首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic diopsides in the join CaMgSi2O6 CaCrAlSiO6 have been studied by means of crystal-field theory. These diopsides are either blue or pale green in colour. The former forms at lower temperatures and the latter at higher temperatures. The optical spectra and colours can be unequivocally explained based on the assumption that Cr3+ions occupy both tetrahedral and octahedral sites in the diopsides. In the blue diopsides Cr3+ions are present in two kinds of spin state, i.e., tetrahedrally coordinated low spin and octahedrally coordinated high spin. On heating the blue diopsides, tetrahedral occupancy of chromium decreases sharply due to spin transformation from tetrahedral low spin to octahedral high spin. Above 1,160° C nearly all chromium ions are present in octahedral sites with high spin state and the diopsides become pale green in colour. Some petrogenetic applications of the resultes are discussed.  相似文献   

2.
Data on the structural and valence distribution of Cr and Fe in chrysoberyl and in alexandrite, its gem variety, are given. It is shown that the Cr3+ line in the natural Ural and Tanzania samples is the strongest in the M1 site and for the synthetic stones, in the M2 site. During the annealing of the alexandrite crystals, Cr3+ passes from the smaller M1 site into the larger M2 site. The M?ssbauer spectroscopy quantitatively determined the distribution of different valence Fe ions. The various proportions of both Fe2+ and Fe3+ ions isomorphically entering the octahedral sites in the BeAl2O4 crystal structure were established.  相似文献   

3.
Orissa is an important area for gem variety of corundum deposits in India. Spectroscopic studies, such as ESR, OAS on samples from Sardapur, Orissa, were carried out to ascertain the colour cause of corundum. Electron spin resonance (ESR) spectroscopic study was carried out on the samples to detect the presence of paramagnetic ions i.e. Fe2+, Fe3+, Ti4+, Cr3+ and V3+ etc. The variable temperature experiment carried out to observe the effect of heating on peak valence state change in paramagnetic ions. Samples were cut and polished to obtain the optical absorption spectrum (OAS) to detect the colour causing transition ions/defect centres. The samples of gem variety were step heated up to 300°C for colour enhancement studies. EPMA analysis has revealed the low chromium concentration in the rubies. The varying hues of red in the corundum are due to the presence of bivalent and trivalent iron and charge transfer process along with Cr3+ absorption in the 550 nm region.  相似文献   

4.
The luminescence spectra of a suite of natural sodium framework silicates including four different sodalite variants and tugtupite have been collected during X-ray irradiation as a function of temperature between 20 and 673 K. The origin of the emission bands observed in these samples is attributed to F-centres (360 nm), paramagnetic oxygen defects (400 and 450 nm), S2 ? ions (620 nm) and tetrahedral Fe3+ (730 nm). Luminescence in the yellow (550 nm) is tentatively attributed to Mn2+, and red luminescence in Cr-rich pink sodalite is possibly from Cr3+ activation. Sudden reduction in luminescence intensities of emission centres was observed for all minerals in the 60–120 K range. Since it is common to all the sodalite-group minerals, we infer it is a feature of the aluminosilicate framework. Sodalite luminescence has responses from substitutions on the framework (e.g. paramagnetic oxygen defects, Fe3+) which give sodalite properties akin to other framework silicates such as feldspar and quartz. However, the presence of the sodalite cage containing anions (such as F-centres, S2 ? ions) imparts additional properties akin to alkali halides. The possibility of coupling between Fe3+ and S2 ? is discussed. The overall luminescence behaviour of sodalite group can be understood in terms of competition between these centre types.  相似文献   

5.
Summary This work examines the red luminescence of benitoite studied by laser-induced time-resolved luminescence spectroscopy. This method allows the differentiation between luminescence centers of similar emission wavelengths, but different decay times. We have also examined the luminescence intensity and decay time as a function of temperature. We found that the red emission of benitoite consists of two individual bands and one line and suggest that the activators of luminescence in benitoite system are Ti3+ and a d3 element, namely Cr3+ or Mn4+.  相似文献   

