首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined H4 chondrites Beaver Creek, Forest Vale, Quenggouk, Ste. Marguerite, and Sena with the electron backscatter diffraction (EBSD) techniques of Ruzicka and Hugo (2018) to determine if there is evidence for shock metamorphism consistent with the previously inferred histories of their early impact excavation or lack thereof. We find that all samples have EBSD data consistent with a history of synmetamorphic impact shock (i.e., shock during thermal metamorphism), followed by postshock annealing. Petrographic analysis of Sena, Quenggouk, and Ste. Marguerite found exsolved Cu and irregular troilite within Fe metal, features consistent with shock metamorphism. All samples have a spatial variability in grain deformation consistent with shock processes, though Forest Vale, Quenggouk, and Ste. Marguerite may have relict signatures of accretional deformation as indicated by variability in their olivine deformation metrics. Within the context of previous workers' geochemical observations, a more complex history is inferred for each sample. The “slow-cooled” samples, Quenggouk and Sena, were subject to synmetamorphic shock without excavation and annealed at depth. The same is true of the “fast-cooled” samples, Beaver Creek, Forest Vale, and Ste. Marguerite. However, after annealing, these rocks were excavated by a secondary impact or impacts around 5.2–6.5 Ma post-CAI formation and were left to cool rapidly on the surface of the H chondrite parent body. These interpreted histories are best compatible with a model of an impact-battered but intact onion shell for the earliest history of the H parent body. However, the EBSD evidence does not preclude a parent body disruption after 7 Ma post-CAI formation.  相似文献   

2.
Abstract— In order to investigate whether or not 26Al can be used as a fine‐scale chronometer for early solar system events we measured, with an ion microprobe, Mg isotopes and Al/Mg ratios in separated plagioclase, olivine, and pyroxene crystals from the H4 chondrites Ste Marguerite (SM), Forest Vale (FV), Beaver Creek and Quenggouk and compared the results with the canonical 26Al/27Al ratio for calcium‐aluminum‐rich inclusions (CAIs). For SM and FV, Pb/Pb and Mn‐Cr ages have previously been determined (Göpel et al., 1994; Polnau et al., 2000; Polnau and Lugmair, 2001). Plagioclase grains from these two meteorites show clear excesses of 26Mg. The 26Al/27Al ratios inferred from these excesses and from isotopically normal Mg in pyroxene and olivine are (2.87 ± 0.64) × 10?7 for SM and (1.52 ± 0.52) × 10?7 for FV. The differences between these ratios and the ratio of 5 times 10?5 in CAIs indicate time differences of 5.4 ± 0.1 Ma and 6.1 ± 0.2 Ma for SM and FV, respectively. These differences are in agreement with the absolute Pb/Pb ages for CAIs and SM and FV phosphates but there are large discrepancies between the U‐Pb and Mn‐Cr system for the relative ages for CAIs, SM and FV. For example, Mn‐Cr ages of carbonates from Kaidun are older than the Pb/Pb age of CAIs. However, even if we require that CAIs are older than these carbonates, the time difference between this “adjusted” CAI age and the Mn‐Cr ages of SM and FV require that 26 Al was widely distributed in the early solar system at the time of CAI formation and was not mostly present in CAIs, a feature of the X‐wind model proposed by Shu and collaborators (Gounelle et al., 2001; Shu et al., 2001). From this we conclude that there was enough 26Al to melt small planetary bodies as long as they formed within 2 Ma of CAIs, and that 26Al can serve as a fine‐scale chronometer for early solar system events.  相似文献   

3.
Abstract— Platinum group elements (PGE) enrichments are found in Fe-Ni blebs (<1 μm) in Al- and Cr-rich objects in the ordinary chondrites Ste. Marguerite, Forest Vale, Montferré. In Ste. Marguerite, high ZrO2 concentrations (baddeleyite) are also present in a chromite inclusion. Iridium enrichment in this material compared to its metal content is confirmed by INAA. The widespread occurrence of PGE in Al- and Cr-rich objects, mostly present in H-group chondrites of nearly equilibrated types, must be taken into account to understand their conditions of formation.  相似文献   

