首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— Correlated in situ analyses of the oxygen and magnesium isotopic compositions of aluminum‐rich chondrules from unequilibrated enstatite chondrites were obtained using an ion microprobe. Among eleven aluminum‐rich chondrules and two plagioclase fragments measured for 26Al‐26Mg systematics, only one aluminum‐rich chondrule contains excess 26Mg from the in situ decay of 26Al; the inferred initial ratio (26Al/27Al)o = (6.8 ± 2.4) × 10?6 is consistent with ratios observed in chondrules from carbonaceous chondrites and unequilibrated ordinary chondrites. The oxygen isotopic compositions of five aluminum‐rich chondrules and one plagioclase fragment define a line of slope ?0.6 ± 0.1 on a three‐oxygen‐isotope diagram, overlapping the field defined by ferromagnesian chondrules in enstatite chondrites but extending to more 16O‐rich compositions with a range in δ18O of about ?12‰. Based on their oxygen isotopic compositions, aluminum‐rich chondrules in unequilibrated enstatite chondrites are probably genetically related to ferromagnesian chondrules and are not simple mixtures of materials from ferromagnesian chondrules and calcium‐aluminum‐rich inclusions (CAIs). Relative to their counterparts from unequilibrated ordinary chondrites, aluminum‐rich chondrules from unequilibrated enstatite chondrites show a narrower oxygen isotopic range and much less resolvable excess 26Mg from the in situ decay of 26Al, probably resulting from higher degrees of equilibration and isotopic exchange during post‐crystallization metamorphism. However, the presence of 26Al‐bearing chondrules within the primitive ordinary, carbonaceous, and now enstatite chondrites suggests that 26Al was at least approximately homogeneously distributed across the chondrite‐forming region.  相似文献   

2.
CM chondrites are a group of primitive meteorites that have recorded the alteration history of the early solar system. We report the occurrence, chemistry, and oxygen isotopic compositions of P‐O‐rich sulfide phase in two CM chondrites (Grove Mountains [GRV] 021536 and Murchison). This P‐O‐rich sulfide is a polycrystalline aggregate of nanometer‐size grains. It occurs as isolated particles or aggregates in both CM chondrites. These grains, in the matrix and in type‐I chondrules from Murchison, were partially altered into tochilinite; however, grains enclosed by Ca‐carbonate are much less altered. This P‐O‐rich sulfide in Murchison is closely associated with magnetite, FeNi phosphide, brezinaite (Cr3S4), and eskolaite (Cr2O3). In addition to sulfur as the major component, this sulfide contains ~6.3 wt% O, ~5.4 wt% P, and minor amounts of hydrogen. Analyses of oxygen isotopes by SIMS resulted in an average δ18O value of ?22.5 ‰ and an average Δ17O value of 0.2 ± 9.2 ‰ (2σ). Limited variations in both chemical compositions and electron‐diffraction patterns imply that the P‐O‐rich sulfide may be a single phase rather than a polyphase mixture. Several features indicate that this P‐O‐rich sulfide phase formed at low temperature on the parent body, most likely through the alteration of FeNi metal (a) close association with other low‐temperature alteration products, (b) the presence of hydrogen, (c) high Δ17O values and the presence in altered mesostasis of type‐I chondrules and absence in type‐II chondrules. The textural relations of the P‐O‐rich sulfide and other low‐temperature minerals reveal at least three episodic‐alteration events on the parent body of CM chondrites (1) formation of P‐O‐rich sulfide during sulfur‐rich aqueous alteration of P‐rich FeNi metal, (2) formation of Ca‐carbonate during local carbonation, and (3) alteration of P‐O‐rich sulfide and formation of tochilinite during a period of late‐stage intensive aqueous alteration.  相似文献   

