首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
Sodic amphiboles in high pressure and ultra-high pressure (UHP) metamorphic rocks are complex solid solutions in the system Na2O–MgO–Al2O3–SiO2–H2O (NMASH) whose compositions vary with pressure and temperature. We conducted piston-cylinder experiments at 20–30?kbar and 700–800?°C to investigate the stability and compositional variations of sodic amphiboles, based on the reaction glaucophane=2jadeite+talc, by using the starting assemblage of natural glaucophane, talc and quartz, with synthetic jadeite. A close approach to equilibrium was achieved by performing compositional reversals, by evaluating compositional changes with time, and by suppressing the formation of Na-phyllosilicates. STEM observations show that the abundance of wide-chain structures in the synthetic amphiboles is low. An important feature of sodic amphibole in the NMASH system is that the assemblage jadeite–talc?±?quartz does not fix its composition at glaucophane. This is because other amphibole species such as cummingtonite (Cm), nyböite (Nyb), Al–Na-cummingtonite (Al–Na-Cm) and sodium anthophyllite (Na-Anth) are also buffered via the model reactions: 3cummingtonite?+?4quartz?+?4H2O=7talc, nyböite?+?3quartz=3jadeite?+?talc, 3Al–Na-cummingtonite + 11quartz + 2H2O=6jadeite + 5talc, and 3 sodium anthophyllite?+?13quartz?+?4H2O=3 jadeite + 7talc. We observed that at all pressures and temperatures investigated, the compositions of newly grown amphiboles deviate significantly from stoichiometric glaucophane due to varying substitutions of AlIV for Si, Mg on the M(4) site, and Na on the A-site. The deviation can be described chiefly by two compositional vectors: [NaAAlIV]<=>[□ASi] (edenite) toward nyböite, and [Na(M4)AlVI]<=>[Mg(M4)MgVI] toward cummingtonite. The extent of nyböite and cummingtonite substitution increases with temperature and decreases with pressure in the experiments. Similar compositional variations occur in sodic amphiboles from UHP rocks. The experimentally calibrated compositional changes therefore may prove useful for thermobarometric applications.  相似文献   

2.
3.
Compressibility of perovskite-structured Ca3Al2Si3O12 grossular (GrPv) was investigated at high pressure and high temperature by means of angle-dispersive powder X-ray diffraction using a laser-heated diamond anvil cell. We observed the Pbnm orthorhombic distortion for the pure phase above 50 GPa, whereas below this pressure, Al-bearing CaSiO3 perovskite coexists with an excess of corundum. GrPv has a bulk modulus (K 0 = 229 ± 5 GPa; \(K_{0}^{{\prime }}\) fixed to 4) almost similar to that reported for pure CaSiO3 perovskite. Its unit-cell volume extrapolated to ambient conditions (V 0 = 187.1 ± 0.4 Å3) is found to be ~2.5 % larger than for the Al-free phase. We observe an increasing unit-cell anisotropy with increasing pressure, which could have implications for the shear properties of Ca-bearing perovskite in cold slabs subducted into the Earth’s mantle.  相似文献   

4.
Iron-rich orthopyroxene plays an important role in models of the thermal and magmatic evolution of the Moon, but its density at high pressure and high temperature is not well-constrained. We present in situ measurements of the unit-cell volume of a synthetic polycrystalline end-member orthoferrosilite (FeSiO3, fs) at simultaneous high pressures (3.4–4.8 GPa) and high temperatures (1,148–1,448 K), to improve constraints on the density of orthopyroxene in the lunar interior. Unit-cell volumes were determined through in situ energy-dispersive synchrotron X-ray diffraction in a multi-anvil press, using MgO as a pressure marker. Our volume data were fitted to a high-temperature Birch–Murnaghan equation of state (EoS). Experimental data are reproduced accurately, with a  $\varDelta P$ Δ P  standard deviation of 0.20 GPa. The resulting thermoelastic parameters of fs are: V 0 = 875.8 ± 1.4 Å3K 0 = 74.4 ± 5.3 GPa, and $\frac{{\text d}K}{{\text d}T} = -0.032 \pm 0.005\,\hbox{GPa K}^{-1}$ d K d T = - 0.032 ± 0.005 GPa K - 1 , assuming ${K}^{\prime}_{0} = 10 $ K 0 ′ = 10 . We also determined the thermal equation of state of a natural Fe-rich orthopyroxene from Hidra (Norway) to assess the effect of magnesium on the EoS of iron-rich orthopyroxene. Comparison between our two data sets and literature studies shows good agreement for room-temperature, room-pressure unit-cell volumes. Preliminary thermodynamic analyses of orthoferrosilite, FeSiO3, and orthopyroxene solid solutions, (Mg1?x Fe x ) SiO3, using vibrational models show that our volume measurements in pressure–temperature space are consistent with previous heat capacity and one-bar volume–temperature measurements. The isothermal bulk modulus at ambient conditions derived from our measurements is smaller than values presented in the literature. This new simultaneous high-pressure, high-temperature data are specifically useful for calculations of the orthopyroxene density in the Moon.  相似文献   

