首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
27Al,29Si MAS NMR studies of kaolinite and its thermal transformation products show that in the kaolinite-mullite reaction series there is an extensive segregation of Al2O3 and SiO2 and the reaction of Al2O3 with SiO2 to form mullite is the main path of mullite formation. At about 850° C, the peak intensity of A1(V) reaches its maximum and with the further rise of temperature the A1(V) signal completely disappears. At about 950°C, γ-Al2O3 accounts for about 71% of the material phases containing Al atoms. In the series there is no obvious presence of Al-Si spinel. The27Al and29Si MAS NMR spectra show that there is an obvious difference between the temperature points for Al-O2(OH)4 octahedral sheet collapsing and Si-O4 tetrahedral sheet breaking down.  相似文献   

2.
We have taken a systematic approach utilizing advanced solid-state NMR techniques to gain new insights into the controversial issue concerning the dissolution mechanisms of water in aluminosilicate melts (glasses). A series of quenched anhydrous and hydrous (∼2 wt% H2O) glass samples along the diopside (Di, CaMgSi2O6)—anorthite (An, CaAl2Si2O8) join with varying An components (0, 20, 38, 60, 80, and 100 mol %) have been studied. A variety of NMR techniques, including one-dimensional (1D) 1H and 27Al MAS NMR, and 27Al → 1H cross-polarization (CP) MAS NMR, as well as two-dimensional (2D) 1H double-quantum (DQ) MAS NMR, 27Al triple-quantum (3Q) MAS NMR, and 27Al → 1H heteronuclear correlation NMR (HETCOR) and 3QMAS/HETCOR NMR, have been applied. These data revealed the presence of SiOH, free OH ((Ca,Mg)OH) and AlOH species in the hydrous glasses, with the last mostly interconnected with Si and residing in the more polymerized parts of the structure. Thus, there are no fundamental differences in water dissolution mechanisms for Al-free and Al-bearing silicate melts (glasses), both involving two competing processes: the formation of SiOH/AlOH that is accompanied by the depolymerization of the network structure, and the formation of free OH that has an opposite effect. The latter is more important for depolymerized compositions corresponding to mafic and ultramafic magmas.Aluminum is dominantly present in four coordination (AlIV), but a small amount of five-coordinate Al (AlV) is also observed in all the anhydrous and hydrous glasses. Furthermore, six-coordinate Al (AlVI) is also present in most of the hydrous glasses. As Al of higher coordinations are favored by high pressure, AlVIOH and AlVOH may become major water species at higher pressures corresponding to those of the Earth’s mantle.  相似文献   

3.
A 29Si and 27Al magic angle spinning nuclear magnetic resonance study is reported for differently synthesized mullites. The 29Si MAS NMR spectra of all samples are essentially identical. They consist of a main resonance at -86.8 ppm, a shoulder around -90 ppm and a second resonance at -94.2 ppm. The main resonance is interpreted as being due to a sillimanite-type geometry around Si and the second one is tentatively assigned to a Si environment typical for mullite. The 27Al MAS NMR spectra of sinter- and fused-mullite measured at different Larmor frequencies revealed clearly the presence of three distinct Al sites in mullite, i.e. of octahedral (M1), tetrahedral (M2) and distorted tetrahedral (Al*) sites.  相似文献   

4.
An inverse Monte Carlo (MC) method was developed to determine the distribution of octahedral cations (Al3+, Fe3+, and Mg2+) in bentonite illite–smectite (I–S) samples (dioctahedral 2:1 phyllosilicates) using FT–IR and 27Al MAS NMR spectroscopies. FT–IR allows determination of the nature and proportion of different cation pairs bound to OH groups measuring the intensities of OH-bending bands. 27Al MAS NMR data provide information about cation configuration because 27Al MAS NMR intensity depends on Fe distribution. MC calculations based on FT–IR data alone show Fe segregation by short-range ordering (Fe clusters within 9 to 15?Å from a given Fe atom). Fe segregation increases with illite proportion. MC calculations based on IR and 27Al NMR simultaneously yield similar configurations in which Fe clusters are smaller. The latter calculations fail to build appropriate cation distributions for those samples with higher number of illite layers and significant Fe content, which is indicative of long-range Fe ordering that cannot be detected by FT–IR and 27Al MAS NMR. The proportion of Mg–Mg pairs is negligible in all samples, and calculations, in which the number of Mg atoms, as second neighbours, is minimised, create appropriate configurations.  相似文献   