3.
Abstract— Petrographic, compositional, and isotopic characteristics were studied for three calcium‐aluminum‐rich inclusions (CAIs) and four plagioclase‐bearing chondrules (three of them Al‐rich) from the Axtell (CV3) chondrite. All seven objects have analogues in Allende (CV3) and other primitive chondrites, yet Axtell, like most other chondrites, contains a distinctive suite of CAIs and chondrules. In common with Allende CAIs, CAIs in Axtell exhibit initial 26Al/27Al ratios ((26Al/27Al)0) ranging from ~5 × 10?5 to <1.1 × 10?5, and plagioclase‐bearing chondrules have (26Al/27Al)0 ratios of ~3 × 10?6 and lower. One type‐A CAI has the characteristics of a FUN inclusion. The Al‐Mg data imply that the plagioclase‐bearing chondrules began to form >2 Ma after the first CAIs. As in other CV3 chondrites, some objects in Axtell show evidence of isotopic disturbance. Axtell has experienced only mild thermal metamorphism (<600 °C), probably not enough to disturb the Al‐Mg systematics. Its CAIs and chondrules have suffered extensive metasomatism, probably prior to final accretion. These data indicate that CAIs and chondrules in Axtell (and other meteorites) had an extended history of several million years before their incorporation into the Axtell parent body. These long time periods appear to require a mechanism in the early solar system to prevent CAIs and chondrules from falling into the Sun via gas drag for several million years before final accretion. We also examined the compositional relationships among the four plagioclase‐bearing chondrules (two with large anorthite laths and two barred‐olivine chondrules) and between the chondrules and CAIs. Three processes were examined: (1) igneous differentiation, (2) assimilation of a CAI by average nebular material, and (3) evaporation of volatile elements from average nebular material. We find no evidence that igneous differentiation played a role in producing the chondrule compositions, although the barred olivine compositions can be related by addition or subtraction of olivine. Methods (2) and (3) could have produced the composition of one chondrule, AXCH‐1471, but neither process explains the other compositions. Our study indicates that plagioclase‐bearing objects originated through a variety of processes.  相似文献   

4.
High‐precision secondary ion mass spectrometry (SIMS) was employed to investigate oxygen three isotopes of phenocrysts in 35 chondrules from the Yamato (Y) 82094 ungrouped 3.2 carbonaceous chondrite. Twenty‐one of 21 chondrules have multiple homogeneous pyroxene data (?17O 3SD analytical uncertainty: 0.7‰); 17 of 17 chondrules have multiple homogeneous pyroxene and plagioclase data. Twenty‐one of 25 chondrules have one or more olivine data matching coexisting pyroxene data. Such homogeneous phenocrysts (1) are interpreted to have crystallized from the final chondrule melt, defining host O‐isotope ratios; and (2) suggest efficient O‐isotope exchange between ambient gas and chondrule melt during formation. Host values plot within 0.7‰ of the primitive chondrule mineral (PCM) line. Seventeen chondrules have relict olivine and/or spinel, with some δ17O and δ18O values approaching ?40‰, similar to CAI or AOA‐like precursors. Regarding host chondrule data, 22 of 34 have Mg#s of 98.8–99.5 and ?17O of ?3.9‰ to ?6.1‰, consistent with most Acfer 094, CO, CR, and CV chondrite chondrules, and suggesting a common reduced O‐isotope reservoir devoid of 16O‐poor H2O. Six Y‐82094 chondrules have ?17O near ?2.5‰, with Mg#s of 64–97, consistent with lower Mg# chondrules from Acfer 094, CO, CR, and CV chondrites; their signatures suggest precursors consisting of those forming Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules plus 16O‐poor H2O, at high dust enrichments. Three type II chondrules plot slightly above the PCM line, near the terrestrial fractionation line (?17O: ~+0.1‰). Their O‐isotopes and olivine chemistry are like LL3 type II chondrules, suggesting they sampled ordinary chondrite‐like chondrule precursors. Finally, three Mg# >99 chondrules have ?17O of ?6.7‰ to ?8.1‰, potentially due to 16O‐rich refractory precursor components. The predominance of Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules and a high chondrule‐to‐matrix ratio suggests bulk Y‐82094 characteristics are closely related to anhydrous dust sampled by most carbonaceous chondrite chondrules.  相似文献   

5.
Abstract— We performed a systematic high‐precision secondary ion mass spectrometry 26Al‐26Mg isotopic study for 11 ferromagnesian chondrules from the highly unequilibrated ordinary chondrite Bishunpur (LL3.1). The chondrules are porphyritic and contain various amounts of olivine and pyroxene and interstitial plagioclase and/or glass. The chemical compositions of the chondrules vary from FeO‐poor to FeO‐rich. Eight chondrules show resolvable 26Mg excesses with a maximum δ26Mg of ?1% in two chondrules. The initial 26Al/27Al ratios inferred for these chondrules range between (2.28 ± 0.73) × 10?5 to (0.45 ± 0.21) × 10?5. Assuming a homogeneous distribution of Al isotopes in the early solar system, this range corresponds to ages relative to CAIs between 0.7 ± 0.2 Ma and 2.4+0.7?0.4 Ma. The inferred total span of the chondrule formation ages is at least 1 Ma, which is too long to form chondrules by the X‐wind. The initial 26Al/27Al ratios of the chondrules are found to correlate with the proportion of olivine to pyroxene suggesting that olivine‐rich chondrules formed earlier than pyroxene‐rich chondrules. Though we do not have a completely satisfactory explanation of this correlation we tentatively interpret it as a result of evaporative loss of Si from earlier generations of chondrules followed by addition of Si to the precursors of later generation chondrules.  相似文献   