5.
A laser-heated diamond-anvil cell that is capable of operating up to a pressure of 63 GPa, with X-ray diffraction facilities using a synchrotron radiation source at the SPring-8, has been developed to observe the compressibility of a hexagonal aluminous phase, [K0.15Na1.66Ca0.11Mg1.29Fe2+ 0.86Al3.13Ti0.09Si1.98] Σ9.27O12. The hexagonal aluminous phase is a potassium host mineral from the subducted oceanic crust in the Earth's lower mantle. A sample was heated using a YAG laser at each pressure increment to relax the deviatoric stress in the sample. X-ray diffraction measurements were carried out at 300 K using an angle-dispersive technique. Pressure was measured using an internal platinum pressure calibrant. The observed unit-cell volumes were used to obtain a third-order Birch–Murnaghan equation of state: unit-cell volume V o=185.94(±16) Å3, density ρ o=4.145 g/cm3, and bulk modulus K o=198(±3) GPa when the first pressure is derivative of the bulk modulus K o is fixed to 4. The density of hexagonal aluminous phase is lower than that of coexisting Mg-perovskite in the subducted oceanic crust.  相似文献   

6.
The paper presents data on the thermochemical study (high-temperature melt calorimetry in a Tian–Calvet microcalorometer) of two natural Mg–Fe amphiboles: anthophyllite Mg2.0(Mg4.8Fe0.2 2+)[Si8.0O22](OH)2 from Kukh-i-Lal, southwestern Pamirs, Tajikistan, and gedrite Na0.4Mg2.0(Mg1.7Fe0.2 2+Al1.3)[Si6.3Al1.7O22](OH)2 from the Kola Peninsula, Russia. The enthalpy of formation from elements is obtained as–12021 ± 20 kJ/mol for anthophyllite and as–11545 ± 12 kJ/mol for gedrite. The standard entropy, enthalpy, and Gibbs energy of formation are evaluated for Mg–Fe amphiboles of theoretical composition.  相似文献   

7.
Subsolidus phase relations for a K-doped lherzolite are investigated in the model system K2O–Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O at 1.5–6.0 GPa and 680–1,000°C. Phlogopite is ubiquitous and coexists with Ca-amphibole up to 3.2 GPa and 900°C. High-pressure phlogopites show a peculiar mineral chemistry dependent on pressure: e.g., at 5.5 GPa and 680°C, excess of Si (up to 3.4 apfu) coupled with deficiency in Al (as low as 0.58 apfu) and K + Na (as low as 0.97 apfu), suggest a significant amount of a talc/10 Å phase component ([v]XIISi1K?1Al ?1 IV , where [v]XII is interlayer vacancy). Mixed layering or solid solution relations between high-pressure phlogopites and the 10 Å phase, Mg3Si4O10(OH)2 nH2O, are envisaged. Phlogopite modal abundance, derived by weighted least squares, is maximum at high-pressure and relative low-temperature conditions and therefore along the slab–mantle interface (10.3 ± 0.7 wt.%, at 4.8 GPa, 680°C). In phlogopite-bearing systems, Ca-amphibole breaks down between 2.5 and 3.0 GPa, and 1,000°C, through the water conservative reaction 5(pa + 0.2 KNa?1) + 17en + 15phl = (10di + 4jd) + 5py + 12fo + 20(phl + 0.2 talc), governed by bulk composition and pressure-dependent variations of K/OH in K-bearing phases and as a result, it does not necessarily imply a release of fluid.  相似文献   