6.
This paper is an extension of the earlier one dealing with kyanite in which the best fitting value of the oxygen ligand distance for Cr3+ is adopted to study the spectroscopic properties of Cr3+ ions doped at the two possible Al sites in the other two polymorphs of the aluminosilicate group (Al2O3 · SiO2), namely, andalusite and sillimanite. The superposition model and the crystal field analysis package recently developed for 3d ions doped at arbitrary low symmetry sites in crystals are used to predict energy levels and statevectors within the whole 3d 3 configuration. Then the values of the ground state zerofield splitting for Cr3+ ions at each Al sites in the two crystals are obtained. The splittings of the lower excited states 2 E and 4 T 2 as well as the admixture of 4 T 2 into 2 E have also been predicted. Comparison of our results with the available experimental data enable us to correlate the optical and EPR Spectroscopic properties with the substitutional Cr3+ sites. The conclusion is that in andalusite and sillimanite only the Al sites with nearly-octahedral six-fold coordination seem to be occupied by Cr3+ ions.  相似文献   

7.
Olivine inclusions in diamonds from kimberlites originating from the deep Upper Mantle contain significant amounts of chromium. It has been suggested that divalent chromium occurs in these olivines. This hypothesis is supported by recent Mössbauer and electronic spectral measurements at high pressures, which demonstrate that pressure-induced reduction takes place in compounds and minerals initially containing Fe3+, Mn3+, and Cu2+ ions. The process is facilitated at high temperatures. Low oxidation states of other metals such as Cr(II) are expected to be stabilized under the very high pressures and elevated temperature conditions in the Mantle. Since Cr2+ ions are susceptible to the Jahn-Teller effect, they are predicted by crystal field theory to be stabilized in certain distorted coordination sites, such as the olivine Ml site, all three sites of the -spinel phase, and the 7-coordinated site of the strontium plumbate structure-type. The Cr2+ ions in olivines are stabilized in kimberlites intruded into the Crust by the high confining pressures in the diamond inclusions.  相似文献   

8.
In this paper, possibilities and limits of the application of REE3+ luminescence (especially the Nd3+ 4F3/24I9/2 emission) as structural probe are evaluated. Important factors controlling the Nd3+ luminescence signal are discussed, including effects of the crystal-field, crystal orientation, structural state, and temperature. Particular attention was paid to the study of the accessory minerals zircon (ZrSiO4), xenotime–(Y) (YPO4), monazite–(Ce) (CePO4) and their synthetic analogues. Based on these examples we review in short that (1) REE3+ luminescence can be used as non-destructive phase identification method, (2) the intensities of certain luminescence bands are strongly influenced by crystal orientation effects, and (3) increased widths of REE3+-related emission bands are a strong indicator for structural disorder. We discuss the potential of luminescence spectroscopy, complementary to Raman spectroscopy, for the quantitative estimation of chemical (and potentially also radiation-induced) disorder. For the latter, emissions of Nd3+-related centres are found to be promising candidates.  相似文献   

9.
The Raman and Cr3+ and V2+ luminescence spectra of beryl and emerald have been characterized up to 15.0 and 16.4 GPa, respectively. The Raman spectra show that an E 1g symmetry mode at 138 cm?1 shifts negatively by ?4.57 (±0.55) cm?1/GPa, and an extrapolation of the pressure dependence of this mode indicates that a soft-mode transition should occur near 12 GPa. Such a transition is in accord with prior theoretical results. Dramatic changes in Raman mode intensities and positions occur between 11.2 and 15.0 GPa. These changes are indicative of a phase transition that primarily involves tilting and mild distortion of the Si6O18 rings. New Raman modes are not observed in the high-pressure phase, which indicates that the local bonding environment is not altered dramatically across the transition (e.g., changes in coordination do not occur). Both sharp line and broadband luminescence are observed for both Cr3+ and V2+ in emerald under compression to 16.4 GPa. The R-lines of both Cr3+ and V2+ shift to lower energy (longer wavelength) under compression. Both R-lines of Cr3+ split at ~13.7 GPa, and the V2+ R1 slope changes at this pressure and shifts more rapidly up to ~16.4 GPa. The Cr3+ R-line splitting and FWHM show more complex behavior, but also shift in behavior at ~13.7 GPa. These changes in the pressure dependency of the Cr3+ and V2+ R-lines and the changes in R-line splitting and FWHM at ~13.7 GPa further demonstrate that a phase transition occurs at this pressure, in good agreement with our Raman results. The high-pressure phase of beryl appears to have two Al sites that become more regular under compression. Hysteresis is not observed in our Raman or luminescence spectra on decompression, suggesting that this transition is second order in nature: The occurrence of a second-order transition near this pressure is also in accord with prior theoretical results. We speculate that the high-pressure phase (beryl-II) might be a mildly modulated structure, and/or that extensive twinning occurs across this transition.  相似文献   