6.
The ungrouped carbonaceous chondrite (CC) Bells has long been considered petrographically similar to CM chondrites based on its matrix abundance and degree of aqueous alteration, but also shows significant isotopic affinities to CR chondrites. Its taxonomic status is thus important for clarifying the relationship of the CRHB (formerly “CR”) clan with other CCs. In this study, we measured the oxygen isotopic compositions of olivines in type I chondrules and isolated olivine grains in Bells. Bells olivines mostly have ∆17O > −4‰, similar to CR chondrites but unlike other CCs that are rich in refractory inclusions, in which chondrules are generally richer in 16O. Therefore, Bells is a CR chondrite (albeit an anomalous one), most similar to the rare, matrix-rich CRs like Al Rais. These chondrites (i) may not necessarily derive from the same primary parent body as mainstream CRs, (ii) bear witness to significant variations of the matrix/chondrule ratio within the CRHB clan, and (iii) may be a good analog for samples retrieved by the space mission OSIRIS-REx.  相似文献   

7.
Bulk major element composition, petrography, mineralogy, and oxygen isotope compositions of twenty Al‐rich chondrules (ARCs) from five CV3 chondrites (Northwest Africa [NWA] 989, NWA 2086, NWA 2140, NWA 2697, NWA 3118) and the Ningqiang carbonaceous chondrite were studied and compared with those of ferromagnesian chondrules and refractory inclusions. Most ARCs are marginally Al‐richer than ferromagnesian chondrules with bulk Al2O3 of 10–15 wt%. ARCs are texturally similar to ferromagnesian chondrules, composed primarily of olivine, pyroxene, plagioclase, spinel, Al‐rich glass, and metallic phases. Minerals in ARCs have intermediate compositions. Low‐Ca pyroxene (Fs0.6–8.8Wo0.7–9.3) has much higher Al2O3 and TiO2 contents (up to 12.5 and 2.3 wt%, respectively) than that in ferromagnesian chondrules. High‐Ca pyroxene (Fs0.3–2.0Wo33–54) contains less Al2O3 and TiO2 than that in Ca,Al‐rich inclusions (CAIs). Plagioclase (An77–99Ab1–23) is much more sodic than that in CAIs. Spinel is enriched in moderately volatile element Cr (up to 6.7 wt%) compared to that in CAIs. Al‐rich enstatite coexists with anorthite and spinel in a glass‐free chondrule, implying that the formation of Al‐enstatite was not due to kinetic reasons but is likely due to the high Al2O3/CaO ratio (7.4) of the bulk chondrule. Three ARCs contain relict CAIs. Oxygen isotope compositions of ARCs are also intermediate between those of ferromagnesian chondrules and CAIs. They vary from ?39.4‰ to 13.9‰ in δ18O and yield a best fit line (slope = 0.88) close to the carbonaceous chondrite anhydrous mineral (CCAM) line. Chondrules with 5–10 wt% bulk Al2O3 have a slightly more narrow range in δ18O (?32.5 to 5.9‰) along the CCAM line. Except for the ARCs with relict phases, however, most ARCs have oxygen isotope compositions (>?20‰ in δ18O) similar to those of typical ferromagnesian chondrules. ARCs are genetically related to both ferromagnesian chondrules and CAIs, but the relationship between ARCs and ferromagnesian chondrules is closer. Most ARCs were formed during flash heating and rapid cooling processes like normal chondrules, only from chemically evolved precursors. ARCs extremely enriched in Al and those with relict phases could have had a hybrid origin (Krot et al. 2002) which incorporated refractory inclusions as part of the precursors in addition to ferromagnesian materials. The occurrence of melilite in ARCs indicates that melilite‐rich CAIs might be present in the precursor materials of ARCs. The absence of melilite in most ARCs is possibly due to high‐temperature interactions between a chondrule melt and the solar nebula.  相似文献   