8.
The composition and structure of synthetic (Na,K)-richterites have been characterized by EMP, HRTEM, XRD and FTIR methods. Despite the fact that the syntheses were done on bulk compositions along the richterite-K-richterite binary, EMP analyses and FTIR spectra indicate that the amphiboles are not simple solid solutions of the two richterite endmembers richterite and K-richterite alone, but tremolite and Mg-cummingtonite components are also present in considerable amounts. HRTEM observations show that the amphiboles are structurally well ordered. Only a very few chain multiplicity faults are present. XRD examination reveals lattice parameters of 9.9055 Å, 17.9844 Å, 5.2689 Å and 104.212° for richterite and 10.0787 Å, 17.9877 Å, 5.2715 Å and 104.878° for K-richterite endmembers. The unit cell volumes are 909.90 Å3 and 923.61 Å3 for richterite and K-richterite, respectively. The lattice parameters a and β for K-richterite are considerably larger than those published previously implying that those were not determined for pure K-richterite. The positions of the characteristic OH-stretching vibrations in the IR for sodium-potassium (3729.8–3734.8 cm?1) and vacancies (3671.1–3675.4 cm?1) on the A-site are in agreement with earlier determinations. Using synthetic tremolite as a standard the vacancy concentration on the A-site of the synthetic (Na,K)-richterites was determined quantitatively by FTIR-spectroscopy. The OH-stretching vibration of this synthetic tremolite is at 3674.5 cm?1. It is assigned to a local coordination with 3 Mg (2 M1+M3) as nearest neighbors and with 2 Ca (M4) as next nearest neighbors. A well resolved band with a smaller intensity is located at 3669.2 cm?1, which is attributed to a configuration including Ca+Mg on M4 instead of only Ca.  相似文献   

9.
The transition between blueschist and eclogite plays an important role in subduction zones via dehydration and densification processes in descending oceanic slabs. There are a number of previous petrological studies describing potential mineral reactions taking place at the transition. An experimental determination of such reactions could help constrain the pressure–temperature conditions of the transition as well as the processes of dehydration. However, previous experimental contributions have focused on the stability of spontaneously formed hydrous minerals in basaltic compositions rather than on reactions among already formed blueschist facies minerals. Therefore, this study conducted three groups of experiments to explore the metamorphic reactions among blueschist facies minerals at conditions corresponding to warm subduction, where faster reaction rates are possible on the time scale of laboratory experiments. The first group of experiments was to establish experimental reversals of the reaction glaucophane+paragonite to jadeite+pyrope+quartz+H2O over the range of 2.2–3.5 GPa and 650–820°C. This reaction has long been treated as key to the blueschist–eclogite transition. However, only the growth of glaucophane+paragonite was observed at the intersectional stability field of both paragonite and jadeite+quartz, confirming thermodynamic calculations that the reaction is not stable in the system Na2O–MgO–Al2O3–SiO2–H2O. The second set of experiments involved unreversed experiments using glaucophane+zoisite ±quartz in low‐Fe and Ca‐rich systems and were run at 1.8–2.4 GPa and 600–780°C. These produced omphacite+paragonite/kyanite+H2O accompanied by compositional shifts in the sodium amphibole, glaucophane, towards sodium–calcium amphiboles such as winchite (?(CaNa)(Mg4Al)Si8O22(OH)2) and barroisite (?(CaNa)(Mg3Al2)(AlSi7)O22(OH)2). This suggests that a two‐step dehydration occurs, first involving the breakdown of glaucophane+zoisite towards a paragonite‐bearing assemblage, then the breakdown of paragonite to release H2O. It also indicates that sodium–calcium amphibole can coexist with eclogite phases, thereby extending the thermal stability of amphibole to greater subduction zone depths. The third set of experiments was an experimental investigation at 2.0–2.4 GPa and 630–850°C involving a high‐Fe (Fe#=Fetotal/(Fetotal+Mg)≈0.36) natural glaucophane, synthetic paragonite and their eclogite‐forming reaction products. The results indicated that garnet and omphacite grew over most of these pressure–temperature conditions, which demonstrates the importance of Fe‐rich glaucophane in forming the key eclogite assemblage of garnet+omphacite, even under warm subduction zone conditions. Based on the experiments of this study, reaction between glaucophane+zoisite is instrumental in controlling dehydration processes at the blueschist–eclogite transition during warm subduction.  相似文献   