10.
The paper summarises new data and results referring to the characterization of the nature of luminescence centres in minerals that were published during the last 8 years. Besides well-established luminescence centres, such as Mn2+, Fe3+, Cr3+, divalent and trivalent rare-earth elements, S2 ?, and Pb2+, several other centres were proposed and substantiated, such as Mn3+, Mn4+, V2+, Ni2+, Pb+, Mn3+, Sb3+, Tl+, and radiation-induced centres. Also, a relatively new type of luminescence excitation mechanism is discussed briefly, namely plasma-induced luminescence. Here, the emission takes place when the matrix, where the formation of plasma is caused by irradiation with a beam of laser light, is capable to luminescence and contains luminescence centres.  相似文献   

11.
The behaviour of tetrahedrally coordinated and octahedrally coordinated Cr3+ ions in diopside is discussed from the study on the join CaMg-Si2O6-CaCrCrSiO6. The molecule CaCrCrSiO6 decomposes into uvarovite+eskolaite and its maximum solubility in diopside is 6.7 wt percent at 940 ° C. Crystalline phases are diopside ss (ss is abbreviation of solid solution), uvarovite ss, wollastonite ss, spinel and eskolaite. The diopside ss is blue in colour. Its optical spectra were measured in the wavelenght range of 325–2600 nm, and assigned after tetrahedral configuration Td and octahedral configuration Oh. It is estimated that octahedral Cr3+ ions are in high spin state, while tetrahedral Cr3+ ions may be probably in low spin state. The t and B are 10,300–10,370 cm–1 and 429–432 cm–1. The CFSE for tetrahedral low spin Cr3+ ions is nearly the same as that for octahedral high spin Cr3+ ions. The ionic radii of tetrahedral low spin Cr3+ ions calculated are 0.47–0.53 Å, shrinked from the radius of octahedral high spin Cr3+ ion (0.615 Å) as much as 14–24 percent. Petrologic implications of the result are also discussed.The first half of the D. Sc. dissertation of K. Ikeda presented to Hokkaido University in June, 1976  相似文献   

12.
Magnetization, susceptibility and Mössbauer spectra are reported for representative chlorite samples with differing iron content. The anisotropy of the susceptibility and magnetization of a clinochlore crystal is explained using the trigonal effective crystal-field model developed earlier for 1:1 and 2:1 layer silicates, with a splitting of theT 2g triplet of 1,120K. Predominant exchange interactions in the iron-rich samples are ferromagnetic withJ=1.2 K, as for other trioctahedral ferrous minerals. A peak in the susceptibility of thuringite occurs atT m=5.5 K, and magnetic hyperfine splitting appears at lower temperatures in the Mössbauer spectrum. However neutron diffraction reveals no long-range magnetic order in thuringite (or biotite, which behaves similarly). The only magnetic contribution to the diffraction pattern at 1.6 K is increased small angle scattering (q<0.4 Å?1). A factor favouring this random ferromagnetic ground state over the planar antiferromagnetic state of greenalite and minnesotaite is the presence of pairs of ferric ions on adjacent sites, in conjunction with magnetic vacancies in the octahedral sheets. Monte Carlo simulations of the magnetic ground state of the sheets illustrate how long range ferromagnetic order may be destroyed by vortices forming around the Fe3+-Fe3+ pairs.  相似文献   