5.
Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO 4 4? cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.  相似文献   

6.
A multinuclear solid-state NMR investigation of the structure of the amorphous alteration products (so called gels) that form during the aqueous alteration of silicate glasses is reported. The studied glass compositions are of increasing complexity, with addition of aluminum, calcium, and zirconium to a sodium borosilicate glass. Two series of gels were obtained, in acidic and in basic solutions, and were analyzed using 1H, 29Si, and 27Al MAS NMR spectroscopy. Advanced NMR techniques have been employed such as 1H-29Si and 1H-27Al cross-polarization (CP) MAS NMR, 1H double quantum (DQ) MAS NMR and 27Al multiple quantum (MQ) MAS NMR. Under acidic conditions, 29Si CP MAS NMR data show that the repolymerized silicate networks have similar configuration. Zirconium as a second nearest neighbor increases the 29Si isotropic chemical shift. The gel porosity is influenced by the pristine glass composition, modifying the silicon-proton interactions. From 1H DQ and 1H-29Si CP MAS NMR experiments, it was possible to discriminate between silanol groups (isolated or not) and physisorbed molecular water near Si (Q2), Si (Q3), and Si (Q4) sites, as well as to gain insight into the hydrogen-bonding interaction and the mobility of the proton species. These experiments were also carried out on heated samples (180 °C) to evidence hydrogen bonds between hydroxyl groups on molecular water. Alteration in basic media resulted in a gel structure that is more dependent on the initial glass composition. 27Al MQMAS NMR data revealed an exchange of charge compensating cations of the [AlO4] groups during glass alteration. 1H-27Al CP MAS NMR data provide information about the proximities of these two nuclei and two aluminum environments have been distinguished. The availability of these new structural data should provide a better understanding of the impact of glass composition on the gel structure depending on the nature of the alteration solution.  相似文献   

7.
Zinc uptake in suspensions (?3.7 g L−1) of MX80 montmorillonite was investigated at pH 4.0 and 7.3, a total Zn concentration ([Zn]total) of 500 μM, and dissolved Si concentrations ([Si]aq) of ∼70 and ∼500 μM in 0.5 M NaCl, by kinetics experiments and polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy. Differential thermogravimetric analysis verified the cis-vacant character of the montmorillonite. No Zn uptake occurred at pH 4.0, confirming that cation exchange was hampered by the high ionic strength of the suspension. At pH 7.3 and low [Si]aq (∼70 μM), Zn uptake occurred rapidly during the first hour of reaction, and then leveled off to 50 μmol/g montmorillonite at 168 h. The uptake rate is consistent with Zn sorption on pH-dependent edge sites. At pH 7.3 and high [Si]aq (∼500 μM), the initial sorption rate was similar, but Zn sorption continued, reaching 130 μmol/g at 168 h, and was paralleled by Si uptake with a Si/Zn uptake ratio of 1.51(10), suggesting formation of a Zn (hydrous) silicate. P-EXAFS data indicated that the first oxygen coordination shell of sorbed Zn is split into two subshells at 1.97(2) and 2.08(3)-2.12(2) Å for all EXAFS samples. These two distances are assigned to a mixture of tetrahedral (IVZn) and octahedral (VIZn) Zn complexes. The proportion of IVZn was lower in the high [Si]aq samples and decreased with reaction time. Al low [Si]aq and 216 h of reaction, nearest cationic shells of 0.6(4) Al in the film plane and 0.5(4) Si out of the film plane were detected at 3.00(2) and 3.21(2) Å, respectively, and were interpreted as the formation of IVZn and VIZn mononuclear complexes at the edges of montmorillonite platelets, in structural continuity to the (Al, Mg) octahedral sheets. At high [Si]aq, in-plane Zn and Al and out-of-plane Si neighbors were detected at 4 h, indicating the formation of Zn phyllosilicate nuclei at the layer edges. At 313 h, Zn-Al pairs were no longer detected, and Zn atoms were surrounded on average by 3.4(5) in-plane Zn at 3.10(1) Å and 1.7(9) out-of-plane Si at 3.30(2) Å, supporting the precipitation of a Zn phyllosilicate. Thus, dioctahedral Al phyllosilicate may act as a nucleating surface for the heterogeneous formation of trioctahedral Zn phyllosilicate at [Si]aq relevant to natural systems.  相似文献   