4.
High‐precision bulk aluminum‐magnesium isotope measurements of calcium‐aluminum‐rich inclusions (CAIs) from CV carbonaceous chondrites in several laboratories define a bulk 26Al‐26Mg isochron with an inferred initial 26Al/27Al ratio of approximately 5.25 × 10?5, named the canonical ratio. Nonigneous CV CAIs yield well‐defined internal 26Al‐26Mg isochrons consistent with the canonical value. These observations indicate that the canonical 26Al/27Al ratio records initial Al/Mg fractionation by evaporation and condensation in the CV CAI‐forming region. The internal isochrons of igneous CV CAIs show a range of inferred initial 26Al/27Al ratios, (4.2–5.2) × 10?5, indicating that CAI melting continued for at least 0.2 Ma after formation of their precursors. A similar range of initial 26Al/27Al ratios is also obtained from the internal isochrons of many CAIs (igneous and nonigneous) in other groups of carbonaceous chondrites. Some CAIs and refractory grains (corundum and hibonite) from unmetamorphosed or weakly metamorphosed chondrites, including CVs, are significantly depleted in 26Al. At least some of these refractory objects may have formed prior to injection of 26Al into the protosolar molecular cloud and its subsequent homogenization in the protoplanetary disk. Bulk aluminum and magnesium‐isotope measurements of various types of chondrites plot along the bulk CV CAI isochron, suggesting homogeneous distribution of 26Al and magnesium isotopes in the protoplanetary disk after an epoch of CAI formation. The inferred initial 26Al/27Al ratios of chondrules indicate that most chondrules formed 1–3 Ma after CAIs with the canonical 26Al/27Al ratio.  相似文献   

5.
Abstract— Correlated in situ analyses of the oxygen and magnesium isotopic compositions of aluminum‐rich chondrules from unequilibrated enstatite chondrites were obtained using an ion microprobe. Among eleven aluminum‐rich chondrules and two plagioclase fragments measured for 26Al‐26Mg systematics, only one aluminum‐rich chondrule contains excess 26Mg from the in situ decay of 26Al; the inferred initial ratio (26Al/27Al)o = (6.8 ± 2.4) × 10?6 is consistent with ratios observed in chondrules from carbonaceous chondrites and unequilibrated ordinary chondrites. The oxygen isotopic compositions of five aluminum‐rich chondrules and one plagioclase fragment define a line of slope ?0.6 ± 0.1 on a three‐oxygen‐isotope diagram, overlapping the field defined by ferromagnesian chondrules in enstatite chondrites but extending to more 16O‐rich compositions with a range in δ18O of about ?12‰. Based on their oxygen isotopic compositions, aluminum‐rich chondrules in unequilibrated enstatite chondrites are probably genetically related to ferromagnesian chondrules and are not simple mixtures of materials from ferromagnesian chondrules and calcium‐aluminum‐rich inclusions (CAIs). Relative to their counterparts from unequilibrated ordinary chondrites, aluminum‐rich chondrules from unequilibrated enstatite chondrites show a narrower oxygen isotopic range and much less resolvable excess 26Mg from the in situ decay of 26Al, probably resulting from higher degrees of equilibration and isotopic exchange during post‐crystallization metamorphism. However, the presence of 26Al‐bearing chondrules within the primitive ordinary, carbonaceous, and now enstatite chondrites suggests that 26Al was at least approximately homogeneously distributed across the chondrite‐forming region.  相似文献   

