首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrochemical studies were carried out in Mulugu-Venkatapur Mandals of Warangal district, Telangana state, India to find out the causes of high fluorides in groundwater and surface water causing a widespread incidence of fluorosis in local population. The fluoride concentration in groundwater ranges from 0.28 to 5.48 mg/l with a mean of 1.26 mg/l in pre-monsoon and 0.21 to 4.43 mg/l with a mean 1.45 mg/l in post-monsoon. About 32% and 34% of samples in pre and post-monsoon containing fluoride concentrations that exceed the permissible limit. The Modified Piper diagram reflects that, water belong to Ca+2-Mg+2-HCO3 - to Na+-HCO3 - facies. Negative chloroalkali indices in both the seasons prove that ion exchange took place between Na+ & K+ with Ca+2 and Mg+2 in aquatic solution in host rock. Different plots for major ions and molar ratios suggest that weathering of silicate rocks and water-rock interaction is responsible for major ion chemistry of water. High fluoride content in groundwater attributed to continuous water-rock interaction during the process of percolation with fluorite bearing country rocks under arid, low precipitation, and high evaporation conditions. The low calcium content in rocks and soils, and the presence of high content of sodium bicarbonate in soils and waters are important factors favouring high levels of fluoride in waters. The basement rocks provide abundant mineral sources of fluoride in the form of amphibole, biotite, fluorite, mica and apatite.  相似文献   

2.
A total of 194 groundwater samples were collected from wells in hard rock aquifers of the Medak district, South India, to assess the distribution of fluoride in groundwater and to determine whether this chemical constituent was likely to be causing adverse health effects on groundwater user in the region. The study revealed that the fluoride concentration in groundwater ranged between 0.2 and 7.4 mg/L with an average concentration of 2.7 mg/L. About 57% of groundwater tested has fluoride concentrations more than the maximum permissible limit of 1.5 mg/L. The highest concentrations of fluoride were measured in groundwater in the north-eastern part of the Medak region especially in the Siddipeta, Chinnakodur, Nanganoor and Dubhaka regions. The areas are underlain by granites which contain fluoride-bearing minerals like apatite and biotite. Due to water–rock interactions, the fluoride has become enriched in groundwater due to the weathering and leaching of fluoride-bearing minerals. The pH and bicarbonate concentrations of the groundwater are varied from 6.6 to 8.8 and 18 to 527 mg/L, respectively. High fluoride concentration in the groundwater of the study area is observed when pH and the bicarbonate concentration are high. Data plotted in Gibbs diagram show that all groundwater samples fall under rock weathering dominance group with a trend towards the evaporation dominance category. An assessment of the chemical composition of groundwater reveals that most of the groundwater samples have compositions of Ca2+–Mg2+–Cl? > Ca2+–Na+–HCO3 ? > Ca2+–HCO3 ? > Na+–HCO3 ?. This suggests that the characteristics of the groundwater flow regime, long residence time and the extent of groundwater interaction with rocks are the major factors that influence the concentration of fluoride. It is advised not to utilize the groundwater for drinking purpose in the areas delineated, and they should depend on alternate safe source.  相似文献   

