首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bays, lagoons, and estuaries are sites where normal physicochemical processes result in accumulations of sediment and certain chemicals. Changes in water velocity and chemistry, and chemical interactions of sediment, biota, and water are factors that contribute to concentrating trace metals in coastal and lake sediments. To evaluate whether lead concentration is affected by mineralogy, kaolinite, illite, montmorillonite, and a zeolitic tuff were suspended in 10 and 20 mg/l concentrations of lead solutions [Pb(NO3)2] which were pH-adjusted incrementally through a range of 2.5 to 11.0. Samples were centrifuged after 24 hours to separate liquid from suspended sediment. Sediment-free solutions were run as controls. Lead concentrations were determined by atomic adsorption spectrophotometry. Results indicate that montmorillonite (Wyoming Bentonite) particles serve as lead adsorption nuclei over a broad pH range. Maximum sorption occurs as the solution reaches a pH of about 7.5. The kaolinite clay from Georgia strongly adsorbs trace amounts of lead at pH ranging from 3.0 to 4.5, where up to 95 percent of the lead is adsorbed by the clay. Little adsorption difference was found between the Fithian illite clay and zeolitic tuff from the Nevada Test Site in comparison to sediment-free solutions which were pH-adjusted. In concentrations of 10 to 20 mg/l montmorillonite and kaolinite clays serve as nucleation sites capable of adsorbing up to 95 percent of trace concentrations of lead within 24 hours. It appears that accumulations of lead in coastal lake and estuarine sediments are significantly influenced by:
  1. pH changes which occur as river and coastal waters mix resulting in precipitation of lead, and
  2. sorption of lead by suspended clays.
  相似文献   

2.
Lithium, boron, copper and zinc have been determined on cored and surface sediments from the delta and the drainage valley of the Nile River. The clay size fraction separated from the samples consists of montmorillonite and kaolinite as the predominant clay components, followed by illite and chlorite. Quartz and calcite are the non-clay admixtures.Lithium content varies between 7 and 48 ppm in the bulk sediments and between 28 and 61 ppm in the clay fractions, being clearly enriched in the clay material. In the clay fractions, concentration of lithium in kaolinite is indicated by a close relation between the lithium and kaolinite contents and is further supported by a close correlation with A12O3.Boron in the clay fraction (62–112 ppm) appears to be concentrated in detrital illite.The concentrations of copper (26–900 ppm) and zinc (65–333 ppm) in the clay fractions correlate positively with the CO2 percentage. Both elements tend to occur in or on the claysized grains of caleite.  相似文献   

3.
The synthesis of illite mixed-layer minerals at surface conditions is possible through precipitation of Al hydroxides from Si-, Mg- and K-containing solutions. It has been shown that amorphous hydroxides of Al, Fe, etc. are capable of coprecipitating silica even from very dilute solutions. By aging of these X-ray amorphous hydroxide—silica precipitates under certain conditions, clay minerals can be synthesized at low temperatures. The presence of Mg particularly favors the formation of three-layer clay minerals. Mg-rich Al hydroxide—silica precipitates permit formation of tri- and di-octahedral smectite, illite and chlorite. The formation of three-layer clay minerals is only possible when the precipitates contain at least 6% MgO. The precipitates stay amorphous if the Mg content is lower. The adsorption of Mg and K on the hydroxide—silica precipitate controls the illite or montmorillonite portion in the mixture of the three-layer silicates. There is a competition for K and Mg adsorption on the hydroxide—silica precipitates. Higher K concentration inhibits the three-layer mineral formation through the lowering of the Mg content in the precipitates. Illite mineral formation is favored under certain K/Mg ratios. Higher NaCl contents do not favor the three-layer mineral formation.The enrichment of Mg and K in the precipitates is not as large as the enrichment of Si in the hydroxides. This means that the illite mineral formation is only possible from solutions with a high-salt content like seawater.  相似文献   

4.
江西龙南花岗岩稀土风化壳中粘土矿物的研究   总被引:8,自引:0,他引:8       下载免费PDF全文
本区燕山早期花岗岩发育的风化壳中的粘土矿物以高岭石和埃洛石(7Å)为主;蒙脱石、三水铝石及其它为新查明矿物。据粘土矿物组合特征,自风化剖面深部到地表分为三个带:含蒙脱石带,高岭石和埃洛石(7Å)带,含三水铝石带。本文探讨了矿物在风化过程中的生成演化顺序,并进行了热力学的解释。据各带粘土物质的阳离子交换量与稀土含量变化的不一致关系认为,稀土在C带中的富集是化学风化的结果,与粘土矿物组合无关。  相似文献   

