首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Abstract Sodic amphiboles are common in Franciscan type II and type III metabasites from Cazadero, California. They occur as (1) vein-fillings, (2) overgrowths on relict augites, (3) discrete tiny crystals in the groundmass, and (4) composite crystals with metamorphic Ca–Na pyroxenes in low-grade rocks. They become coarse-grained and show strong preferred orientation in schistose high-grade rocks. In the lowest grade, only riebeckite to crossite appears; with increasing grade, sodic amphibole becomes, first, enriched in glaucophane component, later coexists with actinolite, and finally, at even higher grade, becomes winchite. Actinolite first appears in foliated blueschists of the upper pumpellyite zone. It occurs (1) interlayered on a millimetre scale with glaucophane prisms and (2) as segments of composite amphibole crystals. Actinolite is considered to be in equilibrium with other high-pressure phases on the basis of its restricted occurrence in higher grade rocks, textural and compositional characteristics, and Fe/Mg distribution coefficient between actinolite and chlorite. Detailed analyses delineate a compositional gap for coexisting sodic and calcic amphiboles. At the highest grade, winchite appears at the expense of the actinolite–glaucophane pair. Compositional characteristics of Franciscan amphiboles from Ward Creek are compared with those of other high P/T facies series. The amphibole trend in terms of major components is very sensitive to the metamorphic field gradient. Na-amphibole appears at lower grade than actinolite along the higher P/T facies series (e.g. Franciscan and New Caledonia), whereas reverse relations occur in the lower P/T facies series (e.g. Sanbagawa and New Zealand). Available data also indicate that at low-temperature conditions, such as those of the blueschist and pumpellyite–actinolite facies, large compositional gaps exist between Ca- and Na-amphiboles, and between actinolite and hornblende, whereas at higher temperatures such as in the epidote–amphibolite, greenschist and eclogite facies, the gaps become very restricted. Common occurrence of both sodic and calcic amphiboles and Ca–Na pyroxene together with albite + quartz in the Ward Creek metabasites and their compositional trends are characteristic of the jadeite–glaucophane type facies series. In New Caledonia blueschists, Ca–Na pyroxenes are also common; Na-amphiboles do not appear alone at low grade in metabasites, instead, Na-amphiboles coexist with Ca-amphiboles throughout the progressive sequence. However, for metabasites of the intermediate pressure facies series, such as those of the Sanbagawa belt, Japan and South Island, New Zealand, Ca–Na pyroxene and glaucophane are not common; sodic amphiboles are restricted to crossite and riebeckite in composition and clinopyroxenes to acmite and sodic augite, and occur only in Fe2O3-rich metabasites. The glaucophane component of Na-amphibole systematically decreases from Ward Creek, New Caledonia, through Sanbagawa to New Zealand. This relation is consistent with estimated pressure decrease employing the geobarometer of Maruyama et al. (1986). Similarly, the decrease in tschermakite content and increase in NaM4 of Ca-amphiboles from New Zealand, through Sanbagawa to New Caledonia is consistent with the geobarometry of Brown (1977b). Therefore, the difference in compositional trends of amphiboles can be used as a guide for P–T detail within the metamorphic facies series.  相似文献   

3.
The transition between blueschist and eclogite plays an important role in subduction zones via dehydration and densification processes in descending oceanic slabs. There are a number of previous petrological studies describing potential mineral reactions taking place at the transition. An experimental determination of such reactions could help constrain the pressure–temperature conditions of the transition as well as the processes of dehydration. However, previous experimental contributions have focused on the stability of spontaneously formed hydrous minerals in basaltic compositions rather than on reactions among already formed blueschist facies minerals. Therefore, this study conducted three groups of experiments to explore the metamorphic reactions among blueschist facies minerals at conditions corresponding to warm subduction, where faster reaction rates are possible on the time scale of laboratory experiments. The first group of experiments was to establish experimental reversals of the reaction glaucophane+paragonite to jadeite+pyrope+quartz+H2O over the range of 2.2–3.5 GPa and 650–820°C. This reaction has long been treated as key to the blueschist–eclogite transition. However, only the growth of glaucophane+paragonite was observed at the intersectional stability field of both paragonite and jadeite+quartz, confirming thermodynamic calculations that the reaction is not stable in the system Na2O–MgO–Al2O3–SiO2–H2O. The second set of experiments involved unreversed experiments using glaucophane+zoisite ±quartz in low‐Fe and Ca‐rich systems and were run at 1.8–2.4 GPa and 600–780°C. These produced omphacite+paragonite/kyanite+H2O accompanied by compositional shifts in the sodium amphibole, glaucophane, towards sodium–calcium amphiboles such as winchite (?(CaNa)(Mg4Al)Si8O22(OH)2) and barroisite (?(CaNa)(Mg3Al2)(AlSi7)O22(OH)2). This suggests that a two‐step dehydration occurs, first involving the breakdown of glaucophane+zoisite towards a paragonite‐bearing assemblage, then the breakdown of paragonite to release H2O. It also indicates that sodium–calcium amphibole can coexist with eclogite phases, thereby extending the thermal stability of amphibole to greater subduction zone depths. The third set of experiments was an experimental investigation at 2.0–2.4 GPa and 630–850°C involving a high‐Fe (Fe#=Fetotal/(Fetotal+Mg)≈0.36) natural glaucophane, synthetic paragonite and their eclogite‐forming reaction products. The results indicated that garnet and omphacite grew over most of these pressure–temperature conditions, which demonstrates the importance of Fe‐rich glaucophane in forming the key eclogite assemblage of garnet+omphacite, even under warm subduction zone conditions. Based on the experiments of this study, reaction between glaucophane+zoisite is instrumental in controlling dehydration processes at the blueschist–eclogite transition during warm subduction.  相似文献   

