 were observed in sodalite of the Na‐rich domain, but no resolvable 26Mg excesses were observed in anorthite and sodalite of the Na‐rich domain (the initial 26Al/27Al ratio < 4.4 × 10?7). If we assume that the 36Cl‐36S and the 26Al‐26Mg systematics were closed simultaneously, the 36Cl/35Cl ratio would have to be on the order of ~10?2 when CAIs were formed. In contrast to sodalite in Na‐rich domain, significant 26Mg excesses (up to ~35‰) corresponding to an initial 26Al/27Al ratio of (1.2 ± 0.2) × 10?5 were identified in anorthite of the An‐Grs domain. The 26Al‐26Mg systematics of secondary phases in CAI#2 suggest that CAIs experienced multiple alteration events. Some of the alteration processes occurred while 36Cl (half‐life is 0.3 Myr) and 26Al (half‐life is 0.72 Myr) were still alive, whereas others took place much later. Assuming that 26Al was homogeneously distributed in the solar nebula, our study implies that alteration of CAIs occurred as early as within 1.5 Myr of CAI formation and as late as 5.7 Myr after.  相似文献   

15.
Abstract— Petrographic, compositional, and isotopic characteristics were studied for three calcium‐aluminum‐rich inclusions (CAIs) and four plagioclase‐bearing chondrules (three of them Al‐rich) from the Axtell (CV3) chondrite. All seven objects have analogues in Allende (CV3) and other primitive chondrites, yet Axtell, like most other chondrites, contains a distinctive suite of CAIs and chondrules. In common with Allende CAIs, CAIs in Axtell exhibit initial 26Al/27Al ratios ((26Al/27Al)0) ranging from ~5 × 10?5 to <1.1 × 10?5, and plagioclase‐bearing chondrules have (26Al/27Al)0 ratios of ~3 × 10?6 and lower. One type‐A CAI has the characteristics of a FUN inclusion. The Al‐Mg data imply that the plagioclase‐bearing chondrules began to form >2 Ma after the first CAIs. As in other CV3 chondrites, some objects in Axtell show evidence of isotopic disturbance. Axtell has experienced only mild thermal metamorphism (<600 °C), probably not enough to disturb the Al‐Mg systematics. Its CAIs and chondrules have suffered extensive metasomatism, probably prior to final accretion. These data indicate that CAIs and chondrules in Axtell (and other meteorites) had an extended history of several million years before their incorporation into the Axtell parent body. These long time periods appear to require a mechanism in the early solar system to prevent CAIs and chondrules from falling into the Sun via gas drag for several million years before final accretion. We also examined the compositional relationships among the four plagioclase‐bearing chondrules (two with large anorthite laths and two barred‐olivine chondrules) and between the chondrules and CAIs. Three processes were examined: (1) igneous differentiation, (2) assimilation of a CAI by average nebular material, and (3) evaporation of volatile elements from average nebular material. We find no evidence that igneous differentiation played a role in producing the chondrule compositions, although the barred olivine compositions can be related by addition or subtraction of olivine. Methods (2) and (3) could have produced the composition of one chondrule, AXCH‐1471, but neither process explains the other compositions. Our study indicates that plagioclase‐bearing objects originated through a variety of processes.  相似文献   