10.
Meridianiite, MgSO4·11H2O, is the most highly hydrated phase in the binary MgSO4–H2O system. Lower hydrates in the MgSO4–H2O system have end-member analogues containing alternative divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) and exhibit extensive solid solution with MgSO4 and with one another, but no other undecahydrate is known. We have prepared aqueous MgSO4 solutions doped with these other cations in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. The solid products have been characterised by X-ray powder diffraction, and the onset of partial melting has been quantified using a thermal probe. We have established that of the seven end-member metal sulfates studied, only MgSO4 forms an undecahydrate; ZnSO4 forms an orthorhombic heptahydrate (synthetic goslarite), MnSO4, FeSO4, and CoSO4 form monoclinic heptahydrates (syn. mallardite, melanterite, bieberite, respectively), and CuSO4 crystallises as the well-known triclinic pentahydrate (syn. chalcanthite). NiSO4 forms a new hydrate which has been indexed with a triclinic unit cell of dimensions a = 6.1275(1) Å, b = 6.8628(1) Å, c = 12.6318(2) Å, α = 92.904(2)°, β = 97.678(2)°, and γ = 96.618(2)°. The unit-cell volume of this crystal, V = 521.74(1) Å3, is consistent with it being an octahydrate, NiSO4·8H2O. Further analysis of doped specimens has shown that synthetic meridianiite is able to accommodate significant quantities of foreign cations in its structure; of the order 50 mol. % Co2+ or Mn2+, 20–30 mol. % Ni2+ or Zn2+, but less than 10 mol. % of Cu2+ or Fe2+. In three of the systems we examined, an ‘intermediate’ phase occurred that differed in hydration state both from the Mg-bearing meridianiite end-member and the pure dopant end-member hydrate. In the case of CuSO4, we observed a melanterite-structured heptahydrate at Cu/(Cu + Mg) = 0.5, which we identify as synthetic alpersite [(Mg0.5Cu0.5)SO4·7H2O)]. In the NiSO4- and ZnSO4-doped systems we characterised an entirely new hydrate which could also be identified to a lesser degree in the CuSO4- and the FeSO4-doped systems. The Ni-doped substance has been indexed with a monoclinic unit-cell of dimensions a = 6.7488(2) Å, b = 11.9613(4) Å, c = 14.6321(5) Å, and β = 95.047(3)°, systematic absences being indicative of space-group P21/c with Z = 4. The unit-cell volume, V = 1,176.59(5) Å3, is consistent with it being an enneahydrate [i.e. (Mg0.5Ni0.5)SO4·9H2O)]. Similarly, the new Zn-bearing enneahydrate has refined unit cell dimensions of a = 6.7555(3) Å, b = 11.9834(5) Å, c = 14.6666(8) Å, β = 95.020(4)°, V = 1,182.77(7) Å3, and the new Fe-bearing enneahydrate has refined unit cell dimensions of a = 6.7726(3) Å, b = 12.0077(3) Å, c = 14.6920(5) Å, β = 95.037(3)°, and V = 1,190.20(6) Å3. The observation that synthetic meridianiite can form in the presence of, and accommodate significant quantities of other ions increases the likelihood that this mineral will occur naturally on Mars—and elsewhere in the outer solar system—in metalliferous brines.  相似文献   