3.
Hydrogeochemical controlling factors for high rate of groundwater contamination in stressed aquifer of fractured, consolidated rocks belonging to semi-arid watershed are examined. The groundwater in mid-eastern part of Prakasam district confining to Musi-Gundlakamma sub-basins is heavily contaminated with nitrate and fluoride. Distinct water chemistry is noticed among each group of samples segregated based on concentration of these contaminants. The nitrate is as high as 594 mg/l and 57 % of the samples have it in toxic level as per BIS drinking water standards, so also the fluoride which has reached a maximum of 8.96 mq/l and 43 % of samples are not fit for human consumption. Nitrate contamination is high in shallow aquifers and granitic terrains, whereas fluoride is in excess concentration in deeper zones and meta-sediments among the tested wells, and 25 % of samples suffer from both NO3 ? and F? contamination. Na+ among cations and HCO3 ? among anions are the dominant species followed by Mg2+ and Cl?. The NO3 ?-rich groundwater is of Ca2+–Mg2+–HCO3 ?, Ca2+–Mg2+–Cl? and Na+–HCO3 ? type. The F?-rich groundwater is dominantly of Na+–HCO3 ? type and few are of Na+–SO4 2? type, whereas the safe waters (without any contaminants) are of Ca2+–Mg2+–HCO3 ?– and Na+–HCO3 ? types. High molecular percentage of Na+, Cl?, SO4 2? and K? in NO3 ? rich groundwater indicates simultaneous contribution of many elements through domestic sewerage and agriculture activity. It is further confirmed by analogous ratios of commonly associated ions viz NO3 ?:Cl?:SO4 2? and NO3 ?:K+:Cl? which are 22:56:22 and 42:10:48, respectively. The F? rich groundwater is unique by having higher content of Na+ (183 %) and HCO3 ? (28 %) than safe waters. The K+:F?:Ca2+ ratio of 10:5:85 and K+:F?: SO4 2? of 16:7:77 support lithological origin of F? facilitated by precipitation of CaCO3 which removes Ca2+ from solution. The high concentrations of Na+, CO3 ? and HCO3 ? in these waters act as catalyst allowing more fluorite to dissolve into the groundwater. The indices, ratios and scatter plots indicate that the NO3 ? rich groundwater has evolved through silicate weathering-anthropogenic activity-evapotranspiration processes, whereas F? rich groundwater attained its unique chemistry from mineral dissolution-water–rock interaction-ion exchange. Both the waters are subjected to external infusion of certain elements such as Na+, Cl?, NO3 ? which are further aggravated by evaporation processes leading to heavy accumulation of contaminants by raising the water density. Presence of NO3 ? rich samples within F? rich groundwater Group and vice versa authenticates the proposed evolution processes.  相似文献   

4.
Agricultural activities act as dominant polluter of groundwater due to increased fertilizers and pesticides usage. Bist-Doab region, Punjab, India, is one such region facing deterioration of groundwater quality due to usage of fertilizers. This study aims in delineating and evaluating the groundwater quality in the region. Water samples are collected from canals, reservoir, and shallow and deep groundwater. Water types in canal and reservoir in Kandi region are Mg2+HCO3 ? and Mg2+Ca2+Na+HCO3 ?, respectively. While water types of shallow and deep groundwaters are found to be of two types: Na+Mg2+Ca2+HCO3 ? and Ca2+Mg2+Na+HCO3 ?. Presence of Mg2+ in groundwater at locations adjoining canals indicates recharge due to canal. The major ion (Na+, Mg2+, Ca2+, HCO3 ?) chemistry of the region is due to weathering of rocks that are rich in sodic minerals and kankar. Deep groundwater quality in the region meets BIS and WHO standards for drinking purpose, unlike shallow groundwater which is of poor quality at many locations. Both shallow and deep groundwater with high sodium concentration (>1.5 meq/l) affect cropping yield and permeability of soil matrix. High concentration of SO4 2? and NO3 2? (>1 meq/l) in shallow groundwater at few locations indicates influence of anthropogenic (fertilizer) activity. Factor analysis indicates that the major cations, bicarbonate and chloride are derived from weathering/dissolution of source rocks. Higher concentration of nitrate and presence of sulphate in shallow groundwater at few locations is due to usage of fertilizers and pesticides.  相似文献   

5.
Excess fluoride in groundwater affects the human health and results in dental and skeletal fluorosis. Higher concentration of fluoride was noted in hard rock terrain of the south India, in the Krishnagiri district of Tamilnadu. The region has a complex geology ranging from ultra basic to acid igneous rocks, charnockite and gneissic rocks. Thirty-four groundwater samples were collected from this study area and analysed for major cations and anions along with fluoride. The order of dominance of cations is Na+?>?Mg2+?>?Ca2+?>?K+ and the anions in the following order HCO3 ??>?Cl??>?NO3 ??>?SO4 2?. It is found that nearly 58 % of the samples have more fluoride ranging from 1 to 3 mg/L. It is also noted that high fluoride waters correspond to magnesium water types. This is due to the release of fluoride from the magnesium-bearing minerals like, biotite, hornblende, etc., or weathering of apatite/hydroxyapatites found in charnockites.  相似文献   