13.
Electronic structures of square planar coordinated transition metal ions in BaCuSi4O10 and CaCrSi4O10 are investigated using the ligand-field theory (LFT), angular overlap model (AOM) and iterative extended Hückel molecular orbital theory (IET). The electronic energy levels of the natural mineral dioptase are also investigated, in which the Cu2+ ions occupy the sites of pseudo D4h symmetry. Both LFT and AOM predict that the crystal-field levels of transition metal ions in these compounds follow such an order that E (2B1g <E(2B2g <E(2A1g )<E(2Eg ), and the frequencies of the crystal-field transitions obtained from point charge calculations are in good agreement with those observed. However, the energy-level order cannot be determined unambiguously from the IET calculation because it depends on the values of parameters chosen for the calculation.  相似文献   

14.
The electron paramagnetic resonance (EPR) spectrum of Cr3+ in synthetic crystals of forsterite consists primarily of lines of Cr3+ “isolated” at the M1 and M2 positions in a “perfect” crystal environment without local charge compensation. In addition it shows two nonequivalent superhyperfine-split sextets with different intensities which are due to strong interaction of the Cr3+ electron spin S (S=3/2) with an adjacent nuclear spin I(I=5/2). Electron nuclear double resonance (ENDOR) experiments revealed that the sextets result from Cr3+ (M1) - Al3+ and Cr3+ (M2) - Al3+ pairs, Al being located at adjacent tetrahedral Si sites. The g, D, A, and A′ tensor components of the Cr3+ - Al3+ pairs have been determined at room temperature. The values of the pairs are distinct although they are not very different from the corresponding data of “isolated” Cr3+. From the intensities of the EPR spectra the relative concentration of the Cr3+ - Al3+ pairs with respect to “isolated” Cr3+ has been estimated.  相似文献   

15.
 We have investigated a well-ordered sample of natural Cr-bearing dickite from Nowa Ruda (Lower Silesia, Poland) using electron paramagnetic resonance (EPR) at X- and Q-band frequencies (9.42 and 33.97 GHz, respectively) and optical diffuse reflectance spectroscopy. The observation of the spin-forbidden transitions at 15500 and 14690 cm−1 allows us to unambiguously identify the major contribution of octahedrally coordinated Cr3+ ions in the optical spectrum. The X- and Q-band EPR spectra show two superposed Cr3+ signals. The corresponding fine-structure parameters were determined at room temperature and 145 K. These results suggest the substitution of Cr3+ for Al3+ in equal proportions in the two unequivalent octahedral sites of the dickite structure. In kaolin group minerals, the distortion around Cr3+ ions (λ≈ 0.2–0.4) in Al sites is significantly less rhombic than that observed around Fe3+ ions (λ≈ 0.6–0.8). Received: 29 June 2001 / Accepted: 22 October 2001  相似文献   