8.
Abstract— In a search for evidence of evaporation during chondrule formation, the mesostases of 11 Bishunpur chondrules and melt inclusions in olivine phenocrysts in 7 of them have been analyzed for their alkali element abundances and K‐isotopic compositions. Except for six points, all areas of the chondrules that were analyzed had δ41K compositions that were normal within error (typically ±3%, 2s?). The six “anomalous” points are probably all artifacts. Experiments have shown that free evaporation of K leads to large 41K enrichments in the evaporation residues, consistent with Rayleigh fractionation. Under Rayleigh conditions, a 3% enrichment in δ41K is produced by ~12% loss of K. The range of L‐chondrite‐normalized K/Al ratios (a measure of the K‐elemental fractionation) in the areas analyzed vary by almost three orders of magnitude. If all chondrules started out with L‐chondrite‐like K abundances and the K loss occurred via Rayleigh fractionation, the most K‐depleted chondrules would have had compositions of up to δ41K ? 200%. Clearly, K fractionation did not occur by evaporation under Rayleigh conditions. Yet experiments and modeling indicate that K should have been lost during chondrule formation under currently accepted formation conditions (peak temperature, cooling rate, etc.). Invoking precursors with variable alkali abundances to produce the range of K/Al fractionation in chondrules does not explain the K‐isotopic data because any K that was present should still have experienced sufficient loss during melting for there to have been a measurable isotopic fractionation. If K loss and isotopic fractionation was inevitable during chondrule formation, the absence of K‐isotopic fractionation in Bishunpur chondrules requires that they exchanged K with an isotopically normal reservoir during or after formation. There is evidence for alkali exchange between chondrules and rim‐matrix in all unequilibrated ordinary chondrites. However, melt inclusions can have alkali abundances that are much lower than the mesostases of the host chondrules, which suggests that they at least remained closed since formation. If it is correct that some or all melt inclusions remained closed since formation, the absence of K‐isotopic fractionation in them requires that the K‐isotopic exchange took place during chondrule formation, which would probably require gas‐chondrule exchange. Potassium evaporated from fine‐grained dust and chondrules during chondrule formation may have produced sufficient K‐vapor pressure for gas‐chondrule isotopic exchange to be complete on the timescales of chondrule formation. Alternatively, our understanding of chondrule formation conditions based on synthesis experiments needs some reevaluation.  相似文献   

9.
Petrographic and chemical features of Allende ferromagnesian chondrules previously analyzed for oxygen and silicon isotopes by Clayton et al. (1983a) provide additional information on chondrule origin. Allende, like other carbonaceous chondrites, contains two chondrule populations, but one of these is represented by only one chondrule in this isotopically characterized set. All Allende chondrules fall along an isotopic mixing line, probably defined by an 16O-rich solid component and an isotopically heavier oxygen gaseous exchange component. Differences in the amounts of isotopic exchange for porphyritic and barred chondrules presumably resulted from varying degrees of melting. Those porphyritic chondrules containing abundant relict grains experienced the least isotopic exchange. Chondrules with high bulk FeO/(FeO + MgO) ratios apparently persisted longer as liquids and contain more of the exchange component. The distinct directions of oxygen isotopic exchange in chondrules from carbonaceous, ordinary, and enstatite chondrites indicate that each formed from different solid precursor materials. Silicon isotopic variations in Allende chondrules probably reflect evaporative loss of lighter isotopes; however, silicon loss is also controlled by chondrule sizes, which are unknown. Observed correlations point to the importance of kinetic factors in a gaseous nebula for chondrule genesis, and are not consistent with models that explain chondrules as mixtures of several solids with distinct oxygen and silicon isotopic compositions.  相似文献   

10.
Meteorite fusion crust formation is a brief event in a high‐temperature (2000–12,000 K) and high‐pressure (2–5 MPa) regime. We studied fusion crusts and bulk samples of 10 ordinary chondrite falls and 10 ordinary chondrite finds. The fusion crusts show a typical layering and most contain vesicles. All fusion crusts are enriched in heavy Fe isotopes, with δ56Fe values up to +0.35‰ relative to the solar system mean. On average, the δ56Fe of fusion crusts from finds is +0.23‰, which is 0.08‰ higher than the average from falls (+0.15‰). Higher δ56Fe in fusion crusts of finds correlate with bulk chondrite enrichments in mobile elements such as Ba and Sr. The δ56Fe signature of meteorite fusion crusts was produced by two processes (1) evaporation during atmospheric entry and (2) terrestrial weathering. Fusion crusts have either the same or higher δ18O (0.9–1.5‰) than their host chondrites, and the same is true for Δ17O. The differences in bulk chondrite and fusion crust oxygen isotope composition are explained by exchange of oxygen between the molten surface of the meteorites with the atmosphere and weathering. Meteorite fusion crust formation is qualitatively similar to conditions of chondrule formation. Therefore, fusion crusts may, at least to some extent, serve as a natural analogue to chondrule formation processes. Meteorite fusion crust and chondrules exhibit a similar extent of Fe isotope fractionation, supporting the idea that the Fe isotope signature of chondrules was established in a high‐pressure environment that prevented large isotope fractionations. The exchange of O between a chondrule melt and an 16O‐poor nebula as the cause for the observed nonmass dependent O isotope compositions in chondrules is supported by the same process, although to a much lower extent, in meteorite fusion crusts.  相似文献   