6.
Abstract— Recent results of isotopic dating studies (182Hf‐182W, 26Al‐26Mg) and the increasing number of observed igneous and metamorphosed fragments in (primitive) chondrites provide strong evidence that accretion of differentiated planetesimals predates that of primitive chondrite parent bodies. The primitive chondrites Adrar 003 and Acfer 094 contain some unusual fragments that seem to have undergone recrystallization. Magnesium isotope analyses reveal no detectable radiogenic 26Mg in any of the studied fragments. The possibility that evidence for 26Al was destroyed by parent body metamorphism after formation is not likely because several other constituents of these chondrites do not show any metamorphic features. Since final accretion of a planetesimal must have occurred after formation of its youngest components, formation of these parent bodies must thus have been relatively late (i.e., after most 26Al had decayed). Al‐Mg isotope data for some igneous‐textured clasts (granitoids and andesitic fragments) within the two chondrite regolith breccias Adzhi‐Bogdo and Study Butte reveal also no evidence for radiogenic 26Mg. As calculated from the upper limits, the formation of these igneous clasts, the incorporation into the parent body regolith, and the lithification must have occurred at least 3.8 Myr (andesite in Study Butte) and 4.7 Myr (granitoids in Adzhi‐Bogdo) after calcium‐aluminum‐rich inclusions (CAI) formation. The absence of 26Mg excess in the igneous inclusions does not exclude 26Al from being a heat source for planetary melting. In large, early formed planetesimals, cooling below the closure temperature of the Al‐Mg system may be too late for any evidence for live 26Al (in the form of 26Mg excess) to be preserved. Thus, growing evidence exists that chondritic meteorites represent the products of a complex, multi‐stage history of accretion, parent body modification, disruption and re‐accretion.  相似文献   

7.
Abstract— In order to investigate the distribution of 26A1 in chondrites, we measured aluminum‐magnesium systematics in four calcium‐aluminum‐rich inclusions (CAIs) and eleven aluminum‐rich chondrules from unequilibrated ordinary chondrites (UOCs). All four CAIs were found to contain radiogenic 26Mg (26Mg*) from the decay of 26A1. The inferred initial 26Al/27Al ratios for these objects ((26Al/27Al)0 ? 5 × 10?5) are indistinguishable from the (26Al/27Al)0 ratios found in most CAIs from carbonaceous chondrites. These observations, together with the similarities in mineralogy and oxygen isotopic compositions of the two sets of CAIs, imply that CAIs in UOCs and carbonaceous chondrites formed by similar processes from similar (or the same) isotopic reservoirs, or perhaps in a single location in the solar system. We also found 26Mg* in two of eleven aluminum‐rich chondrules. The (26Al/27Al)0 ratio inferred for both of these chondrules is ~1 × 10?5, clearly distinct from most CAIs but consistent with the values found in chondrules from type 3.0–3.1 UOCs and for aluminum‐rich chondrules from lightly metamorphosed carbonaceous chondrites (~0.5 × 10?5 to ~2 × 10?5). The consistency of the (26Al/27Al)0 ratios for CAIs and chondrules in primitive chondrites, independent of meteorite class, implies broad‐scale nebular homogeneity with respect to 26Al and indicates that the differences in initial ratios can be interpreted in terms of formation time. A timeline based on 26Al indicates that chondrules began to form 1 to 2 Ma after most CAIs formed, that accretion of meteorite parent bodies was essentially complete by 4 Ma after CAIs, and that metamorphism was essentially over in type 4 chondrite parent bodies by 5 to 6 Ma after CAIs formed. Type 6 chondrites apparently did not cool until more than 7 Ma after CAIs formed. This timeline is consistent with 26Al as a principal heat source for melting and metamorphism.  相似文献   

8.
Abstract— We report in situ magnesium isotope measurements of 7 porphyritic magnesium‐rich (type I) chondrules, 1 aluminum‐rich chondrule, and 16 refractory inclusions (14 Ca‐Al‐rich inclusions [CAIs] and 2 amoeboid olivine aggregates [AOAs]) from the ungrouped carbonaceous chondrite Acfer 094 using a Cameca IMS 6f ion microprobe. Both AOAs and 9 CAIs show radiogenic 26Mg excesses corresponding to initial 26Al/27Al ratios between ~5 × 10?5 ~7 × 10?5 suggesting that formation of the Acfer 094 CAIs may have lasted for ~300,000 years. Four CAIs show no evidence for radiogenic 26Mg; three of these inclusions (a corundum‐rich, a grossite‐rich, and a pyroxene‐hibonite spherule CAI) are very refractory objects and show deficits in 26Mg, suggesting that they probably never contained 26Al. The fourth object without evidence for radiogenic 26Mg is an anorthite‐rich, igneous (type C) CAI that could have experienced late‐stage melting that reset its Al‐Mg systematics. Significant excesses in 26Mg were observed in two chondrules. The inferred 26Al/27Al ratios in these two chondrules are (10.3 ± 7.4) × 10?6 (6.0 ± 3.8) × 10?6 (errors are 2σ), suggesting formation 1.6+1.2‐0.6 and 2.2+0.4‐0.3 Myr after CAIs with the canonical 26Al/27Al ratio of 5 × 10?5. These age differences are consistent with the inferred age differences between CAIs and chondrules in primitive ordinary (LL3.0–LL3.1) and carbonaceous (CO3.0) chondrites.  相似文献   