8.
High-resolution 27Al MAS NMR spectra of natural leucite recorded at H 0=11.7T contain three resolvable resonances at 27Al δ i = 69.2, 64.7, and 61.0±0.5 ppm. These three resonances are assigned to the three inequivalent framework positions of leucite: T3, T2, and T1, respectively. Fitting the observed spectra yields a Si,Al distribution for leucite in which approximately one-half of the Al is in T1 and one-quarter in each of T2 and T3. This Si,Al distribution differs substantially from those obtained by previous workers using 29Si NMR spectroscopy and X-ray diffraction. New 29Si NMR spectra and revision of previously reported 29Si NMR peak assignments, however, make the 27Al and 29Si NMR results consistent. The 27Al δ i correlate linearly with the mean T-O-T′ bond angles of the average structure, which allows the peak assignments to be made. However, this correlation lies distinctly toward higher frequency and larger bond angles than correlations for Si,Al ordered aluminosilicates, suggesting that the mean T(Al)-O-T′(Si) bond angle for each site in leucite is smaller than the mean bond angle of the average structure, which is averaged over T(Al)-O-T′(Si) and T(Si)-OT′(Si,Al) angles.  相似文献   

9.
Short and medium range order of silica and sodium silicate glasses have been investigated from a quantitative analysis of 29Si MAS NMR and 23Na, 17O MQMAS NMR spectra. The method described enables the extraction of the underlying 17O NMR parameter distributions of bridging oxygens (BOs) and non-bridging oxygens (NBOs), and yields site populations which are confirmed by 29Si NMR data. The extracted NMR parameter distributions and their variations with respect to the glass chemical composition can then be analyzed in terms of local structural features (bond angles and bond lengths, coordination numbers) with the help of molecular dynamics simulations combined with first-principles calculations of NMR parameters. Correlations of relevant structural parameters with 23Na, 29Si and 17O NMR interactions (isotropic chemical shift δiso, quadrupolar coupling constant CQ and quadrupolar asymmetry parameter ηQ) are re-examined and their applicability is discussed. These data offer better insights into the structural organization of the glass network, including both chemical and topological disorder. Adding sodium to pure silica significantly diminishes the Si-O-Si bond angles and leads to a longer mean Si-O bond length with a slight decrease of the mean Na-O bond length. Moreover, the present data are in favor of a homogeneous distribution of Na around both oxygen species in the silicate network. Finally, our approach was found to be sensitive enough to investigate the effect of addition of a small quantity of molybdenum oxide (about 1 mol%) on the 17O MAS spectrum, opening new possibilities for investigating the Mo environment in silicate glasses.  相似文献   

10.
Thermal transformations of kaolinite of different degree of crystallinity have been monitored by 27Al and 29Si high-resolution NMR with magic-angle spinning (MAS NMR), X-ray diffraction, Fourier transform infrared, atomic absorption spectrophotometry and thermogravimetric analysis. NMR shows differences in the dehydroxylation process of kaolinites with different degree of crystallinity and reveals the presence of short-range order in metakaolinite. 29Si NMR spectra acquired with a 30 s recycle delay of poorly and highly crystalline samples heated at 480 and 500° C, respectively, contain three distinct signals; we discuss their assignment in the light of experiments involving leaching of the samples with aqueous KOH. Ca. 40% of Si sites retain their original Q 3 symmetry just above the onset of dehydroxylation and the Q 4 environment is present showing that a small amount of amorphous silica has already segregated. The spectrum of samples treated at 1000° C contains a signal at -110ppm (from Q 4 silicons) and a faint resonance, from mullite, at ca. -87 ppm. 29Si NMR also shows that cristobalite germs are already present at 950–1000° C. The 27Al MAS NMR spectra of metakaolinite reveal the presence of 4-, 5-and 6-coordinated Al. Changes in the three Al populations as a function of temperature have been monitored quantitatively. Below 800° C, 4-and 5-coordinated Al appears at the expense of 6-coordinated Al, but above 800° C the amount of 6-coordinated Al increases again. We suggest a dehydroxylation scheme which accounts for the presence of 4-and 5 coordinated Al. Above 900–950° C the latter signal is no longer present in the 27Al NMR spectra and new 4-and 6-coordinated Al species (mullite and γ-alumina) appear. We propose new ideas for the structure of metakaolinite.  相似文献   