6.
7.
The occurrence of dental/skeletal fluorosis among the people in the study area provided the motivation to assess the distribution, severity and impact of fluoride contamination in groundwater of Bankura district at Simlapal block, West Bengal, India. To meet the desired objective, groundwater samples were collected from different locations of Laxmisagar, Machatora and Kusumkanali regions of Simlapal block at different depths of tube wells in both pre- and post-monsoon seasons. Geochemical results reveal that the groundwaters are mostly moderate- to hard-water type. Of total groundwater samples, 37% are situated mainly in relatively higher elevated region containing fluoride above 1.5 mg/L, indicating that host aquifers are severely affected by fluoride contamination. Machatora region is highly affected by fluoride contamination with maximum elevated concentration of 12.2 mg/L. Several symptoms of fluorosis among the different age-groups of people in Laxmisagar and Machatora areas are indicating consumption of fluoridated water for prolonged period. The groundwater samples were mainly Na–Ca–HCO3 type and rock dominance indicating the dissolution of minerals taking place. Ion exchange between OH? ion and F? ion present in fluoride-bearing mineral is the most dominant mechanism of fluoride leaching. High concentration of Na+ and HCO3 ? increases the alkalinity of the water, providing a favorable condition for fluoride to leach into groundwater from its host rocks and minerals.  相似文献   

8.
A survey on quality of groundwater was carried out for assessing the geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India, where the area is underlain by Peninsular Gneissic Complex. The results of the groundwater chemistry show a variation in pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ? and F?. The chemical composition of groundwater is mainly characterized by Na+?HCO3 ? facies. Hydrogeochemical type transits from Na+–Cl?–HCO3 ? to Na+–HCO3 ?–Cl? along the flow path. Graphical and binary diagrams, correlation coefficients and saturation indices clearly explain that the chemical composition of groundwater is mainly controlled by geogenic processes (rock weathering, mineral dissolution, ion exchange and evaporation) and anthropogenic sources (irrigation return flow, wastewater, agrochemicals and constructional activities). The principal component (PC) analysis transforms the chemical variables into four PCs, which account for 87% of the total variance of the groundwater chemistry. The PC I has high positive loadings of pH, HCO3 ?, NO3 ?, K+, Mg2+ and F?, attributing to mineral weathering and dissolution, and agrochemicals (nitrogen, phosphate and potash fertilizers). The PC II loadings are highly positive for Na+, TDS, Cl? and F?, representing the rock weathering, mineral dissolution, ion exchange, evaporation, irrigation return flow and phosphate fertilizers. The PC III shows high loading of Ca2+, which is caused by mineral weathering and dissolution, and constructional activities. The PC IV has high positive loading of Mg2+ and SO4 2?, measuring the mineral weathering and dissolution, and soil amendments. The spatial distribution of PC scores explains that the geogenic processes are the primary contributors and man-made activities are the secondary factors responsible for modifications of groundwater chemistry. Further, geochemical modeling of groundwater also clearly confirms the water–rock interactions with respect to the phases of calcite, dolomite, fluorite, halite, gypsum, K-feldspar, albite and CO2, which are the prime factors controlling the chemistry of groundwater, while the rate of reaction and intensity are influenced by climate and anthropogenic activities. The study helps as baseline information to assess the sources of factors controlling the chemical composition of groundwater and also in enhancing the groundwater quality management.  相似文献   