9.
Abstract– We review the 26Al ages of chondrules in various type 3.0 chondrites. The 26Al ages of chondrules are 1–3 Myr after calcium‐aluminum‐rich inclusion (CAI) for LL3.0, CO3.0, and Acfer 094 (Ungrouped C 3.0). Available data for chondrules in CR chondrites indicate that many chondrules are relatively younger (≥3 Myr), although data from chondrules in CR3.0 are not yet available to confirm their younger ages. The total ranges for the 26Al ages of chondrules in a single chondrite group are more than 0.5–1 Myr. However, most chondrules show relatively narrow range of ages in a single chondrite group (0.2–0.4 Myr, 1 SD), which might be short enough to preserve the group‐specific chemical and isotope signatures against radial diffusion of solid in the disk. Distinct oxygen isotope reservoirs might exist in the protoplanetary disk simultaneously, which could be spatially separated.  相似文献   

10.
Abstract— The Rumuruti chondrites (R chondrites) constitute a new, well-established, chondrite group different from carbonaceous, ordinary, and enstatite chondrites. Most samples of this group are gas-rich regolith breccias showing the typical light/dark structure and consist of abundant fragments of various parent body lithologies embedded in a fine-grained, olivine-rich matrix. Most R chondrites contain the typical components of primitive chondrites including chondrules, chondrule and mineral fragments, sulfides, and rare calcium-aluminum-rich inclusions (CAIs). In Hughes 030, an interesting CAI consisting of abundant hibonite and spinel was found. Mg isotopic analyses revealed excess 26Mg in components of R chondrites for the first time. The hibonite grains with high Al/Mg values (∼1500 to 2600) show resolved 26Mg excess. The slope of the correlation line yields an initial 26Al/ 27Al = (1.4 ± 0.3) × 10−6, which is ∼40 times lower than the initial value measured in CAIs from primitive meteorites. The inferred difference in 26Al abundance implies a time difference of ∼4 million years for the closure of the Al-Mg system between CAIs from primitive chondrites and the Hughes 030 CAI. Based on mineralogy and the petrographic setting of the hibonite-rich CAI, it is suggested that 4 million years reflect the time interval between the formation of the CAI and the end of its secondary alteration. It is also suggested that most of this alteration may have occurred in the nebula (e.g. Zn- and Fe-incorporation in spinels). However, the CAI could not have survived in the nebula as a free floating object for a long period of time. Therefore, the possibility of storage in a precursor planetesimal for a few million years, resetting the magnesium-aluminum isotopic system, prior to impact brecciation, excavation, and accretion of the final R chondrite parent body cannot be ruled out.  相似文献   

11.
The large collection of howardite‐eucrite‐diogenite (HED) meteorites allows us to study the initial magmatic differentiation of a planetesimal. We report Pb‐Pb ages of the unequilibrated North West Africa (NWA) 4215 and Dhofar 700 diogenite meteorites and their mass‐independent 26Mg isotope compositions (26Mg*) to better understand the timing of differentiation and crystallization of their source reservoir(s). NWA 4215 defines a Pb‐Pb age of 4484.5 ± 7.9 Myr and has a 26Mg* excess of +2.3 ± 1.6 ppm whereas Dhofar 700 has a Pb‐Pb age of 4546.4 ± 4.7 Myr and a 26Mg* excess of +25.5 ± 1.9 ppm. We interpret the young age of NWA 4215 as a thermal overprint, but the age of Dhofar 700 is interpreted to represent a primary crystallization age. Combining our new data with published Mg isotope and trace element data suggests that approximately half of the diogenites for which such data are available crystallized within the first 1–2 Myr of our solar system, consistent with a short‐lived, early‐formed magma ocean undergoing convective cooling. The other half of the diogenites, including both NWA 4215 and Dhofar 700, are best explained by their crystallization in slowly cooled isolated magma chambers lasting over at least ~20 Myr.  相似文献   