11.
We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25–75‰ and δ18O ≈ 15–35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0–130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH413C ≈ ?33‰ or ?20‰ for CO‐ or CH4‐dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ ?5.5‰, and δ13C ≈ ?31‰ or ?17‰ for CO‐ or CH4‐dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10–40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65–80‰) and less altered samples (δ13C ≈ 30–40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic composition (δ18O ≈ ?9.25‰, and δ13C ≈ ?21‰ or ?8‰ for CO‐ or CH4‐dominated systems, respectively) if the less altered CRs had higher mole fractions of CO2 in their fluids. Semarkona and Kaba carbonates have some of the lightest C isotopic compositions of the meteorites studied here, probably because they formed at higher temperatures and/or from more CO2‐rich fluids. The fluids responsible for the alteration of chondrites and from which the carbonates formed were almost certainly accreted as ices. By analogy with cometary ices, CO2 and/or CO would have dominated the trapped volatile species in the ices. The chondrites studied are too oxidized for CO‐dominated fluids to have formed in their parent bodies. If CH4 was the dominant C species in the fluids during carbonate formation, it would have to have been generated in the parent bodies from CO and/or CO2 when oxidation of metal by water created high partial pressures of H2. The fact that the chondrite carbonate C/H2O mole ratios are of the order predicted for CO/CO2‐H2O ices that experienced temperatures of >50–100 K suggests that the chondrites formed at radial distances of <4–15 AU.  相似文献   

12.
Abstract— We have studied the relationship between bulk chemical compositions and relative formation ages inferred from the initial 26Al/27Al ratios for sixteen ferromagnesian chondrules in least equilibrated ordinary chondrites, Semarkona (LL3.0) and Bishunpur (LL3.1). The initial 26Al/27Al ratios of these chondrules were obtained by Kita et al. (2000) and Mostefaoui et al. (2002), corresponding to relative ages from 0.7 ± 0.2 to 2.4 ?0.4/+0.7 Myr after calcium‐aluminum‐rich inclusions (CAIs), by assuming a homogeneous distribution of 26Al in the early solar system. The measured bulk compositions of the chondrules cover the compositional range of ferromagnesian chondrules reported in the literature and, thus, the chondrules in this study are regarded as representatives of ferromagnesian chondrules. The relative ages of the chondrules appear to correlate with bulk abundances of Si and the volatile elements (Na, K, Mn, and Cr), but there seems to exist no correlation of relative ages neither with Fe nor with refractory elements. Younger chondrules tend to be richer in Si and volatile elements. Our result supports the result of Mostefaoui et al. (2002) who suggested that pyroxene‐rich chondrules are younger than olivine‐rich ones. The correlation provides an important constraint on chondrule formation in the early solar system. It is explained by chondrule formation in an open system, where silicon and volatile elements evaporated from chondrule melts during chondrule formation and recondensed as chondrule precursors of the next generation.  相似文献   

13.
Cluster chondrites are characterized by close‐fit textures of deformed and indented chondrules, taken as evidence for hot chondrule accretion (Metzler 2012 ). We investigated seven cluster chondrite clasts from six brecciated LL3 chondrites and measured their bulk oxygen isotopic and chemical composition, including REE, Zr, and Hf. The same parameters were measured in situ on 93 chondrules and 4 interchondrule matrix areas. The CI‐normalized REE patterns of the clasts are flat, showing LL‐chondritic concentrations. The mean chemical compositions of chondrules in clasts and other LL chondrites are indistinguishable and we conclude that cluster chondrite chondrules are representative of the normal LL chondrule population. Type II chondrules are depleted in MgO, Al2O3 and refractory lithophiles (REE, Zr, Hf) by factors between 0.65 and 0.79 compared to type I chondrules. The chondrule REE patterns are basically flat with slight LREE < HREE fractionations. Many chondrules exhibit negative Eu anomalies while matrix shows a complementary pattern. Chondrules scatter along a correlation line with a slope of 0.63 in the oxygen 3‐isotope diagram, interpreted as the result of O‐isotope exchange between chondrule melts and 18O‐rich nebular components. In one clast, a distinct anticorrelation between chondrule size and δ18O is found, which may indicate a more intense oxygen isotope exchange by smaller chondrules. In some clasts the δ18O values of type I chondrules are correlated with concentrations of SiO2 and MnO and anticorrelated with MgO, possibly due to the admixture of a SiO2‐ and MnO‐rich component to chondrule melts during oxygen isotope exchange. Two chondrules with negative anomalies in Sm, Eu, and Yb were found and may relate their precursors to refractory material known from group III CAIs. Furthermore, three chondrules with strong LREE > HREE and Zr/Hf fractionations were detected, whose formation history remains to be explained.  相似文献   

