首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
从居里等温面埋深和地壳厚度两方面论述郯庐断裂带渤海段的深部构造特征,根据航磁资料,运用三维磁性层演方法,计算了研究海区居里面的深度;又根据布格重力异常资料,运用三维重力正,反演方法,计算了研究海区的地壳厚度,参考了地热和壳幔电性结构的有关数据,提出了对郯庐断裂渤海段深部构造特征的认识;(1)向走陡倾斜,这里居里面埋深和地壳厚度两个较为一致的结果;(2)分段性明显,显示了沿断裂带新生代以来地壳动力不  相似文献   

2.
从居里等温面埋深和地壳厚度两方面论述郯庐断裂带渤海段的深部构造特征。根据航磁资料,运用三维磁性层反演方法,计算了研究海区居里面的深度;又根据布格重力异常资料,运用三维重力正、反演方法,计算了研究海区的地壳厚度。参考了地热和壳幔电性结构的有关数据,提出了对郯庐断裂渤海段深部构造特征的认识:①向东陡倾斜,这是居里面埋深和地壳厚度两个较为一致的结果;②分段性明显,显示了沿断裂带新生代以来地壳动力学特征是不同的。郯庐断裂在渤海可以分成三段,即渤海中段,居里面最浅(13km),地壳厚度最薄(25km),地壳运动以拉张为主;辽东湾段,居里面深度16~17km,地壳厚度28~30km;莱州湾段,居里面深度20km,地壳厚度30~32km。  相似文献   

3.
鲁西金刚石原生矿床成矿背景复杂,由于缺乏地壳结构、岩浆侵入体位置、断裂规模等信息作为参考依据,深部构造特征及其在成矿过程中的作用尚不明确。本文基于重磁数据和地震剖面资料,采用Parker Oldenburg界面法、功率谱法和2. 5D重磁震联合反演等方法,获得了鲁西地区地壳结构、断裂规模、岩浆侵入体位置等信息,在此基础上,探讨了金刚石原生矿床的深部构造背景。结果表明:鲁西金刚石原生矿床分布于区域布格重力异常低值区、磁异常中 低值区,布格重力异常平均值低于-100×10-5m/s2,磁异常变化范围较大,介于-160~60 nT之间;矿床位于莫霍面、居里面等值线密集的梯度带,即稳定区域与活化区域的过渡带,莫霍面深度约为31. 2~32. 2 km,居里面深度约27. 5~30 km;矿床分布区NW向断裂构造切割深度均超过20 km,其中蒙山断裂切割深度为35 km,深达上地幔,新泰 垛庄断裂切割深度为28. 5 km,深达居里面,泰山 铜冶店断裂切割深度为20. 5 km;金伯利岩于古生代形成后,受中生代伸展构造影响,被NW向断裂逐级抬升、剥蚀,直至出露地表。金刚石品位自南向北逐渐降低是由于北部抬升幅度大,剥蚀接近金伯利岩根部的结果,指示南部矿带找矿潜力大。  相似文献   

4.
南海南部地壳结构的重力模拟及伸展模式探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
对南海南部地壳结构研究有助于揭示南海完整的演化历史。本研究对南海南部获取的两条多道地震剖面进行了地震 解释,并对重力数据进行了壳幔密度反演。其中 NH973-1 测线始于南海西南次海盆,覆盖了南沙中部的北段;NH973-2 测 线始于南海东部次海盆,穿越礼乐滩东侧。反演结果显示,莫霍面埋深在海盆区 10~11 km,陆缘区 15~21 km 左右,洋壳向 陆壳莫霍面深度迅速增加。海盆区厚度在 6~7 km,为典型的洋壳;陆缘区地壳厚度在 15~19 km,为减薄型地壳。进一步研 究表明(1)在西南次海盆残余扩张脊之下,莫霍面比两侧略深;(2)在礼乐滩外侧海盆区有高值重力异常体,推测为洋壳与深 部岩浆混合的块体;(3)南沙区域上地壳存在高密度带,且横向上岩性可能变化。南海南部陆缘未发现有下地壳高速层,有 比较一致的构造属性和拉张样式,为非火山型陆缘。我们对两条测线陆缘的伸展因子进行了计算,发现上地壳脆性拉伸因 子与全地壳拉伸因子存在差异,其陆缘的拉张模式在纵向上是不均匀一的。  相似文献   