5.
Natural and constructed clay liners are routinely used to contain waste and wastewater. The impact of acidic solutions on the geochemistry and mineralogy of clays has been widely investigated in relation to acid mine drainage systems at pH > 1.0. The impact of H2SO4 leachate characterized by pH < 1.0 and potentially negative pH values on the geochemistry and mineralogy of clays is, however, not clear. Thus, laboratory batch experiments were conducted on three natural clay samples with different mass ratios of smectite, illite and kaolinite to investigate the impact of H2SO4 on the geochemistry and mineralogy of aluminosilicates from pH 5.0 to −3.0. Batch testing was conducted at seven pH treatments (5.0, 3.0, 1.0, 0.0, −1.0, −2.0 and −3.0) using standardized H2SO4 solutions for four exposure periods (14, 90, 180, and 365 d). Aqueous geochemical and XRD analyses showed: increased dissolution of aluminosilicates with decreasing pH and increasing exposure period, that smectite was more susceptible to dissolution than illite and kaolinite, precipitation of an amorphous silica phase occurred at pH ? 0.0, and anhydrite precipitated in Ca-rich clays at pH ? −1.0. In addition, global dissolution rates were calculated for the clays and showed good agreement to literature smectite, illite and kaolinite dissolution rates, which suggests global dissolution rates for complex clays could be determined from monomineralic studies. A stepwise conceptual model of the impact of H2SO4 on aluminosilicate geochemistry and mineralogy between pH 5.0 and −3.0 is proposed.  相似文献   

6.
The dissolution rate of illite, a common clay mineral in Australian soils, was studied in saline-acidic solutions under far from equilibrium conditions. The clay fraction of Na-saturated Silver Hill illite (K1.38Na0.05)(Al2.87Mg0.46Fe3+0.39Fe2+0.28Ti0.07)[Si7.02Al0.98]O20(OH)4 was used for this study. The dissolution rates were measured using flow-through reactors at 25 ± 1 °C, solution pH range of 1.0-4.25 (H2SO4) and at two ionic strengths (0.01 and 0.25 M) maintained using NaCl solution. Illite dissolution rates were calculated from the steady state release rates of Al and Si. The dissolution stoichiometry was determined from Al/Si, K/Si, Mg/Si and Fe/Si ratios. The release rates of cations were highly incongruent during the initial stage of experiments, with a preferential release of Al and K over Si in majority of the experiments. An Al/Si ratio >1 was observed at pH 2 and 3 while a ratio close to the stoichiometric composition was observed at pH 1 and 4 at the higher ionic strength. A relatively higher K+ release rate was observed at I = 0.25 in 2-4 pH range than at I = 0.01, possibly due to ion exchange reaction between Na+ from the solution and K+ from interlayer sites of illite. The steady state release rates of K, Fe and Mg were higher than Si over the entire pH range investigated in the study. From the point of view of the dominant structural cations (Si and Al), stoichiometric dissolution of illite occurred at pH 1-4 in the higher ionic strength experiments and at pH ?3 for the lower ionic strength experiments. The experiment at pH 4.25 and at the lower ionic strength exhibited lower RAl (dissolution rate calculated from steady state Al release) than RSi (dissolution rate calculated from steady state Si release), possibly due to the adsorption of dissolved Al as the output solutions were undersaturated with respect to gibbsite. The dissolution of illite appears to proceed with the removal of interlayer K followed by the dissolution of octahedral cations (Fe, Mg and Al), the dissolution of Si is the limiting step in the illite dissolution process. A dissolution rate law showing the dependence of illite dissolution rate on proton concentration in the acid-sulfate solutions was derived from the steady state dissolution rates and can be used in predicting the impact of illite dissolution in saline acid-sulfate environments. The fractional reaction orders of 0.32 (I = 0.25) and 0.36 (I = 0.01) obtained in the study for illite dissolution are similar to the values reported for smectite. The dissolution rate of illite is mainly controlled by solution pH and no effect of ionic strength was observed on the dissolution rates.  相似文献   