11.
A revised model for the volume and thermal expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids, which can be applied at crustal magmatic temperatures, has been derived from new low temperature (701–1092 K) density measurements on sixteen supercooled liquids, for which high temperature (1421–1896 K) liquid density data are available. These data were combined with similar measurements previously performed by the present author on eight sodium aluminosilicate samples, for which high temperature density measurements are also available. Compositions (in mol%) range from 37 to 75% SiO2, 0 to 27% Al2O3, 0 to 38% MgO, 0 to 43% CaO, 0 to 33% Na2O and 0 to 29% K2O. The strategy employed for the low temperature density measurements is based on the assumption that the volume of a glass is equal to that of the liquid at the limiting fictive temperature, T f . The volume of the glass and liquid at T f was obtained from the glass density at 298 K and the glass thermal expansion coefficient from 298 K to T f . The low temperature volume data were combined with the existing high temperature measurements to derive a constant thermal expansivity of each liquid over a wide temperature interval (767–1127 degrees) with a fitted 1 error of 0.5 to 5.7%. Calibration of a linear model equation leads to fitted values of i ±1 (cc/mol) at 1373 K for SiO2 (26.86 ± 0.03), Al2O3 (37.42±0.09), MgO (10.71±0.08), CaO (15.41±0.06), Na2O (26.57±0.06), K2O (42.45 ± 0.09), and fitted values of d i /dT (10−3 cc/mol-K) for MgO (3.27±0.17), CaO (3.74±0.12), Na2O (7.68±0.10) and K2O (12.08±0.20). The results indicate that neither SiO2 nor Al2O3 contribute to the thermal expansivity of the liquids, and that dV/dT liq is independent of temperature between 701 and 1896 K over a wide range of composition. Between 59 and 78% of the thermal expansivity of the experimental liquids is derived from configurational (vs vibrational) contributions. Measured volumes and thermal expansivities can be recovered with this model with a standard deviation of 0.25% and 5.7%, respectively. Received: 2 August 1996 / Accepted: 12 June 1997  相似文献   

12.
The effect of ion beam irradiations on the elastic properties of hydrous cordierite was investigated by means of Raman and X-ray diffraction experiments. Oriented single crystals were exposed to swift heavy ions (Au, Bi) of various specific energies (10.0–11.1 MeV/u and 80 MeV/u), applying fluences up to 5 × 1013 ions/cm2. The determination of unit-cell constants yields a volume strain of 3.4 × 10?3 up to the maximum fluence, which corresponds to a compression of non-irradiated cordierite at ~480 ± 10 MPa. The unit-cell contraction is anisotropic (e 1 = 1.4 ± 0.1 × 10?3, e 2 = 1.5 ± 0.1 × 10?3, and e 3 = 7 ± 1 × 10?4) with the c-axis to shrink only half as much as the axes within the ab-plane. The lattice elasticity for irradiated cordierite (? = 1 × 1012 ions/cm2) was determined from single-crystal XRD measurements in the diamond anvil cell. The fitted third-order Birch–Murnaghan equation-of-state parameters of irradiated cordierite (V 0 = 1548.41 ± 0.16 Å3, K 0 = 117.1 ± 1.1 GPa, ?K/?P = ?0.6 ± 0.3) reveal a 10–11 % higher compressibility compared to non-irradiated cordierite. While the higher compressibility is attributed to the previously reported irradiation-induced loss of extra-framework H2O, the anomalous elasticity as expressed by elastic softening (β a ?1 , β b ?1 , β c ?1  = 397 ± 9, 395 ± 28, 308 ± 11 GPa, ?(β ?1)/?P = ?4.5 ± 2.7, ?6.6 ± 8.4, ?5.4 ± 3.0) appears to be related to the framework stability and to be independent of the water content in the channels and thus of the ion beam exposure.  相似文献   

13.
The results of an examination of vladimirivanovite, a new mineral of the sodalite group, found at the Tultui deposit in the Baikal region are discussed. The mineral occurs in the form of outer rims (0.01–3 mm thick) of lazurite, elongated segregations without faced crystals (0.2 to 3–4 mm in size; less frequently, 4 × 12–15 × 20 mm), and rare veinlets (up to 5 mm) hosted in calciphyre and marble. Vladimirivanovite is irregular and patchy dark blue. The mineral is brittle; on average, the microhardness VHN is 522–604, 575 kg/mm2; and the Mohs hardness is 5.0–5.5. The measured and calculated densities are 2.48(3) and 2.436 g/cm3, respectively. Vladimirivanovite is optically biaxial; 2V meas = 63(±1)°, 2V calc = 66.2°; the refractive indices are α = 1.502–1.507 (±0.002), N m = 1.509–1.514 (±0.002), and N g = 1.512–1.517 (±0.002). The chemical composition is as follows, wt %: 32.59 SiO2, 27.39 Al2O3, 7.66 CaO, 17.74 Na2O, 11.37 SO3, 1.94 S, 0.12 Cl, and 1.0 H2O; total is 99.62. The empirical formula calculated based on (Si + Al) = 12 with sulfide sulfur determined from the charge balance is Na6.36Ca1.52(Si6.03Al5.97)Σ12O23.99(SO4)1.58(S3)0.17(S2)0.08 · Cl0.04 · 0.62H2O; the idealized formula is Na6Ca2[Al6Si6O24](SO4,S3,S2,Cl)2 · H2O. The new mineral is orthorhombic, space group Pnaa; the unit-cell dimensions are a = 9.066, b = 12.851, c = 38.558 Å, V = 4492 Å3, and Z = 6. The strongest reflections in the X-ray powder diffraction pattern (dÅ—I[hkl]) are: 6.61–5[015], 6.43–11[020, 006], 3.71–100[119, 133], 2.623–30[20.12, 240], 2.273–6[04.12], 2.141–14[159, 13.15], 1.783–9[06.12, 04.18], and 1.606–6[080, 00.24]. The crystal structure has been solved with a single crystal. The mineral was named in memoriam of Vladimir Georgievich Ivanov (1947–2002), Russian mineralogist and geochemist. The type material of the mineral is deposited at the Mineralogical Museum of St. Petersburg State University, St. Petersburg, Russia.  相似文献   