16.
IIb trioctahedral chlorite in the Barberton greenstone belt (BGB) metavolcanic rocks was formed during pervasive greenschist metamorphism. The chem‐ical composition of the chlorite is highly variable, with the Fe/(Fe+Mg) ratio ranging from 0.12 to 0.8 among 53 samples. The chemical variation of the chlorite results from the chemical diversity of the host rock, especially the MgO content of the rock, but major details of the variation pattern of the chlorite are due to the crystal structure of the chlorite. All major cation abundances in the chlorite are strongly correlated with each other. Sil‐icon increases with Mg and decreases with Fe, while AlIV and AlVI decrease with Mg and increase with Fe2+. A complex exchange vector explains over 90% of the chlorite compositional variation: Mg4SiFe2+ −3AlVI −1 AlIV −1, which has 3 parts Fe-Mg substitution coupled with one part tschermakite substitution. This ratio is required to maintain the charge and site balances and the dimensional fit between the tetrahedral and octahedral sheets. The subtle change in Al substitution in chlorite implies that AlVI is preferentially ordered in the M(4) site, and about 84% of the AlVI present is in the M(4) sites when they are nearly filled with AlVI. Based on 47 analyzed chlorite-bearing rock samples, chlorite (Chl) composition is strongly correlated with the MgO content of the host rock. Calculated correlation coefficients are +0.91 for SiO2Chl-MgORock, −0.87 for Al2O3Chl-MgORock, +0.89 for MgOChl-MgORock, and −0.85 for FeOChl-MgORock. Only weak correlations have been found between chlorite oxides and other oxides of rock (between same oxides in chlorite and rock: SiO2−0.67, Al2O3 + 0.59, FeO −0.41). However, MgOChl is saturated at about 36 wt% in rocks that have MgO above 22 wt%.The MgOChl is about 5 wt% when the host rock approaches 0 wt% of MgO. This implies that Mg substituting into the chlorite is approximately limited to 1.5–9.2 Mg atoms per formula unit and 1.0–3.2 AlIV. Chlorite geothermometers can not be applied to all BGB samples. However, the empirical chlorite geothermometer based on AlIV of chlorite may be applicable to chlorites formed under metamorphic conditions because it can predict the chemical composition of the chlorite from basaltic and dacitic samples in this study. An estimated temperature of about 320°C for the greenschist metamorphism of the greenstone belt through this geothermometer is consistent with that obtained by other geothermometers. Received: 22 January 1996 / Accepted: 15 August 1996  相似文献   

17.
Variously colored gem-quality topazes from Ouro Preto, Minas Gerais, Brazil, were studied by optical absorption spectroscopy and photoluminescence methods. In the near infrared range (750–2500 nm) the absorption spectra display an identical pattern of narrow intense absorption lines caused by overtones and combination vibrations of OH groups, which do not relate to the coloration of the topazes studied. Their colors were found to be caused by combination of three sets of absorption features, (1), (2), and (3) in the visible and near-UV range, which are due to different color center. (1) denotes a pair of broad split bands with maxima 18 000 and 25 000 cm–1 caused by electronic spin-allowed dd transitions of Cr3+ ions. They cause a light rose to deep violet color and characteristic pleochroism of Cr3+-containing topazes. Photoluminescence evidences of at least three different types of Cr3+ complexes which, most probably, differ by ligand surroundings, O4F2, O4F(OH) and O4(OH) (2) Corresponds to the intense weakly polarized UV absorption edge. Two different parts, the thermally stable one, caused by ligand-to-metal charge transfer, and the thermally unstable one, caused by some defect center(s), contribute to the edge. (3) denotes a system of two broad unstructured bands with maxima around 19 000 cm–1 (X>Y Z) and 24 000 cm–1 (Y Z X). They cause the unique orange color and characteristic pleochroism of Brazilian Imperial topazes. Combinations of (1) and (3) absorption features cause various yellow-rose colors of the samples. Investigations of natural irradiated and thermally treated topazes show that the color centers (1) and (3) transform to each other at annealing and X- or gamma irradiation. The color of natural orange-red Imperial topazes is assumed to be caused by Cr4+, stabilized by other impurity ions and/or defect irradiation EPR centers. At T=300 °C Cr4+ reduces to Cr3+, the color of Imperial topazes changes to pale rose, caused by spin-allowed bands of Cr3+. In artificially irradiated crystals the (3)-center, Cr4+, may be induced according to the reaction 2Cr3+ Cr4+ + Cr2+, which involves chromium pairs in adjacent Al sites of the structure. Such artificially induced color is unstable at room temperature and in daylight. The process of the decay of (3)-centers may be described as a recombination Cr4++Cr2+ 2Cr3+ that results in vanishing of the (3)-bands accompanied by the appearance or increase in Cr3+ dd bands, the original orange color turning to a pale rose.  相似文献   