14.
Abstract– Maribo is a new Danish CM chondrite, which fell on January 17, 2009, at 19:08:28 CET. The fall was observed by many eye witnesses and recorded by a surveillance camera, an all sky camera, a few seismic stations, and by meteor radar observatories in Germany. A single fragment of Maribo with a dry weight of 25.8 g was found on March 4, 2009. The coarse‐grained components in Maribo include chondrules, fine‐grained olivine aggregates, large isolated lithic clasts, metals, and mineral fragments (often olivine), and rare Ca,Al‐rich inclusions. The components are typically rimmed by fine‐grained dust mantles. The matrix includes abundant dust rimmed fragments of tochilinite with a layered, fishbone‐like texture, tochilinite–cronstedtite intergrowths, sulfides, metals, and carbonates often intergrown with tochilinite. The oxygen isotopic composition: (δ17O = ?1.27‰; δ18O = 4.96‰; Δ17O = ?3.85‰) plots at the edge of the CM field, close to the CCAM line. The very low Δ17O and the presence of unaltered components suggest that Maribo is among the least altered CM chondrites. The bulk chemistry of Maribo is typical of CM chondrites. Trapped noble gases are similar in abundance and isotopic composition to other CM chondrites, stepwise heating data indicating the presence of gas components hosted by presolar diamond and silicon carbide. The organics in Maribo include components also seen in Murchison as well as nitrogen‐rich components unique to Maribo.  相似文献   

15.
Abstract— In order to investigate the distribution of 26A1 in chondrites, we measured aluminum‐magnesium systematics in four calcium‐aluminum‐rich inclusions (CAIs) and eleven aluminum‐rich chondrules from unequilibrated ordinary chondrites (UOCs). All four CAIs were found to contain radiogenic 26Mg (26Mg*) from the decay of 26A1. The inferred initial 26Al/27Al ratios for these objects ((26Al/27Al)0 ? 5 × 10?5) are indistinguishable from the (26Al/27Al)0 ratios found in most CAIs from carbonaceous chondrites. These observations, together with the similarities in mineralogy and oxygen isotopic compositions of the two sets of CAIs, imply that CAIs in UOCs and carbonaceous chondrites formed by similar processes from similar (or the same) isotopic reservoirs, or perhaps in a single location in the solar system. We also found 26Mg* in two of eleven aluminum‐rich chondrules. The (26Al/27Al)0 ratio inferred for both of these chondrules is ~1 × 10?5, clearly distinct from most CAIs but consistent with the values found in chondrules from type 3.0–3.1 UOCs and for aluminum‐rich chondrules from lightly metamorphosed carbonaceous chondrites (~0.5 × 10?5 to ~2 × 10?5). The consistency of the (26Al/27Al)0 ratios for CAIs and chondrules in primitive chondrites, independent of meteorite class, implies broad‐scale nebular homogeneity with respect to 26Al and indicates that the differences in initial ratios can be interpreted in terms of formation time. A timeline based on 26Al indicates that chondrules began to form 1 to 2 Ma after most CAIs formed, that accretion of meteorite parent bodies was essentially complete by 4 Ma after CAIs, and that metamorphism was essentially over in type 4 chondrite parent bodies by 5 to 6 Ma after CAIs formed. Type 6 chondrites apparently did not cool until more than 7 Ma after CAIs formed. This timeline is consistent with 26Al as a principal heat source for melting and metamorphism.  相似文献   