5.
南海北部陆缘的磁异常特征及居里面深度   总被引:4,自引:0,他引:4  
为了研究南海北部张裂大陆边缘的地壳热结构,利用船载测量磁力数据,通过功率谱方法反演南海北部陆缘居里等温面,并结合深地震剖面、区域断裂及大地热流分布,讨论了深部热结构状态.结果显示研究区居里面深度在13~26 km之间,在上下陆坡转换带处与莫霍面相交,北东向断裂多位于居里面梯度带上,北西向断裂多具有分割、错断的特点,居里面深度和大地热流值具有相关性.结果揭示了陆架、上陆坡地区磁性体可能主要位于上地壳和下地壳上部,下陆坡及洋壳区地壳与地幔顶部有被磁化的迹象.磁静区位于居里面上隆区边缘,F3断裂和F4断裂之间可能是残留古洋壳.潮汕凹陷和台西南盆地中央隆起是发生底侵的主要区域,F2断裂为其北界.   相似文献   

6.
渤海湾周缘高温地热异常区是华北重要的地热资源区,研究其浅层高温地热异常及深层高温地热结构,是解决中国东部高温地热勘查开发瓶颈的重要基础,对加快构建东部现代能源体系、推进“双碳”目标进程具有重要的科学意义。利用最新的中国大陆岩石圈速度模型USTClitho2.0和航磁资料,在大地热流资料约束下,本文计算了渤海湾周缘浅层与深层高温热结构,结果表明:该区居里面平均深度20.8km,居里温度420℃,中、上地壳高温热结构与居里面起伏形态密切相关。上地壳生热率随深度增大而递减,反映了放射性生热元素向上迁移、在浅层富集的垂向分异特征。Moho面温度在600~800℃之间,岩石圈底界面1300℃等温面深度在66.3~97.5 km之间,平均值为76.8 km。依据USTClitho2.0模型Vp、Vs速度结构,本文修正了前人的地壳分层结构及上地壳生热率,计算了研究区内全部91个大地热流点的壳幔热流比,结果表明:Qc/Q=56.4%、Qm/Q=43.6%, Qc/Q>Qm/Q,显示该区为“热壳”结构。前人认为此区是“冷壳热幔”型热结构,本文的计算结果修正了前人的认识,指出上地壳层热流在地表总热流...  相似文献   

7.
Zhao  SK 许惠平 《世界地质》1991,10(3):39-50
由磁卫星(MAGSAT)资料绘制了中国区域磁异常图。资料首先分为拂晓和黄昏二组且对每一组分别进行处理。这二组数的各阶相关系数表明短波(≤540km)特征以非壳噪声为主。根据这二组数据中波长在540~2300km谐波得出了磁异常图。它代表了在卫星高度约400km处中国地壳磁异常,其幅值在—6~7nT之间。研究区域处于中、低磁纬度,磁异常并直不同接发因源相关。为克服这一困难,把磁异常图转化成反映地磁化率横向变化的地壳磁化率图。在反演中老虑了地磁场方向和强度的变化。该磁化率异常图呈现了区域构造,前寒武克拉通为强磁性,而山脉和缝合带为低磁性区。  相似文献   

8.
利用最新多道地震剖面资料,结合重力、磁力、地形等地球物理资料,揭示了中沙地块南部断裂空间展布特征、断裂发育时期、断裂内部构造形变特征及深部地壳结构,并基于认识探讨了断裂的发育机制。研究结果认为,中沙地块南部陆缘构造属性为非火山型被动大陆边缘:地壳性质从西北向东南由减薄陆壳向洋陆过渡壳再向正常洋壳发育变化;Moho面埋深从中沙地块下方的26 km快速抬升到海盆的10~12 km;从中沙地块陡坡至其前缘海域的重力异常明显负异常区为洋陆过渡带,在重力由高值负异常上升到海盆的低值正、负异常的边界为洋陆边界。中沙地块南部发育有4组阶梯状向海倾的深大正断裂,主要发育时期为晚渐新世到中中新世。断裂早期发育与南海东部次海盆近NS向扩张有关,后期遭受挤压变形、与菲律宾海板块向南海的NWW向仰冲有关。该研究有助于更好认识南海海盆的扩张历史和南海被动大陆边缘的类型。  相似文献   