14.
We have carried out ab initio calculations using density functional theory to determine the bulk elastic properties of mirabilite, Na2SO4·10H2O, and to obtain information on structural trends caused by the application of high pressure up to ~60 GPa. We have found that there are substantial isosymmetric discontinuous structural re-organisations at ~7.7 and ~20 GPa caused by changes in the manner in which the sodium cations are coordinated by water molecules. The low-pressure and intermediate-pressure phases both have sodium in sixfold coordination but in the high-pressure phase the coordination changes from sixfold to sevenfold. These coordination changes force a re-arrangement of the hydrogen-bond network in the crystal. The trend is towards a reduction in the number of hydrogen bonds donated to the sulphate group (from twelve down to six over the range 0–60 GPa) and an increase in hydrogen bonding amongst the Na-coordinated water molecules and the two interstitial water molecules. Ultimately, we observe proton transfers from the interstitial waters (forming OH? ions) to two of the Na-coordinated waters (forming a pair of H3O+ ions). The equation of state in the athermal limit of the low-pressure phase of mirabilite, parameterised by fitting an integrated form of the third-order Birch-Murnaghan expression to the calculated energy as a function of unit-cell volume, yields the zero-pressure unit-cell volume, V 0 = 1468.6(9) Å3, the incompressibility, K 0 = 22.21(9) GPa, and the first pressure derivative K 0′ = (?K/?P)0 = 5.6(1).  相似文献   

15.
The validity of the thermodynamic cBΩ model is tested in terms of the experimentally determined diffusion coefficients of He in a natural Fe-bearing olivine (Fo90) and a synthetic end-member forsterite (Mg2SiO4) over a broad temperature range (250–950 °C), as reported recently by Cherniak and Watson (Geochem Cosmochim Acta 84:269–279, 2012). The calculated activation enthalpies for each of the three crystallographic axes were found to be (134 ± 5), (137 ± 13) and (158 ± 4) kJ mol?1 for the [100], [010] and [001] directions in forsterite, and (141 ± 9) kJ mol?1 for the [010] direction in olivine, exhibiting a deviation of <1 % with the corresponding reported experimental values. Additional point defect parameters such as activation volume, activation entropy and activation Gibbs free energy were calculated as a function of temperature. The estimated activation volumes (3.2–3.9 ± 0.3 cm3 mol?1) of He diffusion in olivine are comparable with other reported results for hydrogen and tracer diffusion of Mg cations in olivine. The pressure dependence of He diffusion coefficients was also determined, based on single experimental diffusion measurements at 2.6 and 2.7 GPa along the [001] direction in forsterite at 400 and 650 °C.  相似文献   