11.
蒙脱石热处理产物的微结构变化研究   总被引:9,自引:0,他引:9       下载免费PDF全文
本文对广东和平蒙脱石及其热处理产物进行了化学分析、差热和热重分析、X射线粉末衍射分析、红外吸收光谱分析、扫描电镜、原子力显微镜及魔角旋转核磁共振等研究。结果表明,蒙脱石在热处理温度为126℃-148℃时,主要脱出吸附水和层间水,这一脱水过程是可逆的。当热处理温度达到659℃时,蒙脱石八面体片中的羟基开始脱失,但层状结构仍然保持,这种羟基的脱失过程对应着八面体片中Al向Al的转变。当温度达到900℃时,蒙脱石的层状结构完全被破坏,并有新的矿物相μ-堇青石产生。当温度为1200℃时,则出现方英石及莫来石相。当热处理温度达到1350℃时,方英石及莫来石的含量略有减少,并出现较多的含铁堇青石相。  相似文献   

12.
《地学前缘(英文版)》2020,11(4):1353-1367
Chronologically well-constrained loess-palaeosols(recorded glacial and inter-glacial climate) revealed pedogenesis induced ionic substitutions,caused end-member compositional deviations in illite and chlorite,linked to widespread climatic changes occurred during Late Pleistocene.Further,micro-level climatic resolution is yet to be resolved.Thus,layer-wise X-ray diffraction analyses of clay separates,followed by Rietveld refinement revealed varied cell parameters and interatomic distances.Obtained values for detrital and pedogenic illite and chlorite when plotted against stratigraphic succession show notable changes in the crystallographic axes.The illite lattices associated with inadequately pedogenized palaeosols have been altered into illite/smectite mixed layers,but,the chlorite lattices represent expansion of a-,b-and contraction of c-axes with much greater amount of distortions,suggestive of warm-humid and acidic environment.The detrital 48,44 and 83,74 bonded illite and chlorite with2 sub-types each,when pedogenized retained 48,44 and 34;and 83 and 74 bonds(in their neo-formed 3 and 2 sub-types),respectively.The Al-O bond shows expansion,but,unchanged Si-O and decreased Si-K and K-O bonds show loss of Al and retention of Si and K ions in the illite lattices.The illite with 32 atoms and 48 bonds represent contraction of K-O,Si-K,Al-O and Si-O bonds caused bond reinforcement;however,loss of Al~(3+)reflects all-out illite alteration.Owing to Al-O and K-O bond expansion,major K~+ and Al~(3+) ionic loss occurred during the LGM,however,further ionic loss depends upon the magnitude of the loess-palaeosol weathering that they have suffered.The clilate sensitive Fe,Mg and Al ionic losses for Fe-O,Mg-O and Al_(11)-O_9 bond length expansions were recognized in the chlorite lattices.Such ionic losses are common,but,complete distortion is attributed to Al,Si,Fe and Mg ionic losses,followed by weakening of Al-O,Si-O,Fe-O and Mg-O bonds.Though,Si-O_4 and Fe_1-O_4 bonds,and Si and Fe_(1 st) ions remain intact.Thus,three major glacial episodes of ~5 ka each occurred under alkaline environment,but,intervened by two successive cycles of 55 ka each,encompassing three alternate warm and cold climatic sub-cycles of 12-15 ka.But,the coldness increases with each warm-cold sub-cycle that attained the glacial maxima.Further,these events correlate well with the deep-sea records of the North Atlantic(MIS-1 to MIS-5 e) and CLP loess-palaeosols(~127 ka).  相似文献   