4.
Sodic metapelites with jadeite, chloritoid, glaucophane and lawsonite form a coherent regional metamorphic sequence, several tens of square kilometres in size, and over a kilometre thick, in the Orhaneli region of northwest Turkey. The low‐variance mineral assemblage in the sodic metapelites is quartz + phengite + jadeite + glaucophane + chloritoid + lawsonite. The associated metabasites are characterized by sodic amphibole + lawsonite ± garnet paragenesis. The stable coexistence of jadeite + chloritoid + glaucophane + lawsonite, not reported before, indicates metamorphic pressures of 24 ± 3 kbar and temperatures of 430 ± 30 °C for the peak blueschist facies conditions. These P–T conditions correspond to a geotherm of 5 °C km?1, one of the lowest recorded in continental crustal rocks. The low geotherm, and the known rate of convergence during the Cretaceous subduction suggest low shear stresses at the top of the downgoing continental slab.  相似文献   

5.
The molar volume of glaucophane [Na2Mg3Al2Si8O22(OH)2] has been determined in this study by correcting synthetic glaucophane-rich amphiboles made in the system Na2O–MgO–Al2O3–SiO2–H2O for very small deviations from ideal glaucophane composition using recent volume data on key amphibole components. The derived unit-cell volume for end-member glaucophane is 862.7±1.6 Å3, which gives a molar volume of 259.8±0.5 cm3/mol and a calculated density of 3.016±0.006 g/cm3. This value has been corroborated through an essentially independent method by correcting the volumes of natural sodic amphiboles reported in the literature for non-glaucophane components, particularly including calcium-rich components, to yield a value of 861.2±1.9 Å3. The unit-cell volume derived from the synthetic amphiboles, which is considered here to be more reliable, is somewhat smaller than that reported previously in the literature. A thermal expansion (αV) at 298 K of 1.88±0.06×10?5/K was derived from unit-cell volumes measured in the range of 25–500°C for a synthetic glaucophane sample, which is noticeably smaller than previously reported.  相似文献   