9.
Groundwater samples were collected from various localities of Mithi sub-district of the Thar Desert of Pakistan and analysed for fluoride ion along with other chemical parameters. The area is mainly covered by sand dunes and kaolin/granite at variable depths. Results showed that collected water samples were severely contaminated by the presence of fluoride ion and most of the samples have higher concentration than prescribed WHO standards (1.5 mg/l) for drinking water. Fluoride ion concentrations ranged between 0.09 and 11.63 mg/l with mean and median values of 3.64 and 3.44 mg/l, respectively, in this area whereas, distribution pattern showed high concentrations in the vicinity of Islamkot and Mithi towns. The content of F has also been correlated with other major ions found in the groundwater of the study area. The positive correlation of F with Na+ and HCO3 showed that the water with high Na+ and HCO3 stabilizes F ions in the groundwater of the Thar Desert. The pH versus F plots signifies high fluoride concentration at higher pH values, implying that alkaline environment favours the replacement of exchangeable OH with F in the groundwater of Mithi area. The saturation indices (SI) of fluorite (CaF2) and calcite (CaCO3) in the groundwater samples showed that most of the samples are oversaturated with respect to calcite whereas majority of samples have been found under saturated with respect to fluorite. The log TDS and Na/Na+Ca ratio reflected supremacy of weathering of rocks, which promotes the availability of fluoride ions in the groundwater. Piper diagram has been used to classify the hydrofacies. In the cation triangle, all samples are Na-type, while the anion triangle reflects major dominance of Cl-type with a minor influence of HCO3 and SO4 .  相似文献   

10.
Groundwater survey has been carried out in the area of Gummanampadu sub-basin located in Guntur District, Andhra Pradesh, India for assessing the factors that are responsible for changing of groundwater chemistry and consequent deterioration of groundwater quality, where the groundwater is a prime source for drinking and irrigation due to non-availability of surface water in time. The area is underlain by the Archaean Gneissic Complex, over which the Proterozoic Cumbhum rocks occur. The results of the plotting of Ca2+ + Mg2+ versus HCO3 ? + CO3 2?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO4 2? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3 ? + CO3 2?, Na+ versus Ca2+ and Na+: Cl? versus EC indicate that the rock–water interaction under alkaline condition is the main mechanism in activating mineral dissociation and dissolution, causing the release of Ca2+, Mg2+, Na+, K+, HCO3 ?, CO3 2?, SO4 2? and F? ions into the groundwater. The ionic relations also suggest that the higher concentrations of Na+ and Cl? ions are the results of ion exchange and evaporation. The influences of anthropogenic sources are the other cause for increasing of Mg2+, Na+, Cl?, SO4 2? and NO3 ? ions. Further, the excess alkaline condition in water accelerates more effective dissolution of F?-bearing minerals. Moreover, the chemical data plotted in the Piper’s, Gibbs’s and Langelier–Ludwig’s diagrams, computed for the chloro-alkaline and saturation indices, and analyzed in the principal component analysis, support the above hypothesis. The groundwater quality is, thus, characterized by Na+ > Ca2+ > Mg2+ > K+: HCO3 ? + CO3 2? > Cl? > SO4 2? > NO3 ? > F? facies. On the other hand, majority of groundwater samples are not suitable for drinking with reference to the concentrations of TDS, TH, Mg2+ and F?, while those are not good for irrigation with respect to USSL’s and Wilcox’s diagrams, residual sodium carbonate, and magnesium hazard, but they are safe for irrigation with respect to permeability index. Thus, the study recommends suitable management measures to improve health conditions as well as to increase agricultural output.  相似文献   

11.
Rock–water interaction along with mineral dissolution/ precipitation plays a profound role in the control of fluoride ion concentration within the alluvial groundwater in a part of semi-arid northern India. In the premonsoon season, the alluvial region experiences evaporative processes leading to increase in Na+ ions which through reverse ion exchange processes are adsorbed onto suitable sites within the aquifer matrix in exchange for Ca2+ ion in solution. Increase in Ca2+ ions in solution inhibits fluorite mineral dissolution, thereby controlling premonsoon fluoride ion concentration within alluvial groundwaters (1.40?±?0.5 mg/l). In the postmonsoon season, however, higher average fluoride ion concentration within the alluvial aquifer samples (2.33?±?0.80 mg/l) is observed mainly due to increase in silicate weathering of fluoride-bearing rocks and direct ion exchange processes enabling Ca2+ ion uptake from solution accompanied with the release of fluoride ions. Combined effect of these processes results in average fluoride ion concentration falling above the WHO drinking water permissible limit (1.5 mg/l). Alternatively, the hard rock aquifer samples within the study area have an average fluoride ion concentration falling below the permissible limit in both the seasons.  相似文献   

