首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We measured dissolved and particulate organic carbon (DOC and POC) in samples collected along 13 transects of the salinity gradient of Chesapeake Bay. Riverine DOC and POC end-members averaged 232±19 μM and 151±53 μM, respectively, and coastal DOC and POC end-members averaged 172±19 μM and 43±6 μM, respectively. Within the chlorophyll maximum, POC accumulated to concentrations 50–150 μM above those expected from conservative mixing and it was significantly correlated with chlorophylla, indicating phytoplankton origin. POC accumulated primarily in bottom waters in spring, and primarily in surface waters in summer. Net DOC accumulation (60–120 μM) was observed within and downstream of the chlorophyll maximum, primarily during spring and summer in both surface and bottom waters, and it also appeared to be derived from phytoplankton. In the turbidity maximum, there were also net decreases in chlorophylla (?3 μg l?1 to ?22 μg l?1) and POC concentrations (?2 μM to ?89 μM) and transient DOC increases (9–88 μM), primarily in summer. These occurred as freshwater plankton blooms mixed with turbid, low salinity seawater, and we attribute the observed POC and DOC changes to lysis and sedimentation of freshwater plankton. DOC accumulation in both regions of Chesapeake Bay was estimated to be greater than atmospheric or terrestrial organic carbon inputs and was equivalent to ≈10% of estuarine primary production.  相似文献   

2.
Accurate measures of intertidal benthic microalgal standing stock (biomass) and productivity are needed to quantify their potential contribution to food webs. Oxygen microelectrode techniques, used in this study, provide realistic measures of intertidal benthic microalgal production. By dividing a salt-marsh estuary into habitat types, based on sediment and sunlight characteristics, we have developed a simple way of describing benthic microalgal communities. The purpose of this study was to measure and compare benthic microalgal biomass and production in five different estuarine habitats over an 18-mo period to document the relative contributions of benthic microalgal productivity in the different habitat types. Samples were collected bimonthly from April 1990 to October 1991. Over the 18-mo period, tall Spartina zone habitats had the highest (101.5 mg chlorophyll a (Chl a) m?2±6.9 SE) and shallow subtidal habitats the lowest (60.4±8.9 SE) microalgal biomass. There was a unimodal peak in biomass during the late winter-early spring period. The concentrations of photopigments (Chl a and total pheopigments) in the 0–5 mm of sediments were highly correlated (r2=0.73 and 0.88, respectively) with photopigment concentrations in the 5–10 mm depth interval. Biomass specific production (μmol O2 mg Chl a ?1 h?1) was highest in intertidal mudflat habitats (206.3±11.2 SE) and lowest in shallow subtidal habitats (104.3±11.1 SE). Regressions of maximum production (production at saturating irradiances) vs. biomass (Chl a) in the upper 2 mm of sediment by habitat type gave some of the highest correlations ever reported for benthic microalgal communities (r2 values ranged from 0.43 to 0.73). The habitat approach and oxygen microelectrode techniques provide a useful, realistic ranged from 0.43 to 0.73). The habitat approach and oxygen microelectrode techniques provide a useful, realistic method for understanding the biomass and production dynamics of estuarine benthic microalgal communities.  相似文献   

3.
Loss of water clarity is one of the consequences of coastal eutrophication. Efforts have therefore been made to reduce external nutrient loadings of coastal waters. This paper documents improvements to water clarity between 1985 and 2008–2009 at four stations in the microtidal estuary Roskilde Fjord and find significant relationships to freshwater nutrient loadings. The paper then investigates to which extent changes in phytoplankton biomass (chlorophyll a (Chl a)), non-algal particulate organic matter (POM*), and residual attenuation in the water (K b), respectively, can account for this optical improvement. Vertical light attenuation (K d) declined, on average, by 34 %, accompanying a 71 % reduction of Chl a and an 80 % reduction of POM*. Residual attenuation declined by 26 % over the period in accordance with a measured 34 % decline of dissolved organic nitrogen. Analysis of simultaneous changes in light attenuation and Secchi depth also suggested a reduction of the scatter-to-absorption ratio over time. Considering the stronger reductions of particle concentrations than dissolved organic matter, the contribution of residual attenuation to vertical attenuation increased from 54 to 74 % in 1985 to 78 to 85 % in 2008–2009. Overall, efforts to reduce nutrient loading and improve water clarity appeared to have had a larger impact on POM* than on Chl a and colored dissolved organic matter concentrations in the estuary, which can account for the decrease in the scatter-to-absorption ratio. These optical changes lead to larger improvements of Secchi depth than of vertical light attenuation. The consequence of this is an overestimation (0.45–1.48 m) of the predicted increase of potential seagrass depth limits when based on Secchi depth rather than K d.  相似文献   