6.
The phase relations of glaucophanic amphiboles have been studied at 18–31 kbar/680–950°C in the synthetic system Na2O–MgO–Al2O3–SiO2–SiF4 (NMASF) using the bulk composition of fluor-glaucophane, Na2Mg3Al2Si8O22F2. Previous experimental studies of glaucophane in the water-bearing system (NMASH) have been hampered by problems of fine grain size (electron microprobe analyses with low oxide totals and contamination by other phases), and consequently good compositional data are lacking. Fluor-amphiboles, on the other hand, generally have much higher thermal stabilities than their hydrous counterparts. By using the fluorine-analogue system NMASF, amphibole crystals sufficiently coarse for electron microprobe analysis have been obtained. Furthermore, NMASH amphibole phase relations are directly analogous to those of the NMASF system because SiF4 fills the role of H2O as the fluid species. High-pressure NMASF amphibole parageneses are comparable to those obtained for NMASH amphiboles under similar pressure-temperature conditions, except that the NMASF solidus was not encountered. In the pressure-temperature range of the NMASF experiments, fluor-glaucophane is unstable relative to glaucophanenyböite-Mg-magnesio-katophorite amphiboles. Variations in synthetic fluor-amphibole composition with P and T are discussed in terms of changes in the thermodynamic activities of the principal amphibole end-members, such as glaucophane (aGp) and nyböite (aNy) using an ideal-mixing-on-sites model. The most glaucophanic amphiboles analysed have aGp=0.50–0.60 and coexist with jadeite and coesite at 30 kbar/800°C. Amphiboles become increasingly nyböitic with decreasing pressure through the NaAlSi-1 exchange, which is the principal variation observed. The most nyböitic amphiboles have aNy =0.65–0.70 and coexist with fluor-sodium-phlogopite and quartz at 21–24 kbar/800–850°C. At 800°C amphiboles are essentially glaucophane-nyböite solid solutions. At 850°C there is some minor displacement along MgMgSi-1, but Mg-magnesio-katophorite activities are very low (<0.06). Activities of the eight other NMASF amphibole end-members are <0.001, except for eckermannite activity which varies from 0.01–0.11. Our results indicate that: (a) synthetic amphiboles mimic the essential stoichiometries observed in blueschist amphiboles; (b) synthetic studies should be relevant to petrologically important high-pressure parageneses and reactions involving glaucophanicamphiboles, sodic pyroxenes, albite and talc; (c) the high-pressure stability limit of fluorglaucophane lies at pressures higher than those reached in this study (31 kbar); (d) in natural systems an approach to glaucophane stoichiometry should be favoured by high water activities as well as high pressures.Abbreviations and formulae used in this paper Glaucophane (Gp) oNa2(Mg3Al2)Si8O22(OH,F)2 - Nyböite (Ny) NaNa2(Mg3Al2)Si7AlO22(OH,F)2 - Eckermannite (Ek) NaNa2(Mg4Al)Si8O22(OH,F)2 - Magnesio-cummingtonite (MC) oMg2(Mg5)Si8O22(OH,F)2 - Sodium-magnesio-cummingtonite (SMC) NaNaMg(Mg5)Si8O22(OH,F)2 - Sodium-anthophyllite (SAn) NaMg2(Mg5)Si7AlO22(OH,F)2 - Gedrite (Gd) oMg2(Mg3Al2)Si6Al2O22(OH,F)2 - Sodium-gedrite (SGd) NaMg2(Mg4Al)Si6Al2O22(OH,F)2 - Mg-magnesio-aluminotaramite (MAT) NaNaMg(Mg3Al2)Si6Al2O22(OH,F)2 - Mg-magnesio-katophorite (MKt) NaNaMg(Mg4Al)Si7AlO22(OH,F)2 - Mg-magnesio-barroisite (MBa) oNaMg(Mg4Al)Si7AlO22(OH,F)2 - Jadeite (Jd) NaAlSi2O6 - Enstatite (En) Mg2Si2O6 - Forsterite (Fo) Mg2SiO4 - Nepheline (Ne) NaAlSiO4 - Albite (Ab) NaAlSi3O8 - Quartz/Coesite (Qz/Co) SiO2 - Sodium-phlogopite (Sphl) NaMg3Si3AlO10(OH,F)2 - Talc (Tc) oMg3Si4O10(OH,F)2 - o vacant A-site in amphiboles and interlayer site in talc. Octahedral cations in amphiboles are bracketted  相似文献   

7.
In the Myanmar jadeitite area of Pharkan, amphibole felses occur between jadeitites and serpentinized dunites. These so-called amphibole fels boundary zones were studied optically and by electron microprobe, and found to include the six amphibole species magnesiokatophorite (Mg-kat), nyböite (Nyb), eckermannite (Eck), glaucophane (Gln), richterite (Rich) and winchite (Win). In most samples, the two main amphibole species Mg-kat and Eck coexist with amphiboles containing variable amounts of components of the remaining four species, as well as with the clinopyroxenes jadeite (Jd), omphacite (Omp) and kosmochlor (Ko). However, Mg-kat, Nyb and Eck are also present as separate phases as well as in zoned porphyroblasts with Mg-kat in the core, Nyb in the inner rims, and Eck in the outer rims. The analytical data on such zoned amphiboles reveal that the chemistry changes from core to inner rim by virtue of the substitution NaAlCa -1Mg -1 (glaucophane vector), and from the inner to the outer rim along MgSiAl -1Al -1 (tschermak vector). The overall substitution from core to outer rim is, therefore, along NaSiCa -1Al -1 (plagioclase vector). Based on the Si content, three groups can be distinguished within Eck: Eck coexisting with Nyb has low Si contents of <7.6 a.p.f.u., Eck rimming Nyb has higher Si contents of 7.6–8.0 a.p.f.u., and fine-grained Eck in the matrix has Si contents of 7.9–8.0 a.p.f.u. Plotting the amphibole analyses in a compositional volume with the axes (Na+K) in A, Na in M(4), and tetrahedral Si shows that three groups of amphibole compositions can be distinguished, one being subdivided into three subsets. Group A contains Rich and Mg-kat, B comprises of Win and Gln, whereas the subsets C can be defined as follows: C1: high-Na amphiboles with low tetrahedral Si; these are mainly amphiboles from the Eck field but overlap with the two fields of Gln and Win; C2: high-Na and low-Si Ecks overlapping to high-Si Nybs; this group is midway between Eck and Nyb end members; C3: high-Na Mg-kats. Textural observations indicate three stages of sodic and sodic–calcic amphibole growth: stage 1 are amphiboles of group A (Mg-kat+Rich), stage 2 are amphiboles of group C2 (Nyb+Eck with Si<7.6 a.p.f.u.), and stage 3 are amphiboles of groups C1 and B (Eck with Si>7.6 a.p.f.u., +Gln+Win). Based on the subdivision into the compositional groups A–C, the only hint to a miscibility gap is provided by the large gap in the (Na+K) content on the A site which may point to a possible solvus in the system Eck–Win. Overall, the amphiboles investigated here show discontinuities in their growth compositions, rather than miscibility gaps. Textural observations suggest amphibole formation during fluid infiltration in the contact zone between the jadeitite bodies and the surrounding peridotite under high-pressure conditions (>1.0 GPa) and rather low temperatures of about 250–370 °C. Based on compositional trends within the amphiboles as well as phase-equilibrium constraints between amphibole and coexisting pyroxene solid solutions, the chemical composition of zoned amphibole porphyroblasts indicates two growth episodes—increasing pressures from stage 1 to stage 2 lead to the formation of Nyb from Mg-kat, and subsequently decreasing pressures lead to the formation of stage 3 Eck from Rich.  相似文献   