16.
The paper reports original thermochemical data on six natural amphibole samples of different composition. The data were obtained by high-temperature melt solution calorimetry in a Tian–Calvet microcalorometer and include the enthalpies of formation from elements for actinolite Ca1.95(Mg4.4Fe 0.5 2+ Al01)[Si8.0O22](OH)2(–12024 ± 13 kJ/mol) and Ca2.0(Mg2.9Fe 1.9 2+ Fe 0.2 3+ )[Si7.8Al0.2O22](OH)2, (–11462 ± 18 kJ/mol), and Na0.1Ca2.0(Mg3.2Fe 1.6 2+ Fe 0.2 3+ )[Si7.7Al0.3O22](OH)2 (–11588 ± 14 kJ/mol); for pargasite Na0.5K0.5Ca2.0-(Mg3.4Fe 1.8 2+ Al0.8)[Si6.2Al1.8O22](OH)2 (–12316 ± 10 kJ/mol) and Na0.8K0.2Ca2.0(Mg2.8Fe 1.3 3+ Al0.9) [Si6.1Al1.9O22](OH)2 (–12 223 ± 9 kJ/mol); and for hastingsite Na0.3K0.2Ca2.0(Mg0.4Fe 1.3 2+ Fe 0.9 3+ Al0.2) [Si6.4Al1.6O22](OH)2 (?10909 ± 11 kJ/mol). The standard entropy, enthalpy, and Gibbs free energy of formation are estimated for amphiboles of theoretical composition: end members and intermediate members of the isomorphic series tremolite–ferroactinolite, edenite–ferroedenite, pargasite–ferropargasite, and hastingsite.  相似文献   

17.
We have collected high resolution neutron powder diffraction patterns from Na2SO4·10D2O over the temperature range 4.2–300 K following rapid quenching in liquid nitrogen, and over a series of slow warming and cooling cycles. The crystal is monoclinic, space-group P21/c (Z = 4) with a = 11.44214(4) Å, b = 10.34276(4) Å, c = 12.75486(6) Å, β = 107.847(1)°, and V = 1436.794(8) Å3 at 4.2 K (slowly cooled), and a = 11.51472(6) Å, b = 10.36495(6) Å, c = 12.84651(7) Å, β = 107.7543(1)°, V = 1460.20(1) Å3 at 300 K. Structures were refined to R P (Rietveld powder residual, \( R_{P} = {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } \mathord{\left/ {\vphantom {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } {\sum {I_{\text{obs}} } }}} \right. \kern-\nulldelimiterspace} {\sum {I_{\text{obs}} } }} \)) better than 2.5% at 4.2 K (quenched and slow cooled), 150 and 300 K. The sulfate disorder observed previously by Levy and Lisensky (Acta Cryst B34:3502–3510, 1978) was not present in our specimen, but we did observe changes with temperature in deuteron occupancies of the orientationally disordered water molecules coordinated to Na. The temperature dependence of the unit-cell volume from 4.2 to 300 K is well represented by a simple polynomial of the form V = ? 4.143(1) × 10?7 T 3 + 0.00047(2) T2 ? 0.027(2) T + 1437.0(1) Å3 (R 2 = 99.98%). The coefficient of volume thermal expansion, α V , is positive above 40 K, and displays a similar magnitude and temperature dependence to α V in deuterated epsomite and meridianiite. The relationship between the magnitude and orientation of the principal axes of the thermal expansion tensor and the main structural elements are discussed; freezing in of deuteron disorder in the quenched specimen affects the thermal expansion, manifested most obviously as a change in the behaviour of the unit-cell parameter β.  相似文献   

18.
A calibration is presented for an activity–composition model for amphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O (NCFMASHO), formulated in terms of an independent set of six end‐members: tremolite, tschermakite, pargasite, glaucophane, ferroactinolite and ferritschermakite. The model uses mixing‐on‐sites for the ideal‐mixing activities, and for the activity coefficients, a macroscopic multicomponent van Laar model. This formulation involves 15 pairwise interaction energies and six asymmetry parameters. Calibration of the model is based on the geometrical constraints imposed by the size and shape of amphibole solvi inherent in a data set of 71 coexisting amphibole pairs from rocks, formed over 400–600 °C and 2–18 kbar. The model parameters are calibrated by combining these geometric constraints with qualitative consideration of parameter relationships, given that the data are insufficient to allow all the model parameters to be determined from a regression of the data. Use of coexisting amphiboles means that amphibole activity–composition relationships are calibrated independently of the thermodynamic properties of the end‐members. For practical applications, in geothermobarometry and the calculation of phase diagrams, the amphibole activity–composition relationships are placed in the context of the stability of other minerals by evaluating the properties of the end‐members in the independent set that are in internally consistent data sets. This has been performed using an extended natural data set for hornblende–garnet–plagioclase–quartz, giving the small adjustments necessary to the enthalpies of formation of tschermakite, pargasite and glaucophane for working with the Holland and Powell data set.  相似文献   