9.
南海重力异常特征及其显著的构造意义   总被引:1,自引:0,他引:1  
在南海地区地震测深数据有限的情况下,利用重力异常可以研究南海大范围的深部地壳结构及地质构造展布特征。基于空间重力异常,结合最新的地形、沉积物厚度及地震测深等数据,分别从地震约束的莫霍面反演和无约束的三维相关成像两个视角研究南海的地壳结构,利用壳幔界面起伏、地壳厚度及三维等效密度分布来探讨地壳结构的纵横向变化。同时,联合采用延拓、水平梯度及线性构造增强滤波方法聚焦重力异常中的区域线性特征,突出显示了反映地壳横向变化的深断裂、洋陆转换边界、海盆扩张轴等线性构造的展布。重力解释与贯穿南海南北的广州-巴拉望地学断面对比表明,重力异常反演及异常的区域线性特征,较好地揭示了南海海域大范围的地壳结构与区域构造展布。  相似文献   

10.
栾锡武  王嘉  刘鸿  张亮  鲁银涛 《地球科学》2021,46(3):866-884
南海及邻区处于欧亚大陆与冈瓦纳古陆拼合带的东南端,是特提斯构造域和濒太平洋构造域交汇的重要地区.特提斯缝合带沿金沙江-哀牢山构造带进入南海,人们从而认为南海可能存在特提斯洋遗迹,并认为缝合带存在于磁静区中.本文通过对南海北部陆坡地球物理资料的解释结果,包括重力、磁力、海底地震和深反射地震数据,以及区域地质特征分析,研究了南海北部陆缘高磁异常带和磁静区的成因.结果表明高磁异常带是中白垩世时期古太平洋板块转向俯冲形成的陆缘火山弧,当时存在古俯冲带.磁静区经历了后期大陆边缘张裂和古南海和南海的打开,并经历了高温热物质的底辟作用,使得地壳拉张减薄,居里面抬升形成磁静区.经历了南海的扩张后,原始的俯冲带可能已经向南迁移到南海南部或者已经俯冲消失,其中也不存在缝合带.   相似文献   

11.
南海中部和北部海域重力异常特征与地壳构造关系   总被引:1,自引:0,他引:1       下载免费PDF全文
1976年,中国科学院南海海洋研究所与国家海洋局南海分局共同协作使用“向阳红”五号海洋调查船,利用西德GSS-2型海洋重力仪和我国的CHHK-1型核子旋进式磁力仪,在南海珠江口外海域(北纬22°—17°、东经113°50′—115°10′),进行约3000公里的海洋重力、磁力和测深。设计的测线方向为南北向,测线距为10海里。  相似文献   

12.
最佳向上延拓高度的估计   总被引:4,自引:0,他引:4  
曾华霖  许德树 《地学前缘》2002,9(2):499-504
提出根据两个相邻高度重力异常向上延拓值相关系数与高度的关系 ,以估计应用向上延拓分离区域及剩余重力异常的最佳向上延拓高度的方法。二维模型计算表明 ,不同高度的观测重力异常向上延拓值和观测面上区域重力异常值的互相关系数与高度的关系曲线 ,存在一个明显的极大值 ;这个极大值对应的高度 ,就是从观测异常中分离出这一区域重力异常所需要的最佳向上延拓高度。两个相邻高度重力异常向上延拓值之间的互相关系数与高度的关系曲线 ,存在一个明显的转折点 ,这个转折点对应的高度 ,就是所求的最佳向上延拓高度。应用本方法处理华南北部地区布格重力异常的结果表明 ,由于引起本区区域重力异常的地质因素 ,除了莫霍面及上地壳底面外 ,还受到本区广泛分布甚至出露的花岗岩的影响 ;所以为了从观测异常中分离这一区域异常所需要的最佳向上延拓高度为 2 0 0km ,小于莫霍面及上地壳底界面的平均深度。为了从观测异常中分离出由莫霍面引起的重力异常所需要的向上延拓高度 ,达到 15 0km。因此 ,应用本方法处理实测重力资料 ,必须首先了解引起区域重力异常的场源情况。  相似文献   