7.
Chemico-mineralogical attributes of authigenic clays associated with the altered volcanic tuffs that occur in the Palaeoproterozoic Porcellanite Formation contain evidences of hydrothermal alteration and diagenetic processes in a marine environment. Previous sedimentological and geochemical studies on Porcellanite Formation were restricted to the Chopan area, but, the details related to provenance, nature and source of volcanism archived in these clays have not been ascertained. In order to understand these aspects, present study on these authigenic clays were carried out. Clay minerals represent dominance of illite with subordinate amount of montmorillonite. Moreover, low abundance of kaolinite is also noticed. The illite fibers and plates associated with the kaolinite indicate illitization. The kaolinite to illite transformation is favoured by incorporation of K+ ions, derived from the K-feldspar dissolution and its overgrowth. Major oxide contents of these clays and their ratios when plotted over diagrams marked with standard illite, kaolinite, smectite and chlorite compositional fields show clustering within or close to the illite field. Thermodynamic components calculated for these clays when plotted over AR23+AlSi3O10(OH)2 − R23+Si4O10(OH)2 − AR2+R3+Si4O10(OH)2 ternary diagram, data plots lie within the illite, mixed layer I/S and smectite fields. Binary major oxide data plots between bulk rock and authigenic clay compositions showed felsic affinity. Montmorillonite and illite predominated in the eastern and western marginal areas of the Vindhyan Basin, respectively. However, former resulted from the hydrothermal alteration of volcanic glass associated with the ferruginous breccia and altered tuffs and remnants of the volcanic vents, whereas, later is associated with the tuffaceous beds. Owing to the adsorption, Ba, Rb and Sr is enriched in clays comparing to the bulk rock composition. Low (< 15 ppm) Sc values suggested major contribution from the felsic component. Also, low Rb/Sr and Th/U values revealed moderate insitu weathering. The dominance of K-feldspar alteration and insitu weathering is also evident from clustering of clay data plots in the A-CN-K ternary diagram. Pronounced negative Eu anomaly together with higher LREE/HREE values associated with these clay minerals implied proximity to source and their possible derivation from the silicified felsic tuffs available in the provenance.  相似文献   

8.
颗石藻是海洋中广泛分布的超微型浮游藻,经生物矿化作用形成的碳酸钙质颗石,在古海洋学研究中具有重要意义。海洋粘土矿物与有机质的有机-无机相互作用在全球碳循环中扮演着重要角色。本文选取广泛分布于海洋的赫氏颗石藻Emiliania huxleyi与海洋粘土矿物中具有代表性的伊利石和蒙脱石共培养。通过对颗石藻生长曲线和Sr/Ca、Mg/Ca元素比值、颗石藻与粘土矿物样品的紫外可见光吸收光谱、红外吸收光谱和矿物物相等分析,研究海洋粘土矿物与颗石藻的相互作用规律。通过研究表明伊利石对颗石藻的影响较小,蒙脱石因对营养元素的吸附和颗石藻的絮凝作用对颗石藻的生长和Sr/Ca、Mg/Ca元素比值影响较大。颗石藻代谢分泌的生物分子未能通过层间插层作用进入伊利石层间,颗石藻分泌的生物分子可通过插层作用进入并储存于蒙脱石层间,海洋粘土矿物中的蒙脱石与海洋微生物的相互作用值得地球微生物家关注,可能有助于对古海洋环境的认识。  相似文献   