19.
The occurrence of high-pressure (HP) blueschists within the central Qiangtang terrane of northern Tibet has a significant bearing on plate-suturing processes. In order to contribute to the ongoing debate on whether the central Qiangtang metamorphic belt represents an in situ suture within the Qiangtang terrane, we examined lawsonite- and glaucophane-bearing blueschists from the northwest Qiangtang area (84° 10′–85° 30′ E, 34°10′–34° 45′ N). All studied rocks are metapelites, metasandstones, or metabasalts, characterized by lawsonite + glaucophane + phengite, lawsonite + glaucophane + epidote + albite + quartz, or glaucophane + phengite + quartz assemblages. The meta-mafic rocks contain very high TiO2 and low Al2O3 contents. They are typified by abundant ferromagnesian trace elements, and an absence of Eu anomalies and Nb–Ta deletions; all the above features indicate that these mafic rocks represent oceanic island basalt (OIB) protoliths. Most of the metasediments contain high SiO2, moderate Al2O3 + K2O, and low TiO2 + Na2O. They display high CIA (chemical index of alteration) values (74% ± 5%) and distinctly negative Eu anomalies (Eu/Eu* = 0.64 ± 0.05). This, along with their high field strength elemental characteristics, indicates that they were deposited in a passive continental margin environment, intercalated with OIB-type basalts. We estimate the peak metamorphic conditions for these blueschists as T = 330–415°C and P = 9–11.5 kbar. This HP event occurred at ca. 242 Ma, indicated by a well-defined 40Ar/39Ar plateau age for glaucophane. Retrograde metamorphism occurred at T = 280–370°C, P = 6.5–9.5 kbar, t = ca. 207 Ma (40Ar/39Ar dating of phengite). Therefore, a cold subduction (geotherm ~8°C/km) attended the passive continental margin during the Triassic when the eastern Qiangtang collided with the western Qiangtang. The northwest Qiangtang HP metamorphic belt is an extension of the central Qiangtang metamorphic belt that defines the suture between eastern and western Qiangtang, and indicates an anticlockwise, diachronous closure of the Shuanghu Palaeo-Tethys.  相似文献   

20.
《International Geology Review》2012,54(13):1688-1704
The Yinshan Block, part of the Neoarchaean basement of the Western Block of the North China Craton, is composed of granite–greenstone and granulite–charnockite complexes. We report research on a suite of charnockites from the granulite–charnockite complex and characterize their geochemistry, zircon U–Pb geochronology, and Hf isotopic composition. The charnockites can be divided into intermediate (SiO2 = 59–63 wt.%) and silicic (SiO2 = 69–71 wt.%) groups. U–Pb zircon data yield protolith formation ages of 2524 ± 4 Ma, 2533 ± 15 Ma, followed by metamorphism at 2498 ± 3 Ma, 2490 ± 11 Ma, respectively, for these groups. Although the intermediate charnockites are characterized by higher Al2O3, TiO2, Fe2O3T, MnO, MgO, CaO, P2O5, K2O, Sr, and ΣREE content than the silicic charnockites, the ages and Hf isotopic composition of zircons and REE patterns of both intermediate and silicic charnockites are remarkably consistent, which indicates that they are genetically related. These charnockites are predominantly metaluminous to slightly peraluminous, calc-alkalic to calcic, and magnesian – characteristics generally related to a subduction setting. High-Sr + Ba granites with low K2O/Na2O characteristics, shown by these charnockites, imply a mixture of mafic and felsic magmas generated from an enriched mantle + lower crust. High MgO, Ni, Cr and Mg#, low K2O/Na2O, and metaluminous to slightly peraluminous natures imply that the source rocks most likely were amphibolites. Coeval calc-alkaline magmatism and high-T granulite-facies metamorphism under low-H2O activity in the area lead us to propose a model involving mid-ocean ridge subduction within a Neoarchaean convergent margin. The arc-related rocks accreted along the continent margin, and became a barrier when the lithospheric mantle ascended through the slab window. Melt derived from the decompressing mantle mixed with melt derived from the overlying, juvenile lower crust melt, which was warmed and metamorphosed by the ascending lithospheric mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号