12.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   

13.
Abstract— We measured 36Cl‐36S and 26Al‐26Mg systematics and O isotopes of secondary phases in a moderately altered type B2 CAI (CAI#2) from the Allende CV3 chondrite. CAI#2 has two distinct alteration domains: the anorthite‐grossular (An‐Grs) domain that mostly consists of anorthite and grossular, and the Na‐rich domain that mostly consists of sodalite, anorthite, and Fe‐bearing phases. Large 36S excesses (up to ~400‰) corresponding to an initial 36Cl/35Cl ratio of (1.4 ± 0.3) × 10?6 were observed in sodalite of the Na‐rich domain, but no resolvable 26Mg excesses were observed in anorthite and sodalite of the Na‐rich domain (the initial 26Al/27Al ratio < 4.4 × 10?7). If we assume that the 36Cl‐36S and the 26Al‐26Mg systematics were closed simultaneously, the 36Cl/35Cl ratio would have to be on the order of ~10?2 when CAIs were formed. In contrast to sodalite in Na‐rich domain, significant 26Mg excesses (up to ~35‰) corresponding to an initial 26Al/27Al ratio of (1.2 ± 0.2) × 10?5 were identified in anorthite of the An‐Grs domain. The 26Al‐26Mg systematics of secondary phases in CAI#2 suggest that CAIs experienced multiple alteration events. Some of the alteration processes occurred while 36Cl (half‐life is 0.3 Myr) and 26Al (half‐life is 0.72 Myr) were still alive, whereas others took place much later. Assuming that 26Al was homogeneously distributed in the solar nebula, our study implies that alteration of CAIs occurred as early as within 1.5 Myr of CAI formation and as late as 5.7 Myr after.  相似文献   

14.
Abstract— A compilation of over 1500 Mg-isotopic analyses of Al-rich material from primitive solar system matter (meteorites) shows clearly that 26Al existed live in the early Solar System. Excesses of 26Mg observed in refractory inclusions are not the result of mixing of “fossil” interstellar 26Mg with normal solar system Mg. Some material was present that contained little or no 26Al, but it was a minor component of solar system matter in the region where CV3 and CO3 carbonaceous chondrites accreted and probably was a minor component in the accretion regions of CM chondrites as well. Data for other chondrite groups are too scanty to make similar statements. The implied long individual nebular histories of CAIs and the apparent gap of one or more million years between the start of CAI formation and the start of chondrule formation require the action of some nebular mechanism that prevented the CAIs from drifting into the Sun. Deciding whether 26Al was or was not the agent of heating that caused melting in the achondrite parent bodies hinges less on its widespread abundance in the nebula than it does on the timing of planetesimal accretion relative to the formation of the CAIs.  相似文献   