9.
Lithogeochemical-mineralogical haloes around unconformity-type uranium deposits in northern Saskatchewan can expand the size of drill targets up to fifteen times. The deposits are located at or near the unconformity between Aphebian metamorphosed basement rocks in close proximity to Archean granitoids and overlying unmetamorphosed sandstones of the Helikian Athabasca Group. Deposits studied include Key Lake (Deilmann), Midwest Lake and Eagle Point.Unconformity-type deposits are associated with broad alteration haloes in the overlying sandstones and more restricted haloes in the basement rocks. The haloes in the sandstone are localized around steeply dipping fault structures and are characterized by zones of intense leaching of specular hematite and detrital heavy mineral layers and by changes in chemistry related to clay mineral alteration and tourmalinization.Clay mineral alteration haloes are common in the sandstone and basement host rocks. Interstitial clays consist mainly of kaolinite and illite with lesser amounts of chlorite. The ratio K2O/AI2O3 proved useful in delineating illite-kaolinite patterns in the sandstone and in the uppermost portions of the paleoweathering profile in basement rocks. The Midwest deposit is characterized by a broad bell-shaped zone (500 m across strike) of high K2O/AI2O3 ratios (>0.18) in which illite is the dominant clay mineral. The sandstone above the Deilmann deposit, on the other hand, is characterized by silicification and kaolinitization with low K2O/AI2O3 ratios (<0.04). This kaolinite cap overprints a preexisting illite zone.Anomalously high boron values are characteristic of the three deposits considered in this study. Boron anomalies are similar in extent to the anomalous clay mineral alteration haloes. Altered sandstones commonly contain aggregates of radiating magnesium-rich dravite needles within the clay matrix. The interpretation of boron patterns is problema tical however, mainly because of the detrital tourmaline component in sandstones and metamorphic tourmalines present in the Aphebian metasediments.Trace elements such as U, Ni, As and Co are generally of limited use in expanding targets in sandstone because their haloes are restricted to a few tens of metres horizon-anomalies along the steeply dipping zones of mineralization related to fault structures. Uranium (>3 ppm) does form an anomaly more than 200 metres laterally across the Midwest deposit. At the Deilmano deposit anomalous uranium dispersion is restricted to within a few metres of high grade ore.In the basement rocks, the various layers of the paleoweathering profile are geochemically overprinted up to 250 m from mineralization. Bleaching related to illitization and chloritization is associated with enrichment in K2O, MgO, B, S, U, As, Ni and P2O3. The ratio Fe2O3/MgO is useful in delineating chloritization in the upper portion of the paleo weathering profile.Deposits with large root extensions in the Aphebian metasediments such as Eagle Point, have intense dravite-chlorite-illite alteration zones which are restricted to within a few metres of mineralization across strike. ‘Quartzite” units are alteration related. The complexity of the basement lithology inhibits the use of individual elements as alteration guides other than in the intensely altered zone. The application of multivariant techniques, element ratios and clay mineralogical work prove useful in identifying the mineralogical changes at Eagle Point.  相似文献   

10.
《Applied Geochemistry》1999,14(5):559-568
Salt marshes are the major areas for net sedimentation in many estuaries such as the Delaware Bay, and their diagenetic chemistry is harsh and extreme with large seasonal excursions in chlorinity (1–50 ppt), pH (4–6), and Eh (−240+120). Such diagenesis is driven by organic matter decomposition using redox cycles of S and Fe materials imported primarily as tidal sea water SO4 and Fe silicates, respectively.Important and quantitative changes in clay mineralogy occur within a decade at the redox boundary in a high marsh sediment near Lewes, Delaware. The clay mineralogy consists initially of a micaceous illite and chlorite mixture accumulating at the salt marsh surface. It is comprised of relic glacial sediments deposited on the continental slope during their net tidal movement from the sea to land. Once buried, these detrital clays are transformed into a new assemblage containing an illite/smectitic mixed layer mineral of poor crystallinity. Using curve decomposition techniques on complex X-ray traces, it is estimated that this new phase constitutes 45–55% of the clay fraction.The redox boundary where the sharp transition occurs is only about 20 a old as determined by 210Pb and 137Cs geochronology, and, thus, the clay mineral transformation is rapid. The occurrence of the new, abundant clay mineral is very abrupt (less than 1 cm at 12 cm in depth) and, thus, may itself occur in as little as three years. Once formed, the new mixed layer phase remains stable during the subsequent 40 a of burial from the time of formation at the oxic/anoxic boundary.Slow transformations of unstable primary clay reactants such as illite and chlorite are a common process of soil formation. However such rapid clay reactions have rarely been documented in either subaerial or submerged soil settings. The formation of a smectite mineral product of high chemical reactivity for a significant portion of the clays in a soil is unusual. In fact, the abrupt change in clay mineralogy in the salt marsh occurs precisely at the sharp evolution in salt marsh geochemistry from oxidized to reducing conditions where there is extensive redox cycling of Fe and S phases. A large seasonal oscillation in interstitial pH and Eh probably contributes to the rapid clay transformation. Such clay transformations may have important implications for the retention of other trace elements entering the salt marsh by atmospheric fallout and tidal cycles, or the release of such metal inventories after burial.  相似文献   