13.
Gravity and magnetic data were collected and used to study the crustal structure of Jordan. Three new geophysical maps of Jordan were created: a Moho discontinuity map, a crystalline basement surface map, and a map showing the lowest limit of magnetic blocks. Depths of the Curie Isotherm were also calculated. Results indicate that the depth to the Moho discontinuity in Jordan varies from 32 to 33 km in the northwest to 38 km in the southeast. The basement complex rocks outcrop on the surface in the southwest but lie at about 8 km in the northeast. The Curie Isotherm (585 °C) lies at a depth of about 10 km in the area east of the Dead Sea and dips southeastward towards the Al-Sirhan (Wadi Sirhan), southeast Jordan, where it is located at 35 km depth. Local isostasy of rock masses (blocks) in Jordan does not occur. Nevertheless, this does not rule out the possible existence of isostasy in a regional scale at greater depths within the mantle.  相似文献   

14.
《China Geology》2021,4(4):553-570
The southern part of the Kyushu-Palau Ridge (KPR) is located at the conjunction of the West Philippine Basin, the Parece Vela Basin, the Palau Basin, and the Caroline Basin. This area has extremely complex structures and is critical for the research on the tectonic evolution of marginal seas in the Western Pacific Ocean. However, only few studies have been completed on the southern part, and the geophysical fields and deep structures in this part are not well understood. Given this, this study finely depicts the characteristics of the gravity and magnetic anomalies and extracts information on deep structures in the southern part of the KPR based on the gravity and magnetic data obtained from the 11th expedition of the deep-sea geological survey of the Western Pacific Ocean conducted by the Guangzhou Marine Geological Survey, China Geological Survey using the R/V Haiyangdizhi 6. Furthermore, with the data collected on the water depth, sediment thickness, and multichannel seismic transects as constraints, a 3D density model and Moho depths of the study area were obtained using 3D density inversion. The results are as follows. (1) The gravity and magnetic anomalies in the study area show distinct zoning and segmentation. In detail, the gravity and magnetic anomalies to the south of 11°N of the KPR transition from high-amplitude continuous linear positive anomalies into low-amplitude intermittent linear positive anomalies. In contrast, the gravity and magnetic anomalies to the north of 11°N of the KPR are discontinuous and show alternating positive and negative anomalies. These anomalies can be divided into four sections, of which the separation points correspond well to the locations of deep faults, thus, revealing different field-source attributes and tectonic genesis of the KPR. (2) The Moho depth in the basins in the study area is 6–12 km. The Moho depth in the southern part of KPR show segmentation. Specifically, the depth is 10–12 km to the north of 11°N, 12–14 km from 9.5°N to 11°N, 14–16 km from 8.5°N to 9.5°N, and 16–25 km in the Palau Islands. (3) The KPR is a remnant intra-oceanic arc with the oceanic-crust basement.which shows noticeably discontinuous from north to south in geological structure and is intersected by NEE-trending lithospheric-scale deep faults. With large and deep faults F3 and F1 (the Mindanao fault) as boundaries overall, the southern part of the KPR can be divided into three zones. In detail, the portion to the south of 8.5°N (F3) is a tectonically active zone, the KPR portion between 8.5°N and 11°N is a tectonically active transition zone, and the portion to the north of 11°N is a tectonically inactive zone. (4) The oceanic crust in the KPR is slightly thicker than that in the basins on both sides of the ridge, and it is inferred that the KPR formed from the thickening of the oceanic crust induced by the upwelling of deep magma in the process of rifting of remnant arcs during the Middle Oligocene. In addition, it is inferred that the thick oceanic crust under the Palau Islands is related to the constant upwelling of deep magma induced by the continuous northwestward subduction of the Caroline Plate toward the Palau Trench since the Late Oligocene. This study provides a scientific basis for systematically understanding the crustal attributes, deep structures, and evolution of the KPR.©2021 China Geology Editorial Office.  相似文献   