15.
Abstract— We measured the concentrations of noble gases in 32 ordinary chondrites from the Dar al Gani (DaG) region, Libya, as well as concentrations of the cosmogenic radionuclides 14C, 10Be, 26Al, 36Cl, and 41Ca in 18 of these samples. Although the trapped noble gases in five DaG samples show ratios typical of solar or planetary gases, in all other DaG samples, they are dominated by atmospheric contamination, which increases with the degree of weathering. Cosmic ray exposure (CRE) ages of DaG chondrites range from ?1 Myr to 53 Myr. The CRE age distribution of 10 DaG L chondrites shows a cluster around 40 Myr due to four members of a large L6 chondrite shower. The CRE age distribution of 19 DaG H chondrites shows only three ages coinciding with the main H chondrite peak at ?7 Myr, while seven ages are <5 Myr. Two of these H chondrites with short CRE ages (DaG 904 and 908) show evidence of a complex exposure history. Five of the H chondrites show evidence of high shielding conditions, including low 22Ne/21Ne ratios and large contributions of neutron‐capture 36Cl and 41Ca. These samples represent fragments of two or more large pre‐atmospheric objects, which supports the hypothesis that the high H/L chondrite ratio at DaG is due to one or more large unrecognized showers. The 14C concentrations correspond to terrestrial ages <35 kyr, similar to terrestrial ages of chondrites from other regions in the Sahara but younger than two DaG achondrites. Despite the loss of cosmogenic 36Cl and 41Ca during oxidation of metal and troilite, concentrations of 36Cl and 41Ca in the silicates are also consistent with 14C ages <35 kyr. The only exception is DaG 343 (H4), which has a 41Ca terrestrial age of 150 ± 40 kyr. This old age shows that not only iron meteorites and achondrites but also chondrites can survive the hot desert environment for more than 50 kyr. A possible explanation is that older meteorites were covered by soils during wetter periods and were recently exhumed by removal of these soils due to deflation during more arid periods, such as the current one, which started ?3000 years ago. Finally, based on the 26Al/21Ne and 10Be/21Ne systematics in 16 DaG meteorites, we derived more reliable estimates of the 10Be/21Ne production rate ratio, which seems more sensitive to shielding than was predicted by the semi‐empirical model of Graf et al. (1990) but less sensitive than was predicted by the purely physical model of Leya et al. (2000).  相似文献   

16.
Abstract— We have studied the relationship between bulk chemical compositions and relative formation ages inferred from the initial 26Al/27Al ratios for sixteen ferromagnesian chondrules in least equilibrated ordinary chondrites, Semarkona (LL3.0) and Bishunpur (LL3.1). The initial 26Al/27Al ratios of these chondrules were obtained by Kita et al. (2000) and Mostefaoui et al. (2002), corresponding to relative ages from 0.7 ± 0.2 to 2.4 ?0.4/+0.7 Myr after calcium‐aluminum‐rich inclusions (CAIs), by assuming a homogeneous distribution of 26Al in the early solar system. The measured bulk compositions of the chondrules cover the compositional range of ferromagnesian chondrules reported in the literature and, thus, the chondrules in this study are regarded as representatives of ferromagnesian chondrules. The relative ages of the chondrules appear to correlate with bulk abundances of Si and the volatile elements (Na, K, Mn, and Cr), but there seems to exist no correlation of relative ages neither with Fe nor with refractory elements. Younger chondrules tend to be richer in Si and volatile elements. Our result supports the result of Mostefaoui et al. (2002) who suggested that pyroxene‐rich chondrules are younger than olivine‐rich ones. The correlation provides an important constraint on chondrule formation in the early solar system. It is explained by chondrule formation in an open system, where silicon and volatile elements evaporated from chondrule melts during chondrule formation and recondensed as chondrule precursors of the next generation.  相似文献   

17.
Planetary bodies a few hundred kilometers in radii are the precursors to larger planets but it is unclear whether these bodies themselves formed very rapidly or accreted slowly over several millions of years. Ordinary H chondrite meteorites provide an opportunity to investigate the accretion time scale of a small planetary body given that variable degrees of thermal metamorphism present in H chondrites provide a proxy for their stratigraphic depth and, therefore, relative accretion times. We exploit this feature to search for nucleosynthetic isotope variability of 54Cr, which is a sensitive tracer of spatial and temporal variations in the protoplanetary disk's solids, between 17 H chondrites covering all petrologic types to obtain clues about the parent body accretionary rate. We find no systematic variability in the mass‐biased corrected abundances of 53Cr or 54Cr outside of the analytical uncertainties, suggesting very rapid accretion of the H chondrite parent body consistent with turbulent accretion. By utilizing the μ54Cr–planetary mass relationship observed between inner solar system planetary bodies, we calculate that the H chondrite accretion occurred at 1.1 ± 0.4 or 1.8 ± 0.2 Myr after the formation of calcium‐aluminum‐rich inclusions (CAIs), assuming either the initial 26Al/27Al abundance of inner solar system solids determined from angrite meteorites or CAIs from CV chondrites, respectively. Notably, these ages are in agreement with age estimates based on the parent bodies’ thermal evolution when correcting these calculations to the same initial 26Al/27Al abundance, reinforcing the idea of a secular evolution in the isotopic composition of inner disk solids.  相似文献   