11.
Methylene blue and rhodamine 6G were used as molecular sensors for the spectrophotometric titrations of the aqueous colloids of clay minerals (montmorillonite, illite and kaolinite). The dyes adsorbed on colloid particles form molecular aggregates, which exhibit spectral properties significantly different from those of dye solutions. Spectrophotometric titrations provide the most sensitive detection of smectites in aqueous colloids (sub-ppm concentrations); and the sensitivity further increases using second derivative spectroscopy. The endpoint of spectrophotometric titrations can be used for the determination of exchange capacity of the mineral in colloids and in this way to estimate its amount. The method is selective only to expandable clays, which was proven by experiments with kaolinite and illite. Spectrophotometric titrations have promising future in the analysis of clays and can be applied in many fields of geology, mineralogy, chemistry, material sciences or in industry. Its application may expand to the analysis of other nanomaterials built from charged particles and exhibiting metachromasy in the systems with organic dyes.  相似文献   

12.
A continuous shallow marine 10 m thick succession within the Langpar Formation in the Um Sohryngkew river section of Meghalaya, containing late Maastrichtian through early Danian planktonic foraminiferal zones – CF4, CF3, CF2, CF1, P0, Pα and P1a and the K/Pg boundary (between CF1 and P0) that makes unique of its kind. The section has been re-studied and sampled for clay mineralogy to understand the palaeoenvironmental conditions prevalent in the region and to assess the K/Pg transition. The relative abundances of the clay mineral phases permitted a threefold sub-division of the studied section with a illite, illite/ smectite dominated lower part, illite, kaolinite and abundance of montmorillonite dominated middle part and kaolinite–montmorillonite dominated upper part. Enriched HREEs in the lower part of the succession suggest variations in the pH of alteration solutions. Most of the samples show positive cerium (δCe) and europium (δEu) anomalies, the former reflecting oxidizing conditions at the time of clay formation. Illite dominated clays present a positive Eu anomaly, formed at relatively higher temperatures than the clays with less illite and without Eu anomalies, whereas clays occurring in the lower and upper parts exhibit a prominent negative Eu anomaly. Shifts in the redox condition found in this section are more or less similar to the foraminiferal changes and Au, Pt, Pd anomalies. Clay mineralogical attributes and REE patterns, comparable to those of the known K/Pg boundaries, appeared within the CF3 and CF2 zones in the Um Sohryngkew river section. The sample at the boundary between CF3 and CF2 is marked by a negative <delta>Ce anomaly, high La/Yb and TOC values, suggesting that sea level rise during the upper part of CF3 was caused by tectonism rather than warming. The similar characteristics of clay minerals and REE patterns, attributed to the initiation of tectonic events during the CF3 zone, indicate environmental changes that affected the shelf area and the provenance of these sediments.  相似文献   

13.
凹凸石粘土与玄武岩的成因关系   总被引:4,自引:0,他引:4  
在矿物组成研究的基础上,对比研究了凹凸棒石,蒙脱石,凹凸棒石粘土,蒙脱石粘土,玄武岩,风化玄武岩的化学组成。根据化学成分对比,分析了玄武岩与凹凸棒石粘土的成因关系,解释了玄武岩对凹凸棒石粘土的时空控制,结合地质观测,提出形成苏皖地区凹凸棒石粘土的物质成分基本上来源于玄岩的化学风化,但物质成分发生了较大的分异,凹凸棒石粘土不能直接同玄武岩经地表雨水的风化淋滤形成,而是玄武岩风化形成的蒙脱石经搬运沉积,再与镁质溶液反应形成,或凹凸棒石直接从富镁碱性溶液中结晶形成,凹凸棒石粘土形成的物理化学条件为偏碱性的还原条件。  相似文献   