13.
We present the results of a series of experiments designed to probe the interactions between Al and the amorphous silica surface as a function of thermodynamic driving forces. The results from 27Al single pulse magic angle spinning (SP/MAS) and 27Al{1H} rotational echo double resonance (REDOR) allow us to identify the reaction products and constrain their structure. In all cases, despite low Al and Si concentrations we observe the formation of metastable aluminosilicates. Results from low temperature experiments indicate that despite thermodynamic driving forces for the formation of gibbsite we observe the precipitation of separate octahedrally coordinated Al (Al[6]) and tetrahedrally coordinated Al (Al[4]) silicate phases. At higher temperatures the Al[4] silicate phase dominates the speciation. Structural models derived from the NMR data are also proposed, and the results are discussed as they relate to previous work on Al/Si cycling.  相似文献   

14.
29Si MAS NMR experiments have been carried out to determine the silica species distribution (Q distribution) in albite, NaAlSi3O8, and anorthite, CaAl2Si2O8, composition glasses (designated albite and anorthite glass). Our results indicate that the Q distribution of albite glass contains all five possible silica species and shows a tendency towards high Q3 and Q4 concentrations, whereas anorthite glass does not contain Q4 and has a high Q0 concentration. Rationalizations are made in terms of the observed Q distributions to explain differences in devitrification behavior of these two glasses. 27Al MAS NMR data for these glasses suggest that differences in devitrification behavior between these two glasses should be ascribed to small growth rates rather than small nucleation rates of crystalline albite from albite glass.  相似文献   

15.
New 27Al NMR data are presented in order to clarify the discrepancies in the interpretation of the previous 27Al Magic Angle Spinning (MAS) spectra from hydrous aluminosilicate glasses. The 27Al MAS data have been collected at much higher magnetic field (14.1 and 17.6 T) than hitherto, and in addition, multiple quantum (MQ) MAS NMR data are presented for dry and hydrous nepheline glasses and NaAlSi7.7O17.4 glass that, according to the model of Zeng et al. (Zeng Q., Nekvasil H., and Grey C. P. 2000. In support of a depolymerisation model for water in sodium aluminosilicate glasses: Information from NMR spectroscopy. Geochim. Cosmochim. Acta64, 883-896), should produce a high fraction (up to 30%) of Al in Al Q3-OH on hydration. Although small differences in the MAS spectra of anhydrous and hydrous nepheline glasses are observed, there is no evidence for the existence of significant (>∼2%) amounts of Q3 Al-OH in these glasses in either the MAS or MQMAS data.  相似文献   

16.
 Si K- and L-edge ELNES spectroscopy and multiple-scattering (MS) calculations are used to examine mixed Si coordination compounds varying in SiVI:SiIV ratio. As in previous studies, the edges are influenced mainly by silicon coordination (tetrahedral vs. octahedral), as supported by the MS calculations. We demonstrate two methods semi-quantitatively to extract the value of SiVI/(SiVI+SiIV): (1) A linear relationship between the L2,3-L1 splitting and SiVI/(SiVI+SiIV) is observed, (2) a fitting method based on the coaddition of reference tetrahedral and octahedral Si spectra is applied to both Si K- and L-edge ELNES spectra. Received: February 10, 1997 / Revised, accepted: May 23, 1997  相似文献   

17.
Hartree-Fock and B3LYP NMR calculations were performed at the 6-311+G(2df,p) level on cluster models representing albite glasses using B3LYP/6 to 31G* optimized geometries. Calculation results on several well-known crystalline materials, such as low albite and KHSi2O5, were used to check the accuracy of the calculation methods.Calculated 29Si-NMR results on clusters that model protonation of Al-O-Si linkages and the replacement of Na+ by H+ indicate a major increase in Si-O(H) bond length and a 5 ppm difference in δiso for 29Si compared to that for anhydrous albite glass. The calculated δiso of 27Al in such linkages agrees with the experimental data, but shows an increase in Cq that cannot be fully diminished by H-bonding to additional water molecules. This protonation model is consistent with both experimental 17O NMR data and the major peak of 1H-NMR spectra. It cannot readily explain the existence of the small peak in the experimental 1H spectra around 1.5 ppm. Production of the depolymerized units Al [Q3]-O-H upon the dissolution of water is not consistent with 27Al, 1H, or 17O NMR experimental results. Production of Si [Q3]-O-H is consistent with all of the experimental 17O and 1H-NMR data; such units can produce both the major peak at 3.5 ppm and the small peak at 1.5 ppm in 1H spectra, either with or without hydrogen bonding. This species, however, cannot produce the main features of 29Si spectra.It is concluded that although neither protonation nor the production of Si [Q3]-O-H alone is consistent with the available experimental data, the combination of these two processes is consistent with available experimental NMR data.  相似文献   