8.
Electron probe and wet chemical analyses of amphibole pairs from the sillimanite zone of central Massachusetts and adjacent New Hampshire indicated that for a particular metamorphic grade there should be a restricted composition range in which three amphiboles can coexist stably. An unequivocal example of such an equilibrium three amphibole rock has been found in the sillimanite-orthoclase zone. It contains a colorless primitive clinoamphibole, space group P21/m, optically and chemically like cummingtonite with blue-green hornblende exsolution lamellae on (100) and (¯101) of the host; blue-green hornblende, space group C2/m, with primitive cummingtonite exsolution lamellae on (100) and (¯101) of the host; and pale pinkish tan anthophyllite, space group Pnma, that is free of visible exsolution lamellae but is a submicroscopic intergrowth of two orthorhombic amphiboles. Mutual contacts and coarse, oriented intergrowths of two and three host amphiboles indicate the three grew as an equilibrium assemblage prior to exsolution. Electron probe analyses at mutual three-amphibole contacts showed little variation in the composition of each amphibole. Analyses believed to represent most closely the primary amphibole compositions gave atomic proportions on the basis of 23 oxygens per formula unit as follows: for primitive cummingtonite (Na0.02Ca0.21 Mn0.06Fe2+ 2.28Mg4.12Al0.28) (Al0.17Si7.83), for hornblende (Na0.35Ca1.56Mn0.02Fe1.71Mg2.85Al0.92) (Al1.37Si6.63), and for anthophyllite (Na0.10Ca0.06Mn0.06Fe2.25Mg4.11Al0.47) (Al0.47Si7.53). The reflections violating C-symmetry, on X-ray single crystal photographs of the primitive cummingtonite, are weak and diffuse, and suggest a partial inversion from a C-centered to a primitive clinoamphibole. Single crystal photographs of the anthophyllite show split reflections indicating it is an intergrowth of about 80% anthophyllite and about 20% gedrite which differ in their b crystallographic dimensions. Split reflections are characteristic of all analyzed orthorhombic amphiboles so far examined from Massachusetts and New Hampshire except the most aluminous gedrites, and the relative intensity of the gedrite reflections is roughly proportional to the degree of Na and Al substitution. Thin sections of a few of these anthophyllite specimens show lamellae parallel to (010) that are just resolved with a high power objective.Publication approved by the Director, U.S. Geological Survey.  相似文献   