18.
We present high‐precision measurements of the Mg isotopic compositions of a suite of types I and II chondrules separated from the Murchison and Murray CM2 carbonaceous chondrites. These chondrules are olivine‐ and pyroxene‐rich and have low 27Al/24Mg ratios (0.012–0.316). The Mg isotopic compositions of Murray chondrules are on average lighter (δ26Mg ranging from ?0.95‰ to ?0.15‰ relative to the DSM‐3 standard) than those of Murchison (δ26Mg ranging from ?1.27‰ to +0.77‰). Taken together, the CM2 chondrules exhibit a narrower range of Mg isotopic compositions than those from CV and CB chondrites studied previously. The least‐altered CM2 chondrules are on average lighter (average δ26Mg = ?0.39 ± 0.30‰, 2SE) than the moderately to heavily altered CM2 chondrules (average δ26Mg = ?0.11 ± 0.21‰, 2SE). The compositions of CM2 chondrules are consistent with isotopic fractionation toward heavy Mg being associated with the formation of secondary silicate phases on the CM2 parent body, but were also probably affected by volatilization and recondensation processes involved in their original formation. The low‐Al CM2 chondrules analyzed here do not exhibit any mass‐independent variations in 26Mg from the decay of 26Al, with the exception of two chondrules that show only small variations just outside of the analytical error. In the case of the chondrule with the highest Al/Mg ratio (a type IAB chondrule from Murchison), the lack of resolvable 26Mg excess suggests that it either formed >1 Ma after calcium‐aluminum‐rich inclusions, or that its Al‐Mg isotope systematics were reset by secondary alteration processes on the CM2 chondrite parent body after the decay of 26Al.  相似文献   

19.
Abstract— To constrain the metamorphic history of the H‐chondrite parent body, we dated phosphates and chondrules from four H6 chondritic meteorites using U‐Pb systematics. Reconnaissance analyses revealed that only Estacado had a sufficiently high 206Pb/204Pb ratio suitable for our purposes. The Pb‐Pb isochron date for Estacado phosphates is measured to be 4492 ± 15 Ma. The internal residue‐second leachate isochron for Estacado chondrules yielded the chondrule date of 4546 ± 18 Ma. An alternative age estimate for Estacado chondrules of 4527.6 ± 6.3 Ma is obtained from an isochron including two chondrules, two magnetically separated fractions, and four bulk chondrite analyses. This isochron date might represent the age of termination of Pb diffusion from the chondrules to the matrix. From these dates and previously established closure temperatures for Pb diffusion in phosphates and chondrules, we estimate an average cooling rate for Estacado between 5.5 ± 3.2 Myr/°C and 8.3 ± 5.0 Myr/°C. Using previously published results for Ste. Marguerite (H4) and Richardton (H5), our data reveal that the cooling rates of H chondrites decrease markedly with increasing metamorphic grade, in agreement with the predictions of the “onion‐shell” asteroid model. Several issues, however, need to be addressed before confirming this model for the H‐chondrite parent body: the discrepancies between peak metamorphic temperatures established by various mineral thermometers need to be resolved, diffusion and other mechanisms of element migration in polycrystalline solids must be better understood, and dating techniques should be further improved.  相似文献   

20.
He, Ne and Ar have been measured in 8 samples of Dalgety Downs (DD) and 5 samples of Ness County, 1894 (NC). 26Al, K, Th and U have been measured in 4 samples of DD and the chondrites Etter, Bledsoe, Seminole #2 and Zerga. Weathering probably explains the correlation between 26Al and 21Ne in DD, the independence of 3He/21Ne and 22Ne/21Ne in DD and NC and the > 2σ reduction of all 26Al contents from calculated saturation values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号