16.
Abstract— We report the results of a mineralogical and O‐isotopic study of 362 chondrules disaggregated from the Bo Xian chondrite. The range of mineral compositions (Fa = 0.8–31.2%, mean = 23.5%, mode = 27–28%) are consistent with a reclassification of this meteorite from LL4 to LL3.9. Chondrule diameters range from 0.20 to 3.40 mm (mean = 0.74 mm) in the disaggregated population. A lower mean diameter (0.64 mm) calculated from thin‐section measurements partly reflects the high proportion of chondrule fragments. The chondrule size distribution, which is approximately log‐normal, is consistent with size‐sorting mechanisms. This sorting could be linked to the fragmentation of many chondrules on the parent body. However, in detail, the variation in diameter of different chondrule types and a hiatus in the size distribution at 0.6 mm indicate that there may have been complex controls perhaps partly being determined by the chondrule formation mechanism. Seven percent of the sectioned chondrules (102) contain chemically fractionated mineral assemblages: cristobalite‐bearing and Al‐rich. This significant degree of chemical heterogeneity probably resulted from both igneous and volatility controls. Oxygen‐isotopic compositions were determined on mineral separates and 16 of the sectioned chondrules. Three separate isotopic exchange events have been identified. The dominant one is a low‐temperature hydrous gas‐solid exchange event between 16O‐rich solid and 16O‐poor gas reservoirs that lay along a slope 1.0 line on three‐isotope plots. Partial equilibration with the gas by feldspar and cristobalite, which exchanged more rapidly than olivine or pyroxene, led to formation of a slope 0.77 mixing line for Bo Xian and other LL chondrites. Mineralogy is the dominant control on the extent of this exchange; no relationship between isotopic composition and chondrule texture or size was identified. The feldspar separate and cristobalite‐rich chondrules have the most 16O‐poor compositions. Subsequently, thermal metamorphism in the parent body led to partial isotopic equilibration between the different mineral phases. A third exchange event, predating the other two events, is probably shown by one of the Al‐rich chondrules. This has an 16O‐rich composition, lying below the terrestrial fractionation line. Another Al‐rich chondrule has a normal ordinary chondrite isotopic composition. It is not clear whether the isotopic fractionation recorded in some Al‐rich chondrules can be achieved by the dominant gas‐solid exchange. Instead, the precursor O to the mineral phases may have become 16O‐rich during an earlier phase of mass‐independent fractionation.  相似文献   

17.
Abstract— The Mg‐isotopic compositions in five barred olivine (BO) chondrules, one coarse‐grained rim of a BO chondrule, a relic spinel in a BO chondrule, one skeletal olivine chondrule similar to BO chondrules in mineralogy and composition, and two non‐BO chondrules from the Allende meteorite have been measured by thermal ionization mass spectrometry. The Mg isotopes are not fractionated and are within terrestrial standard values (±2.0%o per amu) in seven of the eight analyzed ferromagnesian chondrules. A clump of relic spinel grain and its host BO chondrule R‐11 give well‐resolvable Mg fractionations that show an enrichment of the heavier isotopes, up to +2.5%‰ per amu. The Mg‐isotopic compositions of coarse‐grained rim are identical to those of the host chondrule with BO texture. The results imply that ferromagnesian and refractory precursor components of the Allende chondrule may have been formed from isotopically heterogeneous reservoirs. In the nebula region where Allende chondrules formed, recycling of chondrules and multiple high‐temperature heating did not significantly alter the chemical and isotopic memory of earlier generations. Chemical and isotopic characteristics of refractory precursors of carbonaceous chondrite chondrules and CAIs are more closely related than previously thought. One of the refractory chondrule precursors of CV Allende is enriched in the heavier Mg isotopes and different from those of more common ferromagnesian chondrule precursors. The most probable scenario at the location where chondrule R‐11 formed is as follows. Before chondrule formation, several high‐temperature events occurred and then RPMs, refractory oxides, and silicates condensed from the nebular gas in which Mg isotopes were fractionated. Then, this CAI was transported into the chondrule formation region and mixed with more common, ferromagnesian precursors with normal Mg isotopes, and formed the BO chondrule. Because Mg isotope heterogeneity among silicates and spinel are found in some CAIs (Esat and Taylor, 1984), we cannot rule out the possibility that Mg isotopes of a melted portion of the refractory precursor (i.e., outer portion of CAI) are normal or enriched in the light isotope. Magnesium isotopes in the R‐11 host are also enriched in the heavier isotopes, +2.5%o per amu, which suggests that effects of isotopic heterogeneity among silicates and spinel, if they existed, are not considered to be large. It is possible that CAI precursor silicates partially dissolved during the chondrule forming event, contributing Mg to the melt and producing a uniform Mg‐isotopic signature but enriched in the heavier Mg isotopes, +2.5%‰ per amu. Most Mg isotopes in more common ferromagnesian chondrules represent normal chondritic material. Chemical and Mg‐isotopic signatures formed during nebular fractionations were not destroyed during thermal processes that formed the chondrule, and these were partly preserved in relic phases. Recycling of Allende chondrules and multiple heating at high temperature did not significantly alter the chemical and Mg‐isotopic memory of earlier generations.  相似文献   