15.
Shallow and deep sources generate a gravity low in the central Iberian Peninsula. Long-wavelength shallow sources are two continental sedimentary basins, the Duero and the Tajo Basins, separated by a narrow mountainous chain called the Spanish Central System. To investigate the crustal density structure, a multitaper spectral analysis of gravity data was applied. To minimise biases due to misleading shallow and deep anomaly sources of similar wavelength, first an estimation of gravity anomaly due to Cenozoic sedimentary infill was made. Power spectral analysis indicates two crustal discontinuities at mean depths of 31.1 ± 3.6 and 11.6 ± 0.2 km, respectively. Comparisons with seismic data reveal that the shallow density discontinuity is related to the upper crust lower limit and the deeper source corresponds to the Moho discontinuity. A 3D-depth model for the Moho was obtained by inverse modelling of regional gravity anomalies in the Fourier domain. The Moho depth varies between a mean depth of 31 km and 34 km. Maximum depth is located in a NW–SE trough. Gravity modelling points to lateral density variations in the upper crust. The Central System structure is described as a crustal block uplifted by NE–SW reverse faults. The formation of the system involves displacement along an intracrustal detachment in the middle crust. This detachment would split into several high-angle reverse faults verging both NW and SE. The direction of transport is northwards, the detachment probably being rooted at the Moho.  相似文献   

16.
松辽盆地是中国东北盆地群的代表性盆地之一。松辽盆地及其邻区的布格重力异常分布特征以北东—北北东向为 主,其次为东西向,重力场分区分块特征明显,显示了明显的拼贴构造背景,依据布格重力异常特征对研究区构造单元进 行分区,共分成松辽盆地异常区、大兴安岭重力梯级带等 5 个特征区。利用小波多尺度分解方法对松辽盆地重力场进行分 离,选择最佳的分离阶数(4 阶),随后利用对数功率谱确定每阶异常的视深度,提取区域异常,分层研究地壳顶部(D1G)、基 底(D2G,D3G)及深部密度界面(A4G)的起伏特征,共圈定基底凹陷 14 个,并绘制了研究区的 Moho 面埋深图。地球物理特征 揭示了松辽盆地的深部构造,为研究盆地油气勘探及构造演化提供了重要依据。  相似文献   

17.
We use teleseismic body waveforms to explore S-wave layered velocity structures beneath 30 portable digital seismic stations deployed around western Yunnan Province. Results show that the Moho depth in this region is ∼40 km and decreases in general from north to south, consistent with previous geophysical studies. Associated with this lateral variation of the Moho depth, the lower crust above the Moho discontinuity has a 15–25 km thick zone with an S-wave velocity lower than that of the upper crust. This lower velocity zone might be interpreted as a lower crust weak channel, which may mechanically partially decouple the upper-crust deformation from the underlying mantle. Thus, the inverted S-wave velocity structure could provide new evidence for the lateral flow of lower crust in the build-up of the south-eastern Tibetan plateau.  相似文献   

18.
19.
Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China. Then, inversion was conducted for the depth to study the depth variation of the boundary between the crust and upper mantle, namely the Mohorovicic discontinuity (Moho). The results demonstrate that the Moho depth in South China ranges from 30 to 40 km, and the crust thins from west to east, 27-29 km under the continent margin and shallow sea. We think it possible that the Tanlu fault crosses the Yangtze River and extends southwards along the Ganjiang and Wuchuan-Sihui faults to the South China Sea, and that there is an E-W hidden structural belt along 24.5°-26°.  相似文献   

20.
东海地区重磁场特征及其地质意义   总被引:1,自引:0,他引:1  
重磁方法是地球物理研究中的重要分支,其以位场理论为基础,具有在水平方向上的高分辨率能力并能够提供地壳深部结构的信息,从而对于研究沉积盆地的形成演化过程起着经济有效的作用.文章以东海地区近年的重磁数据为基础,分析了重磁场特征,布格异常值介于-160~460 mGal,在正值背景上发育一些局部的重力低圈闭,布格重力异常的主体走向为NE向,磁力异常值介于-200~+ 500 nT,磁力异常的主体走向为NE向.同时,利用磁异常数据计算了东海的磁性基底界面,磁性基底深度在4~12 km之间变化,各个地区磁性基底深度起伏变化不同,结合前人研究成果,认为东海地区广泛存在中生界地层.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号