14.
Clay mineralogy of Triassic sediments in southern Israel and Sinai   总被引:1,自引:0,他引:1  
The clay mineral composition of Triassic sediments in the Negev and Sinai depends upon the environment of deposition. Kaolinite predominates in continental and epicontinental sediments. The mineralogical composition of the marine clays resembles that of corresponding samples from North Africa and Europe, which comprise various mixtures and interstratifications of illite, montmorillonite, vermiculite and chlorite. Evaporitic sediments are poor in clay minerals and those present are largely detrital. The results presented suggest that chlorite was formed diagenetically by prolonged percolation of seawater through pervious layers overlying impervious ones (hard beds).  相似文献   

15.
《Chemical Geology》2003,193(3-4):167-179
REE analyses were performed on authigenic illitic clay minerals from Late Permian mudrocks, sandstones and bentonites from the Bowen Basin (Australia). The mixed-layer illite–smectite exhibit REE patterns with an obvious fractionation of the HREE from the LREE and MREE, which is an apparent function of degree of illitization reaction. The highly illitic (R≥3) illite–smectite from the northern Bowen Basin show a depletion of LREE relative to the less illitic (R=0 and 1) clays. In contrast, an enrichment of HREE for the illite-rich clays relative to less illitic clays is evident for the southern Bowen Basin samples. The North American Shale Composite-normalized (La/Lu)sn ratios show negative correlations with the illite content in illite–smectite and positive correlations with the δ18O values of the clays for both the northern and southern Bowen Basin samples. These correlations indicate that the increasing depletion of LREE in hydrothermal fluids is a function of increasing water/rock ratios in the northern Bowen Basin. Good negative correlations between (La/Lu)sn ratios and illite content in illite–smectite from the southern Bowen Basin suggest the involvement of fluids with higher alkalinity and higher pH in low water/rock ratio conditions. Increasing HREE enrichment with δ18O decrease indicates the effect of increasing temperature at low water/rock ratios in the southern Bowen Basin.Results of the present study confirm the conclusions of some earlier studies suggesting that REE in illitic clay minerals are mobile and fractionated during illitization and that this fact should be considered in studies of sedimentary processes and in identifying provenance. Moreover, our results show that REE systematic of illitic clay minerals can be applied as an useful technique to gain information about physico-chemical conditions during thermal and fluid flow events in certain sedimentary basins.  相似文献   

16.
The adsorption of pentachlorophenol (PCP) onto quartz, kaolinite, illite, montmorillonite and iron oxides has been investigated by batch equilibrium techniques. The pH-dependent isotherms are curves with peak values, the position of which is at about pH = 5-6 depending on the mineral species. Based on distribution of both speciation of surface hydroxyls on minerals and PCP in solution a surface reaction model involving surface complexation and surface electrostatic attraction is presented to fit the pH-dependent isotherms, and both reaction constants are calculated. The results show that on quartz and phyllosilicate minerals the predominant adsorption reaction is surface complexation, meanwhile both of surface electrostatic attraction and surface complexation are involved on the iron oxide minerals. The reaction constants of surface electrostatic adsorption are usually one to three orders in magnitude, larger than that of surface complexation. The concentration-dependent isotherms can be well fitted by Langmnir equation with the correlation coefficient R〉0.93 for kaolinite and iron oxides. The maximum adsorption is found in the order: hematite 〉 lepidocrocite 〉 goethite 〉 kaolinite 〉 quartz 〉 montmorillonite ≈ illite, which can be interpreted by consideration of both reaction mechanism and surface hydroxyl density. The significant adsorption of PCP onto mineral surfaces suggests that clay and iron oxide minerals will play an important role as HIOCs are adsorbed in laterite or latertoid soil, which is widespread in South China.  相似文献   

17.
The clay mineralogy of the clay intervals interbedded with siliceous mudstones across the Permian-Triassic boundary (PTB) in Pengda, Guiyang, Guizhou province, was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The clay mineral assemblages of the sediments are mainly I/S clays and minor smectite, kaolinite, and illite as reveled by XRD analyses. The peak-shape parameters BB1 and BB2 of I/S clays of the representative clay bed PL-01 are 4.7° and 4.4°, and the peak position of the low angle reflection is at 6.8° 2θ (13.6 ), suggesting that the I/S clays has a IS type of ordering. However, the presence of multi-order reflections and their intensities are different from those of completely ordered 1∶1 mixed-layer I/S clay rectorite, indicating that I/S clays of the Pengda section have partially ordered IS structures. HRTEM observations show that most of the I/S clays exhibit an IS stacking ordering. However, in some areas within a IS particle, smectite layer is observed in doublets, triplets, and quartets, which are interstratified by various amounts of illite layers, suggesting the presence of other irregular stacking in addition to the major 1∶1 IS ordered stacking. Transformation of smectite layer into illite layers is also observed in the I/S clays, suggesting that the Pengda I/S clays are derived from smectite illitization, in good agreement with the clay mineral assemblage. The I/S clays of the Pengda section contain up to 45% to 95% smectite layer, the notably higher contents of smectite layer relative to those of other PTB stratigraphic sets in south China can be attributed to difference in alteration and smectite illitization processes due to different sedimentary environments.  相似文献   