9.
Reactions which occur at the lower boundary of the hornblende-hornfels facies and in the so-called pyroxene-hornfels facies were experimentally investigated for an ultrabasic rock at 500, 1000 and 2000 bars H2O pressure.The starting material used was a mixture of natural chlorite, talc, tremolite and quartz such that its composition, except for surplus quartz, corresponded to that of an ultrabasic rock. The atomic ratio Fe2++Fe2+/Mg+Fe3++Fe3+ in the system was 0.16.The lower boundary of the hornblende-hornfels facies was defined by the formation of the orthorhombic amphibole anthophyllite and hornblende according to the following idealized reaction: chlorite+talc+tremolite+quartz hornblende+anthophyllite+H2O In effect, this reaction consists of the two bivariant reactions: chlorite+tremolite+quartz hornblende+anthophyllite+H2O talc+chlorite anthophyllite+quartz+H2OThe equilibrium temperatures obtained for the two reactions in the given system are practically the same and are as follows: 535±10°C at 500 bars H2O pressure 550±20°C at 1000 bars H2O pressure 560±10°C at 2000 bars H2O pressure 580±10°C at 4000 bars H2O pressureAt 2000 bars and higher temperatures within the hornblende-hornfels facies, anorthite is formed in addition to hornblende and anthophyllite, probably according to the following reaction: hornblende1+quartz hornblende2+anthophyllite+anorthite+H2O; because of the formation of anorthite it is to be expected that the hornblende in this case is poorer in aluminium than the hornblende at 500 and 1000 bars. Winkler (1967) suggests renaming the pyroxene-hornfels facies as K-feldspar-cordierite-hornfels facies which, in turn, is subdivided into a lower-temperature orthoamphibole subfacies without orthopyroxene and a higher-temperature orthopyroxene subfacies without orthoamphibole. The orthopyroxene subfacies itself may in its lower temperature part still carry hornblende which finally disappears in the higher temperature part.The appearance of orthopyroxene characterizes the transition from the orthoamphibole to the orthopyroxene subfacies of the K-feldspar-cordierite hornfels facies. The following reaction takes place at pressures lower than 2000 bars: hornblende1+anthophyllite hornblende2+enstatite+anorthite+H2OSince at 2000 bars an Al-poor hornblende already exists in the hornblende-hornfels facies, it is very likely that here only anthophyllite breaks down to give enstatite+quartz+H2O.The equilibrium temperatures for these reactions which give rise to enstatite are: 650±10°C at 250 bars H2O pressure 690±10°C at 500 bars H2O pressure 715±10°C at 1000 bars H2O pressure 770±10°C at 2000 bars H2O pressureOnly after an increase in temperature to about 710°C at 500 bars and about 770°C at 1000 bars does hornblende in the system investigated here break down completely according to the reaction: hornblende = enstatite+anorthite+diopside+H2OExcept at very small H2O-pressures (see Fig. 3), there exists, therefore, a region within the orthopyroxene subfacies where hornblende, enstatite and anorthite coexist. As a result we have, as mentioned above, a lower-temperature and a higher-temperature part of the orthopyroxene subfacies, and it is only in the latter part that the parageneses correspond to the pyroxene-hornfels facies as stated by Eskola (1939).Summing up, the starting material consisting of chlorite, talc, tremolite plus quartz remains unchanged in the albite-epidote-hornfels facies; this gives rise in the hornblende-hornfels facies to the paragenesis hornblende+anthophyllite, or — at higher pressures — to hornblende+anthophyllite+anorthite. For the particular composition of the starting material, however, no reactions take place at the transition of the hornblende-hornfels facies to the orthoamphibole subfacies of the K-feldspar-cordierite-hornfels facies as this transition is typified by the breakdown of muscovite in the presence of quartz. However, at the end of the orthoamphibole subfacies the breakdown of anthophyllite, by which orthopyroxene is formed, heralds the onset of the orthopyroxene subfacies. In this subfacies — at greater than about 300 bars — hornblende is still present and coexists with enstatite and anorthite, but with rising temperature hornblende breaks down to give way to the paragenesis enstatite+anorthite+diopside. The experimentally determined parageneses confirm known petrographic occurrences.

Für die Förderung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft vielmals. Der Dank von Choudhuri gilt dem Akademischen Auslandsamt der Universität Göttingen für ein Stipendium, das ihm den Abschluß seiner Studien an der Universität Göttingen ermöglichte.  相似文献   

10.
An Early Palaeozoic (Ordovician ?) metamudstone sequence near Wojcieszow, Kaczawa Mts, Western Sudetes, Poland, contains numerous metabasite sills, up to 50 m thick. These subvolcanic rocks are of within-plate alkali basalt type. Primary igneous phases in the metabasites, clinopyroxene (salite) and kaersutite, are veined and partly replaced by complex metamorphic mineral assemblages. Particularly, the kaersutite is corroded and rimmed by zoned sodic, sodic–calcic and calcic amphiboles. The matrix is composed of actinolite, pycnochlorite, albite (An ≤ 0.5%), epidote (Ps 27–33), titanite, calcite, opaques and, occasionally, biotite, phengite and stilpnomelane. The sodic amphiboles are glaucophane to crossite in composition with NaB from 1.9 to 1.6. They are rimmed successively by sodic–calcic and calcic amphiboles with compositions ranging from magnesioferri-winchite to actinolite. No compositions between NaB= 0.92 and NaB= 1.56 have been ascertained. The textures may be interpreted as representing a greenschist facies overprint on an earlier blueschist (or blueschist–greenschist transitional) assemblage. The presence of glaucophane and no traces of a jadeitic pyroxene + quartz association indicate pressures between 6 and 12 kbar during the high-pressure episode. Temperature is difficult to assess in this metamorphic event. The replacement of glaucophane by actinolite + chlorite + albite, with associated epidote, allows restriction of the upper pressure limit of the greenschist recrystallization to <8 kbar, between 350 and 450°C. The mineral assemblage representing the greenschist episode suggests the P–T conditions of the high-pressure part of the chlorite or lower biotite zone. The latest metamorphic recrystallization, under the greenschist facies, may have taken place in the Viséan.  相似文献   