18.
Implantation of high-energy cobalt ions into plates of synthetic rutile has been studied, and absorption, luminescence, and luminescence excitation spectra have been recorded and interpreted. Long-wave luminescence (820 nm) of Ti IV 3+ ions in rutile has been revealed; its intensity increased after the cobalt implantation. Analysis of luminescence and luminescence excitation spectra has allowed us to specify the scheme of electron energy levels of rutile and to establish the energy levels of impurity Ti3+ ions occupying vacant octahedrons with the C 2h symmetry in structure of the mineral.  相似文献   

19.
The stability of pumpellyite + actinolite or riebeckite + epidote + hematite (with chlorite, albite, titanite, quartz and H2O in excess) mineral assemblages in LTMP metabasite rocks is strongly dependent on bulk composition. By using a thermodynamic approach (THERMOCALC), the importance of CaO and Fe2O3 bulk contents on the stability of these phases is illustrated using P–T and P–X phase diagrams. This approach allowed P–T conditions of ~4.0 kbar and ~260 °C to be calculated for the growth of pumpellyite + actinolite or riebeckite + epidote + hematite assemblages in rocks containing variable bulk CaO and Fe2O3 contents. These rocks form part of an accretionary wedge that developed along the east Australian margin during the Carboniferous–Triassic New England Orogen. P–T and P–X diagrams show that sodic amphibole, epidote and hematite will grow at these conditions in Fe2O3‐saturated (6.16 wt%) metabasic rocks, whereas actinolite and pumpellyite will be stable in CaO‐rich (10.30 wt%) rocks. With intermediate Fe2O3 (~3.50 wt%) and CaO (~8.30 wt%) contents, sodic amphibole, actinolite and epidote can coexist at these P–T conditions. For Fe2O3‐saturated rocks, compositional isopleths for sodic amphibole (Al3+ and Fe3+ on the M2 site), epidote (Fe3+/Fe3+ + Al3+) and chlorite (Fe2+/Fe2+ + Mg) were calculated to evaluate the efficiency of these cation exchanges as thermobarometers in LTMP metabasic rocks. Based on these calculations, it is shown that Al3+ in sodic amphibole and epidote is an excellent barometer in chlorite, albite, hematite, quartz and titanite buffered assemblages. The effectiveness of these barometers decreases with the breakdown of albite. In higher‐P stability fields where albite is absent, Fe2+‐Mg ratios in chlorite may be dependent on pressure. The Fe3+/Al and Fe2+/Mg ratios in epidote and chlorite are reliable thermometers in actinolite, epidote, chlorite, albite, quartz, hematite and titanite buffered assemblages.  相似文献   

20.
The effect of crystal structure relaxation in oxygen-based Cr3+-containing minerals on the crystal field stabilization energy (CFSE) is considered. It is shown that the dependence of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} , which is found from optical absorption spectra, on the average interatomic distances is described by the power function with a negative exponent c \mathord
/ \vphantom c [`(R)]n [`(R)]n {c \mathord{\left/ {\vphantom {c {\bar{R}^{n} }}} \right. \kern-\nulldelimiterspace} {\bar{R}^{n} }} , where n approaches 5, as predicted theoretically, for pure Cr3+ compounds, but decreases to 1.0–1.5 for Cr3+-containing oxide and silicate solid solutions. The deviation of the experimental dependence for solid solutions from the theoretical curve is due to structure relaxation, which tends to bring the local structure of Cr3+ ions closer to the structure in the pure Cr compound, thus producing changes in interatomic distances between the nearest neighbors with respect to those in the average structure determined by X-ray diffraction. As a consequence, the mixing enthalpy of Cr3+-bearing solid solutions can be represented by the sum of contributions from lattice strain and CFSE. The latter contribution is most often negative in sign and, therefore, brings the Al–Cr solid solutions close to an ideal solid solution. It is supposed that the increased Cr content in minerals from deep-seated mantle xenoliths and mineral inclusions in diamonds results from the effect of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} enhanced by high pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号