18.
Abstract— We studied the elemental and isotopic abundances of noble gases (He, Ne, Ar in most cases, and Kr, Xe also in some cases) in individual chondrules separated from six ordinary, two enstatite, and two carbonaceous chondrites. Most chondrules show detectable amounts of trapped 20Ne and 36Ar, and the ratio (36Ar/20Ne)t (from ordinary and carbonaceous chondrites) suggests that HL and Q are the two major trapped components. A different trend between (36Ar/20Ne)t and trapped 36Ar is observed for chondrules in enstatite chondrites indicating a different environment and/or mechanism for their formation compared to chondrules in ordinary and carbonaceous chondrites. We found that a chondrule from Dhajala chondrite (DH‐11) shows the presence of solar‐type noble gases, as suggested by the (36Ar/20Ne)t ratio, Ne‐isotopic composition, and excess of 4He. Cosmic‐ray exposure (CRE) ages of most chondrules are similar to their host chondrites. A few chondrules show higher CRE age compared to their host, suggesting that some chondrules and/or precursors of chondrules have received cosmic ray irradiation before accreting to their parent body. Among these chondrules, DH‐11 (with solar trapped gases) and a chondrule from Murray chondrite (MRY‐1) also have lower values of (21Ne/22Ne)c, indicative of SCR contribution. However, such evidences are sporadic and indicate that chondrule formation event may have erased such excess irradiation records by solar wind and SCR in most chondrules. These results support the nebular environment for chondrule formation.  相似文献   

19.
Abstract— We have studied Pb‐isotope systematics of chondrules from the oxidized CV3 carbonaceous chondrite Allende. The chondrules contain variably radiogenic Pb with a 206Pb/204Pb ratio between 19.5–268. Pb‐Pb isochron regression for eight most radiogenic analyses yielded the date of 4566.2 ± 2.5 Ma. Internal residue‐leachate isochrons for eight chondrule fractions yielded consistent dates with a weighted average of 4566.6 ± 1.0 Ma, our best estimate for an average age of Allende chondrule formation. This Pb‐Pb age is consistent with the range of model 26Al‐26Mg ages of bulk Allende chondrules reported by Bizzarro et al. (2004) and is indistinguishable from Pb‐Pb ages of Ca‐Al‐rich inclusions (CAIs) from CV chondrites (4567.2 ± 0.6 Ma) (Amelin et al. 2002) and the oldest basaltic meteorites. We infer that chondrule formation started contemporaneously with or shortly after formation of CV CAIs and overlapped in time with formation of the basaltic crust and iron cores of differentiated asteroids. The entire period of chondrule formation lasted from 4566.6 ± 1.0 Ma (Allende) to 4564.7 ± 0.6 Ma (CR chondrite Acfer 059) to 4562.7 ± 0.5 Ma (CB chondrite Gujba) and was either continuous or consisted of at least three discrete episodes. Since chondrules in CB chondrites appear to have formed from a vapor‐melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated (Krot et al. 2005), there were possibly a variety of processes in the early solar system occurring over at least 4–5 Myr that we now combine under the umbrella name of “chondrule formation.”  相似文献   

20.
The water‐soluble organic compounds in carbonaceous chondrite meteorites constitute a record of the synthetic reactions occurring at the birth of the solar system and those taking place during parent body alteration and may have been important for the later origins and development of life on Earth. In this present work, we have developed a novel methodology for the simultaneous analysis of the molecular distribution, compound‐specific δ13C, and enantiomeric compositions of aliphatic monocarboxylic acids (MCA) extracted from the hot‐water extracts of 16 carbonaceous chondrites from CM, CR, CO, CV, and CK groups. We observed high concentrations of meteoritic MCAs, with total carbon weight percentages which in some cases approached those of carbonates and insoluble organic matter. Moreover, we found that the concentration of MCAs in CR chondrites is higher than in the other meteorite groups, with acetic acid exhibiting the highest concentration in all samples. The abundance of MCAs decreased with increasing molecular weight and with increasing aqueous and/or thermal alteration experienced by the meteorite sample. The δ13C isotopic values of MCAs ranged from ?52 to +27‰, and aside from an inverse relationship between δ13C value and carbon straight‐chain length for C3–C6 MCAs in Murchison, the 13C‐isotopic values did not correlate with the number of carbon atoms per molecule. We also observed racemic compositions of 2‐methylbutanoic acid in CM and CR chondrites. We used this novel analytical protocol and collective data to shed new light on the prebiotic origins of chondritic MCAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号