11.
Jadeite‐bearing kyanite eclogite has been discovered in the Iratsu body of the Sanbagawa belt, SW Japan. The jadeite + kyanite assemblage is stable at higher pressure–temperature (PT) conditions or lower H2O activity [a(H2O)] than paragonite, although paragonite‐bearing eclogite is common in the Sanbagawa belt. The newly discovered eclogite is a massive metagabbro with the peak‐P assemblage garnet + omphacite + jadeite + kyanite + phengite + quartz + rutile. Impure jadeite is exclusively present as inclusions in garnet. The compositional gap between the coexisting omphacite (P2/n) and impure jadeite (C2/c) suggests relatively low metamorphic temperatures of 510–620 °C. Multi‐equilibrium thermobarometry for the assemblage garnet + omphacite + kyanite + phengite + quartz gives peak‐P conditions of ~2.5 GPa, 570 °C. Crystallization of jadeite in the metagabbro is attributed to Na‐ and Al‐rich effective bulk composition due to the persistence of relict Ca‐rich clinopyroxene at the peak‐P stage. By subtracting relict clinopyroxene from the whole‐rock composition, pseudosection modelling satisfactorily reproduces the observed jadeite‐bearing assemblage and mineral compositions at ~2.4–2.5 GPa, 570–610 °C and a(H2O) >0.6. The relatively high pressure conditions derived from the jadeite‐bearing kyanite eclogite are further supported by high residual pressures of quartz inclusions in garnet. The maximum depth of exhumation in the Sanbagawa belt (~80 km) suggests decoupling of the slab–mantle wedge interface at this depth.  相似文献   

12.
The new, greatly expanded internally-consistent dataset of Holland and Powell includes thermodynamic data for a wide range of mineral end-members in common rock-forming minerals, in particular, including FeMg-1 substitutions in glaucophane, garnet, chloritoid and carpholite, and FeMg-1 and MgSiAl-1Al-1 substitutions in talc and chlorite. Moreover, we have the uncertainties and correlations for these data. With the data, we have calculated the full pressure-temperature phase diagram for the system Na2O–FeO–MgO–Al2O3–SiO2–H2O (NFMASH) for quartz (or coesite) and H2O in excess, in the range 300°–800°C and 5–50 kbars. By solving the set of non-linear equations formed by the equilibrium relationships for an independent set of equations between the end-members in an assemblage in NFMASH, the compositions of the minerals (and PT) can be calculated. Thus the changes in MgSiAl-1Al-1 along NMASH reactions, and FeSiAl-1Al-1 along NFASH reactions, are calculated, and the changes in FeMg-1 and MgSiAl-1Al-1 along NFMASH reactions are calculated. From this information it is straightforward to generate PT diagrams for specific rock compositions. Mineral assemblages and mineral compositional changes in the phase diagram are discussed in relation to greenschist, blueschist and eclogite facies assemblages in metapelitic rocks. It is found that the correspondence between the predictions of the phase diagrams and the observations on rocks is remarkably good. When semiquantitative extensions of the phase diagram to include Ca(MgFe)-1, NaSiCa-1Al-1, Fe3+Al-1 and KNa-1 substitutions are taken into account the agreement is essentially complete.  相似文献   

13.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   

14.
The paper presents data on the thermochemical study (high-temperature melt calorimetry in a Tian–Calvet microcalorometer) of two natural Mg–Fe amphiboles: anthophyllite Mg2.0(Mg4.8Fe0.2 2+)[Si8.0O22](OH)2 from Kukh-i-Lal, southwestern Pamirs, Tajikistan, and gedrite Na0.4Mg2.0(Mg1.7Fe0.2 2+Al1.3)[Si6.3Al1.7O22](OH)2 from the Kola Peninsula, Russia. The enthalpy of formation from elements is obtained as–12021 ± 20 kJ/mol for anthophyllite and as–11545 ± 12 kJ/mol for gedrite. The standard entropy, enthalpy, and Gibbs energy of formation are evaluated for Mg–Fe amphiboles of theoretical composition.  相似文献   