12.
Twenty groundwater samples were collected from Enugu metropolis over two seasonal periods in order to characterize the groundwater and to determine its quality for domestic and irrigation purposes. The results show that groundwater of the area is strongly acidic to slightly alkaline in nature and varied from “soft water” to “moderately hard” water type. The major ionic trend is in the order Cl> Na> HCO3 ? > K> Mg2+ > Ca2+ > SO4 2?and Mg2+ > Cl> Na> K> Ca2+ > HCO 3 > SO4 2? in abundance for dry and rainy seasons, respectively. The results also reveal that there is an increase in trend of the ionic concentrations during the dry season, which arises from weathering of the host rocks and anthropogenic activities. Two hydrochemical facies were identified, namely, Na+ –K+ –Cl? –SO4 2?and Ca2+ –Mg2+ –Cl? –SO4 2? , with Na+ –K+ –Cl? –SO4 2? as the dominant facies for the two seasons. Groundwater quality ranges from “very poor water” to “good water” and “water unsuitable for drinking purposes” to “good water” for the dry season and rainy season investigations, respectively. The groundwater is suitable for irrigation purposes for the two seasons.  相似文献   

13.
Hydogrochemical investigation of groundwater resources of Paragraph district has been carried out to assess the solute acquisition processes and water quality for domestic and irrigation uses. Fifty-five groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (F?, Cl?, NO3, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). Study results reveal that groundwater of the area is alkaline in nature and HCO3 ?, Cl?, Mg2+, Na+ and Ca2+ are the major contributing ions to the dissolved solids. The hydrogeochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Pratapgarh district. Alkaline earth metals (Ca2++Mg2+) exceed alkalis (Na++K+) and weak acid (HCO3 ?) dominate over strong acids (Cl?+SO4 2?) in majority of the groundwater samples. Ca-Mg-HCO3 and Ca-Mg-Cl-HCO3 are the dominant hydrogeochemical facies in the groundwater of the area. The computed saturation indices demonstrate oversaturated condition with respect to dolomite and calcite and undersaturated with gypsum and fluorite. A comparison of groundwater quality parameters in relation to specified limits for drinking water shows that concentrations of TDS, F?, NO3 ? and total hardness exceed the desirable limits in many water samples. Quality assessment for irrigation uses reveal that the groundwater is good for irrigation. However, values of salinity, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), %Na and Kelley index are exceeding the prescribed limit at some sites, demanding adequate drainage and water management plan for the area.  相似文献   

14.
Groundwater is the most important source of water supply in Iran and understanding the geochemical evolution of groundwater is important for sustainable development of the water resources in Tabas area. A total of 29 samples of groundwater in Tabas area have been analyzed for ions and major elements. Groundwater of the study area is characterized by the dominance of Na–Cl water type. Groundwater was generally acidic to high alkaline with pH ranging from 5.42 to 10.75. The TDS as a function of mineralization characteristics of the groundwater ranged from 479 to 10,957 mg/l, with a mean value of 2,759 mg/l. The Ca2+, Mg2+, SO4 2? and HCO3 ? were mainly derived from the dissolution of calcite, dolomite and gypsum. The Cu, Pb and Zn ions are not mobile in recent pH–Eh, but these conditions controlled dissolved Se, V and Mo in groundwater. The As is released in groundwater as a result of the weathering of sulfide minerals like arsenopyrite.  相似文献   