18.
We have obtained infrared and Raman spectra for garnets synthesized at high (static) pressures and temperatures along the join Mg3Al2Si3O12 (pyrope) — Mg4Si4O12 (magnesium majorite). The vibrational spectra of Mg-majorite show a large number of additional weak peaks compared with the spectra of cubic pyrope garnet, consistent with tetragonal symmetry for the MgSiO3 garnet phase. The Raman bands for this phase show no evidence for line broadening, suggesting that Mg and Si are ordered on octahedral sites in the garnet. The bands for the intermediate garnet compositions are significantly broadened compared with the end-members pyrope and Mg-majorite, indicating cation disorder in the intermediate phases. Solid state 27Al NMR spectroscopy for pyrope and two intermediate compositions show that Al is present only on octahedral sites, so the cation disorder is most likely confined to Mg-Al-Si mixing on the octahedral sites. We have also obtained a Raman spectrum for a natural, shock-produced (Fe,Mg) majorite garnet. The sharp Raman peaks suggest little or no cation disorder in this sample.  相似文献   

19.
This contribution is finalized at the discussion of the magnetic structure of two samples, belonging to phlogopite–annite [sample TK, chemical composition IV(Si2.76Al1.24) VI(Al0.64Mg0.72 $ {\text{Fe}}_{1.45}^{2 + } $ Mn0.03Ti0.15) (K0.96Na0.05) O10.67 (OH)1.31 Cl0.02] and polylithionite–siderophyllite joints [sample PPB, chemical composition IV(Si3.14Al0.86)VI(Al0.75Mg0.01 $ {\text{Fe}}_{1.03}^{2 + } $ $ {\text{Fe}}_{1.03}^{3 + } $ Mn0.01Ti0.01Li1.09) (K0.99Na0.01) O10.00 (OH)0.65F1.35]. Samples differ for Fe ordering in octahedral sites, Fe2+/(Fe2+?+?Fe3+) ratio, octahedral composition, defining a different environment around Fe cations, and layer symmetry. Spin-glass behavior was detected for both samples, as evidenced by the dependency of the temperature giving the peak in the susceptibility curve from the frequency of the applied alternating current magnetic field. The crystal chemical features are associated to the different temperature at which the maximum in magnetic susceptibility is observed: 6?K in TK, where Fe is disordered in all octahedral sites, and 8?K in PPB sample, showing a smaller and more regular coordination polyhedron for Fe, which is ordered in the trans-site and in one of the two cis-sites.  相似文献   

20.
Anders Lindh 《Lithos》1975,8(2):151-161
A population of 117 coexisting nonalkaline pyroxene pairs has been studied statistically to evaluate compositional and thermal effects on the element distribution. KDMgopx-cpx is influenced by the Fe/Mg-ratio, by the Ca content—especially of clinopyroxene—and by the content of tetrahedral Al. Fe and tetrahedral Al are found to be negatively correlated. A principal component analysis based on the variation of Si, AlIV, AlVI, Fe, Mg, Mn, Ca is performed. Dropping of highly correlated variables does not affect the result significantly. The first principal component reflects the major chemical variation in Fe and Mg. When using ferrous and ferric iron as separate entries of the analysis, either the second or the third component demonstrates a temperature dependence. It is, however, not possible to obtain pure temperature and chemical components due to the composition not being uncorrelated to temperature of formation. From these components a graph reflecting temperature of formation has been constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号