15.
Tectonically exposed mantle peridotite in the Oman Ophiolite is variably serpentinized and carbonated. Networks of young carbonate veins are prevalent in highly serpentinized peridotite, particularly near low-temperature alkaline springs emanating from the peridotite. An unusual feature in some samples is the coexistence of serpentine and quartz, which is not commonly observed in serpentinites. This assemblage is unstable with respect to serpentine?+?talc or talc?+?quartz under most conditions. Serpentine in the carbonated serpentinites in this study is more iron rich than in most serpentinites reported in previous studies, and samples with co-existing quartz contain the most iron-rich serpentines. Calculations of thermodynamic equilibria in the MgO–SiO2–H2O–CO2 system suggest that serpentine?+?quartz may be a stable assemblage at low temperatures (e.g., <~15–50?°C) and is stabilized to higher temperatures by preferential cation substitutions in serpentine over talc. Based on these calculations, serpentine?+?quartz assemblages could result from serpentinization at near-surface temperatures. Clumped isotope thermometry of carbonate veins yields temperatures within error of the observed temperatures in Oman groundwater for all samples analyzed, while the δ18O of water calculated to be in equilibrium with carbonate precipitated at those temperatures is within error of the observed isotopic composition of Oman groundwater for the majority of samples analyzed. As groundwater geochemistry suggests that carbonate precipitation and serpentinization occur concomitantly, this indicates that both hydration and carbonation of peridotite are able to produce extensive alteration at the relatively low temperatures of the near-surface weathering environment.  相似文献   

16.
The north-west Turkish blueschists represent a subducted passive continental margin sequence dominated by metaclastic rocks and marble. The depositional age of the blueschist protoliths are probably Palaeozoic to Mesozoic, while the age of the high-pressure/low-temperature metamorphism is Late Cretaceous. Blueschists are tectonically overlain by a volcanosedimentary sequence made up of accreted oceanic crustal material that locally shows incipient blueschist metamorphism and by spinel peridotite slices. The metaclastic rocks with regional jadeite and glaucophane, which comprise the lower part of the blueschist unit, make up an over 1000-m-thick coherent sequence in the Kocasu region of north-west Turkey. Rare metabasic horizons in the upper parts of the metaclastic sequence with sodic amphibole + Iawsonite but no garnet indicate lawsonite blueschist facies metamorphism. The blueschist metaclastics in the Kocasu region are practically free of calcium and ferric iron and closely approximate the NFMASH system in bulk composition. Two low-variance mineral assemblages (with quartz and phengite) are jadeite + glaucophane + chlorite + paragonite and chloritoid + glaucophane + paragonite. The metaclastics comprise up to several-metres-thick layers of jadeite schist with quartz, phengite and nearly 100 mol% jadeite. Phase relations in the metaclastics show that the chloritoid + glaucophane assemblage, even in Fe2+-rich compositions, is stable in the jadeite stability field. In the NFASH system the above assemblage without the accompanying garnet has a narrow thermal stability field. Mineral equilibria in the metaclastics involving chloritoid, glaucophane, jadeite, paragonite and chlorite indicate metamorphic P-T conditions of 20 ± 2 kbar and 430 ± 30 d? C, yielding geothermal gradients close to 5d? C km-1, one of the lowest geotherms recorded. Blueschists in the Kocasu region, which have been buried to 70 km depth, are tectonically overlain by the volcanosedimentary sequence and by peridotite buried not deeper than 30 km. Phengites from two jadeite schists were dated by Ar/Ar laser probe; they give an age of 88.5 ± 0.5 Ma, interpreted as the age of metamorphism. Blueschists and the overlying peridotite bodies are intruded by 48-53-Ma-old granodiorite bodies that were emplaced at 10 km depth. This suggests that the exhumation of blueschists by underplating of cold continental crust, and normal faulting at the blueschist-peridotite, interface occurred during the Late Cretaceous to Palaeocene (88-53 Ma).  相似文献   

17.
A calibration is presented for an activity–composition model for amphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O (NCFMASHO), formulated in terms of an independent set of six end‐members: tremolite, tschermakite, pargasite, glaucophane, ferroactinolite and ferritschermakite. The model uses mixing‐on‐sites for the ideal‐mixing activities, and for the activity coefficients, a macroscopic multicomponent van Laar model. This formulation involves 15 pairwise interaction energies and six asymmetry parameters. Calibration of the model is based on the geometrical constraints imposed by the size and shape of amphibole solvi inherent in a data set of 71 coexisting amphibole pairs from rocks, formed over 400–600 °C and 2–18 kbar. The model parameters are calibrated by combining these geometric constraints with qualitative consideration of parameter relationships, given that the data are insufficient to allow all the model parameters to be determined from a regression of the data. Use of coexisting amphiboles means that amphibole activity–composition relationships are calibrated independently of the thermodynamic properties of the end‐members. For practical applications, in geothermobarometry and the calculation of phase diagrams, the amphibole activity–composition relationships are placed in the context of the stability of other minerals by evaluating the properties of the end‐members in the independent set that are in internally consistent data sets. This has been performed using an extended natural data set for hornblende–garnet–plagioclase–quartz, giving the small adjustments necessary to the enthalpies of formation of tschermakite, pargasite and glaucophane for working with the Holland and Powell data set.  相似文献   