16.
Abstract— The measurements of magnesium and potassium isotopic compositions of refractory minerals in Allende calcium‐aluminum‐rich inclusions (CAIs), 7R‐19–1, HN3–1, and EGG3 were taken by secondary ion mass spectrometry (SIMS). The 7R‐19–1 contains 16O‐rich and 16O‐poor melilite grains and define a single isochron corresponding to an initial 26Al/27Al ratio of (6.6 ± 1.3) × 10?5. The Al‐Mg isochron, O isotope measurements and petrography of melilite in 7R‐19–1 indicate that 16O‐poor melilite crystallized within 0.4 Myr after crystallization of 16O‐rich melilite, suggesting that oxygen isotopic composition of the CAI‐forming region changed from 16O‐rich to 16O‐poor within this time interval. The 16O‐poor melilite is highly depleted in K compared to the adjacent 16O‐rich melilite, indicating evaporation during remelting of 7R‐19–1. We determined the isochron for 41Ca‐41K isotopic systematics in EGG3 pyroxene with (4.1 ± 2.0) × 10?9 (2s?) as an initial ratio of 41Ca/40Ca, which is at least two times smaller than the previous result (Sahijipal et al. 2000). The ratio of 41Ca/40Ca in the EGG3 pyroxene grain agrees within error with the value obtained by Hutcheon et al. (1984). No evidence for the presence of 41K excess (decay product of a short‐lived radionuclide 41Ca) was found in 7R‐19–1 and HN3–1. We infer that the CAI had at least an order of magnitude lower than canonical 41Ca/40Ca ratio at the time of the CAI formation.  相似文献   

17.
Abstract– We report on mineralogy, petrography, and whole‐rock 26Al‐26Mg systematics of eight amoeboid olivine aggregates (AOAs) from the oxidized CV chondrite Allende. The AOAs consist of forsteritic olivine, opaque nodules, and variable amounts of Ca,Al‐rich inclusions (CAIs) of different types, and show evidence for alteration to varying degrees. Melilite and anorthite are replaced by nepheline, sodalite, and grossular; spinel is enriched in FeO; opaque nodules are replaced by Fe,Ni‐sulfides, ferroan olivine and Ca,Fe‐rich pyroxenes; forsteritic olivine is enriched in FeO and often overgrown by ferroan olivine. The AOAs are surrounded by fine‐grained, matrix‐like rims composed mainly of ferroan olivine and by a discontinuous layer of Ca,Fe‐rich silicates. These observations indicate that AOAs experienced in situ elemental open‐system iron‐alkali‐halogen metasomatic alteration during which Fe, Na, Cl, and Si were introduced, whereas Ca was removed from AOAs and used to form the Ca,Fe‐rich silicate rims around AOAs. The whole‐rock 26Al‐26Mg systematics of the Allende AOAs plot above the isochron of the whole‐rock Allende CAIs with a slope of (5.23 ± 0.13) × 10?5 reported by Jacobsen et al. (2008) . In contrast, whole‐rock 26Al‐26Mg isotope systematics of CAIs and AOAs from the reduced CV chondrite Efremovka define a single isochron with a slope of (5.25± 0.01) × 10?5 ( Larsen et al. 2011 ). We infer that the excesses in 26Mg* present in Allende AOAs are due to their late‐stage open‐system metasomatic alteration. Thus, the 26Al‐26Mg isotope systematics of Allende CAIs and AOAs are disturbed by parent body alteration processes, and may not be suitable for high‐precision chronology of the early solar system events and processes.  相似文献   

18.
Abstract— The degree of isotopic spatial heterogeneity in the solar nebula has long been a puzzle, with different isotopic systems implying either large‐scale initial spatial homogeneity (e.g., 26Al chronometry) or a significant amount of preserved heterogeneity (e.g., ratios of the three stable oxygen isotopes, 16O, 17O, and 18O). We show here that in a marginally gravitationally unstable (MGU) solar nebula, the efficiency of large‐scale mixing and transport is sufficient to spatially homogenize an initially highly spatially heterogeneous nebula to dispersions of ?10% about the mean value of 26Al/27Al on time scales of thousands of years. A similar dispersion would be expected for 17O/16O and 18O/16O ratios produced by ultraviolet photolysis of self‐shielded molecular CO gas at the surface of the outer solar nebula. In addition to preserving a chronological interpretation of initial 26Al/27Al ratios and the self‐shielding explanation for the oxygen isotope ratios, these solar nebula models offer a self‐consistent environment for achieving large‐scale mixing and transport of thermally annealed dust grains, shock‐wave processing of chondrules and refractory inclusions, and giant planet formation.  相似文献   