18.
Pyrolysis experiments were carried out on Monterey formation kerogen and bitumen and Green River formation kerogen (Type II and I, respectively), in the presence and absence of montmorillonite, illite and calcite at 200 and 300°C for 2–2000 hours. The pyrolysis products were identified and quantified and the results of the measurements on the gas and condensate range are reported here.A significant catalytic effect was observed for the pyrolysis of kerogen with montmorillonite, whereas small or no effects were observed with illite and calcite, respectively. Catalytic activity was evident by the production of up to five times higher C1–C6 hydrocarbons for kerogen with montmorillonite than for kerogen alone, and by the dominance of branched hydrocarbons in the C4–C6 range (up to 90% of the total amount at any single carbon number). This latter effect in the presence of montmorillonite is attributed to cracking via a carbonium-ion [carbocation] intermediate which forms on the acidic sites of the clay. No catalytic effect, however, was observed for generation of methane and C2 hydrocarbons which form by thermal cracking. The catalysis of montmorillonite was significantly greater during pyrolysis of bitumen than for kerogen, which may point to the importance of the early formed bitumen as an intermediate in the production of low molecular weight hydrocarbons. Catalysis by minerals was also observed for the production of carbon dioxide.These results stress the importance of the mineral matrix in determining the type and amount of gases and condensates forming from the associated organic matter under thermal stress. The literature contains examples of gas distributions in the geologic column which can be accounted for by selective mineral catalysis, mainly during early stages of organic matter maturation.  相似文献   

19.
The clay mineral composition of Keuper and Liassic clays and marls from Franconia (southern Germany) varies in a characteristic manner within the stratigraphic profile:
  1. 1.
    Considerable amounts of montmorillonite are characteristic of the Upper Burgsandstein (higher part of Middle Keuper), and comparable amounts of illite-montmorillonite mixed-layers characterize the Feuerletten (top of Middle Keuper). In addition to these minerals, both units contain much illite and muscovite, some kaolinite and quartz, feldspars and carbonates. According to geologic investigations, both sediments are of terrestrial origin (semi-arid climatic conditions).  相似文献   

20.
 Adsorption/desorption and oxidation/reduction of arsenic at clay surfaces are very important to the natural attenuation of arsenic in the subsurface environment. Although numerous studies have concluded that iron oxides have high affinities for the adsorption of As(V), very little experimental work has addressed the arsenic attenuation capacities of different clay minerals and aging process affecting the transformation of arsenic. The abundance of clay minerals in a variety of geochemical environments and their influence on adsorption of contaminants suggests a need for more experimental work to characterize the adsorption desorption, and oxidation of arsenic on clay minerals. In this investigation three types of clay mineral were studied: the 1 : 1 layer clays [halloysite (IN), sedimentary M-kaolinite, and weathered EPK-kaolinite]; the 2 : 1 layer clays [illite (MT) and illite/montmorillonite (MT)]; the 2 :>: 1 layer clay [chlorite (CA)]. The halloysite and the chlorite had much greater As(V) adsorption (25–35 folds) than the other clay minerals. The clay minerals had lower As(III) adsorption than As(V) adsorption, and the adsorption was affected by pH. Desorption of arsenic from the clay minerals was significantly influenced by the aging process. The quantities of extractable As(III) and As(V) decreased with increasing aging time. The results demonstrated that oxidation of As(III) to As(V) occurred on the clay surfaces, whereas reduction of As(V) to As(III) was not found in any of the clay minerals studied. The oxidation of As(III) was affected by the types of clay and aging time. Received: 22 March 1999 · Accepted: 15 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号