15.
Groundwater of an aquifer located in the vicinity of a large coal washery near Zarand City, Iran consists of two hydrochemically differing facies, which have been informally designated as groundwater (A) and groundwater (B). Groundwater (A) is native, brackish in composition and is characterized by Na+ > Mg2+ > Ca2+ > K+ and SO4 2? > HCO3 ? > Cl? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of chloro-alkaline indices, C ratio and Na+/Cl? molar ratio indicate that in the groundwater (A), the ionic load of Ca2+, Mg2+, Na+, K+, SO4 2? and HCO3 ? is derived essentially from weathering of both carbonates and aluminosilicates and direct cation and reverse cation–anion exchange reactions. Groundwater (B) is the polluted variant of the groundwater (A), brackish to saline in composition, and unlike the groundwater (A), consists of HCO3 ? as the dominant anion. In comparison with the groundwater (A), the groundwater (B) contains higher concentrations of all ions, and its average ionic load (av. = 59.74 me/L) is 1.43 times higher than that of the groundwater (A) (av. = 41.54 me/L). Additional concentrations of Ca2+, Mg2+, K+, SO4 2?, Cl? and HCO3 ? in the groundwater (B) are provided mainly by downward infiltrating water from the coal washery tailings pond and reverse cation–anion exchange reaction between tailings pond water and exchanger of the aquifer matrix during non-conservative mixing process of groundwater (A) and tailings pond water. Certain additional concentrations of Na+, K+ and NO3 ? in the groundwater (B) are provided by other anthropogenic sources. Quality wise, both groundwaters are marginally suitable for cultivation of salt-tolerant crops only.  相似文献   

16.
The source of fluoride toxicity in Muteh area,Isfahan, Iran   总被引:1,自引:0,他引:1  
Endemic dental fluorosis has been observed in most inhabitants of three villages of Muteh area, located in northwest of Isfahan province, with mottled enamel related to high levels of fluoride in drinking water (1.8–2.2 ppm). Forty-seven groundwater samples from six villages were collected and fluoride concentrations along with physico-chemical parameters were analyzed. Fluoride concentration in this area varies from 0.2 to 9.2 mg/l with highest fluoride level at Muteh gold mine (Chahkhatun mine). Fluoride concentration positively correlates with pH and HCO3 indicating that alkaline pH provides a suitable condition for leaching of fluoride from surrounding rocks. The district is mainly covered by three lithological units, namely, metamorphic and granite rocks, alluvial sediments, and carbonate rocks. Factor analysis shows that parameters can be classified into four components: electrical conductivity (EC), total dissolved solids (TDS), Cl, Na+ and K+, pH and F, SO4 2−and Mg2+, HCO3 and Ca2 +. The groundwaters from the three geological units were compared using Mann–Whitney U test. The order of median fluoride concentration is: metamorphic and granite rocks > alluvial sediments > carbonate rocks. Hence, the fluoride content is most probably related to fluoride-bearing minerals such as amphibole and mica group minerals in metamorphic and granitic rocks. The concentration of fluoride in drinking water wells located near the metamorphic complex in Muteh area is above 2 ppm.  相似文献   

17.
The Ganges River water and riverbank shallow groundwater were studied during a single wet season using the hydrochemical and isotopic composition of its dissolved load. The dissolved concentrations of major ions (Cl?, SO4 2?, NO3 ?, HCO3 ?, Ca2+, Na+, Mg2+, and K+), trace elements (barium (Ba) and strontium (Sr)) and stable isotopes (O and D) were determined on samples collected from the Ganges River and its riverbank shallow aquifers. In the present study, the shallow groundwater differs significantly from the Ganges River water; it shows distinct high concentrations of Ca2+, Mg2+, HCO3 ?, Ba, and Sr due to water–rock interaction and this in particular suggests that the Ganges River may not contribute significantly to the riverbank shallow aquifers during wet season. Besides, the sum of the total cationic charge (∑+, in milliequivalents per liter) in the groundwater shows high values (2.48 to 13.91 meq/L, average 9.12 meq/L), which is much higher than the sum of the cations observed in the Ganges water (1.36 to 3.10 meq/L, average 1.94 meq/L). Finally, the more depleted stable isotopic (δ 18O and δ 2H) compositions of the Ganges River water are in contrast to those of the riverbank aquifer having enriched stable isotopic values during the wet season and the riverbank groundwater thus has a purely local origin from precipitation.  相似文献   