18.
It has been learned from experimental studies of the system MgO-SiO2-H2O and of quaternary systems in the presence of Al2O3 that it is impossible to obtain anthophyllite as a stable phase below a pressure of 4, 000 atm. Regardless of how the problem of water is treated, the formation of anthophyllite is not affected by the lack of H2O because the reaction enstatite - quartz = anthophyllite takes place without either the absorption or release of water. The author assumes that this mineral is formed at higher pressures of about 6,000–8,000 atm and gives a corresponding diagram (figs. 1 and 2). The presence of Al2O3 appears to raise the pressure for the formation of anthophyllite still higher, while the presence of FeO appears to lower it.—Auth. English summ.  相似文献   

19.
Calculated phase equilibria among the minerals sodic amphibole, calcic amphibole, garnet, chloritoid, talc, chlorite, paragonite, margarite, omphacite, plagioclase, carpholite, zoisite/clinozoisite, lawsonite, pyrophyllite, kyanite, sillimanite, quartz and H2O are presented for the model system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), which is relevant for many greenschist, blueschist, amphibolite and eclogite facies rocks. Using the activity-composition relationships for multicomponent amphiboles constrained by Will and Powell (1992), equilibria containing coexisting calcic and sodic amphiboles could be determined. The blueschist–greenschist transition reaction in the NCFMASH system, for example, is defined by the univariant reaction sodic amphibole + zoisite = calcic amphibole + chlorite + paragonite + plagioclase (+ quartz + H2O) occurring between approximately 420 and 450 °C at 9.5 to 10 kbar. The calculated petrogenetic grid is a valuable tool for reconstructing the PT-evolution of metabasic rocks. This is shown for rocks from the island of Samos, Greece. On the basis of mineral and whole rock analyses, PT-pseudosections were calculated and, together with the observed mineral assemblages and reaction textures, are used to reconstruct PT-paths. For rocks from northern Samos, pseudomorphs after lawsonite preserved in garnet, the assemblage sodic amphibole-garnet-paragonite-chlorite-zoisite-quartz and the retrograde appearance of albitic plagioclase and the formation of calcic amphibole around sodic amphibole constrain a clockwise PT-path that reaches its thermal maximum at some 520 °C and 19 kbar. The derived PT-trajectory indicates cooling during exhumation of the rocks and is similar to paths for rocks from the western part of the Attic-Cycladic crystalline complex. Rocks from eastern Samos indicate lower pressures and are probably related to high-pressure rocks from the Menderes Massif in western Turkey. Received: 8 July 1997 / Accepted: 11 February 1998  相似文献   

20.
Petrographical and mineral chemical data are given for the eclogites which occur in the garnet-kyanite micaschists of the Penninic Dora-Maira Massif between Brossasco, Isasca and Martiniana (Italian Western Alps) and for a sodic whiteschist associated with the pyrope-coesite whiteschists of Martiniana. The Brossasco-Isasca (BI) eclogites are fine grained, foliated and often mica-rich rocks with a strong preferred orientation of omphacite crystals and white micas. Porphyroblasts of hornblende are common in some varieties, whilst zoisite and kyanite occur occasionally in pale green varieties associated with leucocratic layers with quartz, jadeite and garnet. These features differentiate the BI eclogites from the eclogites that occur in other continental units of the Western Alps, which all belong to type C. Garnet, sodic pyroxene and glaucophane are the major minerals in the sodic whiteschist. Sodic pyroxene in the eclogites is an omphacite often close to Jd50Di50, with very little acmite and virtually no AlIV, and impure jadeite in the leucocratic layers and in the sodic whiteschist. Garnet is almandine with 20–30 mol. % for each of the pyrope and grossular components in the eclogites and a pyrope-rich variety in the sodic whiteschist. White mica is a variably substituted phengite, and paragonite apparently only occurs as a replacement product of kyanite. Amphibole is hornblende in the eclogites, but the most magnesian glaucophane yet described in the sodic whiteschist. Quartz pseudomorphs of coesite were found occasionally in a few pyroxenes and garnets. The P-T conditions during the VHP event are constrained in the eclogites by reactions which define a field ranging from 27–28 kbar to 35 kbar and from 680 to 750° C. These temperatures are consistent with the results of garnet-pyroxene and garnet-phengite geothermometry which suggest that the eclogites may have equilibrated at around 700° C. In the sodic whiteschist pressures ranging from 29 to 35 kbar can be deduced from the stability of the jadeite-pyrope garnet-glaucophane compatibility. As in the eclogites water activity must have been low. Such conditions are close to the P-T values estimated for the early Alpine recrystallization of the pyrope-coesite rock and, like petrographical and mineralogical features, set aside the BI eclogites from the other eclogites of the Western Alps, instead indicating a close similarity to some of the eclogite bodies occurring in the Adula nappe of the Central Alps. An important corollary is that glaucophane stability, at least in Na- and Mg-rich compositions and under very high pressures, may extend up to 700° C, in agreement with the HT stability limit suggested by experimental studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号