19.
Zinner and Göpel ( 1992 , 2002 ) found clear evidence for the former presence of 26Al in the H4 chondrites Ste. Marguerite and Forest Vale. They assumed that the 26Al‐26Mg systematics of these chondrites date “metamorphic cooling of the H4 parent body.” Plagioclase in these chondrites can have very high Al/Mg ratios and low Mg concentrations, making these ion probe analyses susceptible to ratio bias, which is inversely proportional to the number of counts of the denominator isotope (Ogliore et al. 2011 ). Zinner and Göpel ( 2002 ) used the mean of the ratios to calculate the isotope ratios, which exacerbates this problem. We analyzed the Al/Mg ratios and Mg isotopic compositions of plagioclase grains in thin sections of Ste. Marguerite, Forest Vale, Beaver Creek, and Sena to evaluate the possible influence of ratio bias on the published initial 26Al/27Al ratios for these meteorites. We calculated the isotope ratios using total counts, a less biased method of calculating isotope ratios. The results from our analyses are consistent with those from Zinner and Göpel ( 2002 ), indicating that ratio bias does not significantly affect 26Al‐26Mg results for plagioclase in these chondrites. Ste. Marguerite has a clear isochron with an initial 26Al/27Al ratio indicating that it cooled to below 450 °C 5.2 ± 0.2 Myr after CAIs. The isochrons for Forest Vale and Beaver Creek also show clear evidence that 26Al was alive when they cooled, but the initial 26Al/27Al ratios are not well constrained. Sena does not show evidence that 26Al was alive when it cooled to below the Al‐Mg closure temperature. Given that metallographic cooling rates for Ste. Marguerite, Forest Vale, and Beaver Creek are atypical (>5000 °C/Myr at 500 °C) compared with most H4s, including Sena, which have cooling rates of 10–50 °C/Myr at 500 °C (Scott et al. 2014 ), we conclude that the Al‐Mg systematics for Ste. Marguerite, Forest Vale, and Beaver Creek are the result of impact excavation of these chondrites and cooling at the surface of the parent body, instead of undisturbed cooling at depth in the H chondrite parent body, like many have assumed.  相似文献   

20.
Abstract— MacAlpine Hills (MAC) 87300 and 88107 are two unusual carbonaceous chondrites that are intermediate in chemical composition between the CO3 and CM2 meteorite groups. Calcium‐aluminum‐rich inclusions (CAIs) from these two meteorites are mostly spinel‐pyroxene and melilite‐rich (Type A) varieties. Spinel‐pyroxene inclusions have either a banded or nodular texture, with aluminous diopside rimming Fe‐poor spinel. Melilite‐rich inclusions (Åk4–42) are irregular in shape and contain minor spinel (FeO <1 wt%), perovskite and, more rarely, hibonite. The CAIs in MAC 88107 and 87300 are similar in primary mineralogy to CAIs from low petrologic grade CO3 meteorites but differ in that they commonly contain phyllosilicates. The two meteorites also differ somewhat from each other: melilite is more abundant and slightly more Al‐rich in inclusions from MAC 88107 than in those from MAC 87300, and phyllosilicate is more abundant and Mg‐poor in MAC 87300 CAIs relative to that in MAC 88107. These differences suggest that the two meteorites are not paired. The CAI sizes and the abundance of melilite‐rich CAIs in MAC 88107 and 87300 suggests a genetic relationship to CO3 meteorites, but the CAIs in both have suffered a greater degree of aqueous alteration than is observed in CO meteorites. Aluminum‐rich melilite in CAIs from both meteorites generally contains excess 26Mg, presumably from the in situ decay of 26Al. Although well‐defined isochrons are not observed, the 26Mg excesses are consistent with initial 26Al/27Al ratios of approximately 3–5 times 10?5. An unusual hibonite‐bearing inclusion is isotopically heterogeneous, with two large and abutting hibonite crystals showing significant differences in their degrees of mass‐dependent fractionation of 25Mg/24Mg. The two crystals also show differences in their inferred initial 26Al/27Al ratios, 1 × 10?5 vs. ≤3 × 10?6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号