18.
The groundwaters from Zhongxiang City, Hubei Province of central China, have high fluoride concentration up to 3.67 mg/L, and cases of dental fluorosis have been found in this region. To delineate the nature and extent of high fluoride groundwaters and to assess the major geochemical factors controlling the fluoride enrichment in groundwater, 14 groundwater samples and 5 Quaternary sediment samples were collected and their chemistry were determined in this study. Some water samples from fissured hard rock aquifers and Quaternary aquifers have high fluoride concentrations, whereas all karst water samples contain fluoride less than 1.5 mg/L due to their high Ca/Na ratios. For the high fluoride groundwaters in the fissured hard rocks, high HCO3 concentration and alkaline condition favor dissolution of fluorite and anion exchange between OH in groundwater and exchangeable F in some fluoride-bearing minerals. For fluoride enrichment in groundwaters of Quaternary aquifers, high contents of fluoride in the aquifer sediments and evapotranspiration are important controls.  相似文献   

19.
Presence of fluoride in groundwater is a public health problem in the so-called endemic fluorosis belt of the central Iran, where the groundwater is the major source of drinking water in most urban and rural areas. Therefore, an attempt has been made to determine the hydrogeochemical factors controlling fluoride enrichment in the groundwater resources at this belt. Fluoride concentrations ranged from 0.20 to 1.99 mg/L (1.02 ± 0.47) in groundwater samples. The presence of different F-bearing minerals and also clay minerals in the soils and aquifer materials was confirmed using XRD analysis. To identify probable sources of dissolved F? and investigate groundwater quality, multivariate statistical analyses were carried out. Geochemical modeling indicated that all samples were undersaturated with respect to fluorite, halite, gypsum and anhydrite and mostly oversaturated with respect to calcite and dolomite. Contrary to most high-fluoride regions in the World, the high F? content was dominated by Na–Cl- and Ca–SO4-type groundwater in the study area. Besides, fluoride showed negative relationship with pH and HCO3 ? in groundwater. In order to assess the bioavailability of fluoride in soils, a two-step chemical fractionation method was applied. The results showed that fluoride in soils mostly accompanied with the residual and water-soluble fractions and was poorly associated with soil’s bonding sites. Calculated aqueous migration coefficient demonstrated that fluoride in the studied soils was mobile to easily leachable to the groundwater. Finally, the results demonstrated that combination of water–rock interaction and influence of clay minerals is geochemical mechanism responsible for controlling fluoride enrichment in groundwater.  相似文献   

20.
Groundwater is a precious resource for humankind not only in Nepal but also across the globe due to its diverse functions. A total of 48 groundwater samples were collected from three villages of Nawalparasi district, Nepal, during pre-monsoon and monsoon to estimate the overall groundwater quality and to identify the sources of contamination with emphasis on arsenic (As). The average concentrations of all tested groundwater quality parameters (temp., pH, EC, ORP, Ca2+, Mg2+, Na+, K+, Cl?, F?,SO4 2?, PO4 3?, HCO3 ?, NO3 ?, Cu, Ni, Mn, Cd, Pb, Fe, Zn, Cr, and As) were well within permissible limits of WHO for drinking water, except for Ni, Cd, Pb, Cr, and As. Concentration of As ranged from 60 to 3,100 μg L?1 and 155 to 1,338 μg L?1 in pre-monsoon and monsoon, respectively. The Piper diagram of the groundwater chemistry showed groundwater of Nawalparasi belongs to Ca–Mg–HCO3 and Mg–HCO3 water type with HCO3 ? as dominant ions. As content in the study area was negatively correlated with Fe in pre-monsoon, while it was positively correlated in monsoon. Furthermore, As was negatively correlated with oxidation reduction potential suggesting reducing condition of groundwater. Principal component analysis revealed seven major factors that explained 81.996 and 83.763 % of total variance in water quality in pre-monsoon and monsoon, respectively. The variance of water quality was related mainly with the degree of water–rock interaction, mineralization, and anthropogenic inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号