4.
Nutrient inputs have degraded estuaries worldwide. We investigated the sources and effects of nutrient inputs by comparing water quality at shallow (< 2m deep) nearshore (within 200 m) locations in a total of 49 Chesapeake subestuaries and Mid-Atlantic coastal bays with differing local watershed land use. During July–October, concentrations of total nitrogen (TN), dissolved ammonium, dissolved inorganic N (DIN), and chlorophyll a were positively correlated with the percentages of cropland and developed land in the local watersheds. TN, DIN, and nitrate were positively correlated with the ratio of watershed area to subestuary area. Total phosphorus (TP) and dissolved phosphate increased with cropland but were not affected by developed land. The relationships among N, P, chlorophyll a, and land use suggest N limitation of chlorophyll a production from July–October. We compared our measurements inside the subestuaries to measurements by the Chesapeake Bay Program in adjacent estuarine waters outside the subestuaries. TP and dissolved inorganic P concentrations inside the subestuaries correlated with concentrations outside the subestuaries. However, water quality inside the subestuaries generally differed from that in adjacent estuarine waters. The concentration of nitrate was lower inside the subestuaries, while the concentrations of other forms of N, TP, and chlorophyll a were higher. This suggests that shallow nearshore waters inside the subestuaries import nitrate while exporting other forms of N as well as TP and chlorophyll a. The importance of local land use and the distinct biogeochemistry of shallow waters should be considered in managing coastal systems.  相似文献   

5.
This study examined freshwater discharge of dissolved organic matter (DOM) to the shallow Lavaca–Matagorda (LM) Bay estuarine system along the central Texas coast and investigated whether chromophoric DOM (CDOM) photochemical reactions have the potential to stimulate microbial activity within LM estuarine waters. Dissolved organic carbon (DOC) concentrations ranged from 3 to 10 mg C l−1 and CDOM levels (reported as a 305) ranged from 8 to 77 m−1 during April and July, 2007, when the LM system was experiencing very high freshwater inputs. DOC and CDOM levels were well-correlated with salinities > 3, but exhibited considerable variability at salinities < 3. CDOM photobleaching rates (i.e., decrease in a 305 resulting from exposure to solar radiation) for estuarine samples ranged from 0.014 to 0.021 h−1, corresponding to photobleaching half-lives of 33–50 h. Our data indicate when Matagorda Bay waters photobleach; dissolved organic carbon utilization is enhanced perhaps due to enhanced microbial respiration of biologically labile photoproducts (BLPs). Net ecosystem metabolism calculations indicate that most of the LM system was net heterotrophic during our study. We estimate that BLP formation could support up to 20% of the daily microbial respiratory C demand in LM surface waters and combined with direct photochemical oxygen consumption could have an important influence on O2 cycles in the LM system.  相似文献   

6.
The Pichavaram mangrove ecosystem is located between the Vellar and Coleroon Estuaries in south-eastern India. To document the spatial-depth-based variabilities in organic matter (OM) input and cycling, five sediment cores were collected. A comparative study was carried out of grain-size composition, pore water salinity, dissolved organic C (DOC), loss-on-ignition (LOI), elemental ratios (C/N and H/C), pigments (Chl a, Chl b, and total carotenoids), and humification indices. Sand is the major fraction in these cores ranging from 60% to 99% followed by silt and clay; cores from the estuarine margin have high sand content. In mangrove forests, pore-water DOC concentrations are high (32 ± 14 mg L−1), whereas salinity levels are low (50 ± 5.5‰). Likewise, LOI, organic C and N, and pigment concentrations are high in mangroves. OM is mainly derived from upstream terrestrial matter and/or mangrove litter, and marine OM. The humification indices do not vary significantly with depth because of rapid OM turnover. The bulk parameters indicate that the Vellar and Coleroon Estuaries are more affected by anthropogenic processes than mangrove forests. Finally, greater variability and sometimes lack of specific trends in bulk parameters implies that the 2004 tsunami caused extensive mixing in sediments.  相似文献   

7.
Fluorescence characterization of dissolved organic matter (DOM) and measurements of Cr-reducible sulfide (CRS) are presented for 72 coastal marine and estuarine water samples obtained from the USA and Canada. Each sample is identified according to source: terrigenous, autochthonous, wastewater or mixed. Fluorescence data are resolved into contributions from humic, fulvic, tyrosine and tryptophan-like fluorophores. Humic and fulvic-like fluorophores correlate well with dissolved organic C (DOC) (r2 = 0.73 and 0.71, respectively) but tyrosine and tryptophan-like fluorophores show no correlation with DOC. Quality factors are identified by normalization of fluorescence contributions to DOC. Humic and fulvic components show no statistical differences between sources but the amino acid-like fluorescence quality factors show significant variations between source, with highest values for autochthonous sources (0.07 ± 0.01 arbitrary fluorescence units per mg of C) versus low values (0.015 ± 0.005) for terrigenous source waters. CRS concentrations are highly variable from 0.07 ± 0.01 to 7703 ± 98 nM and do no correlate with DOC except when terrigenous source waters (n = 13) are separated out from the total sample set (r2 = 0.55). There is an open question in the literature; does DOC source matter in terms of protective effects towards metal toxicity? Here is shown that DOC molecular-level quality does vary and that this variation is mostly in terms of the contributions of amino acids to total fluorescence.  相似文献   

8.
The response of planktonic bacteria and phytoplankton to various additions of dissolved organic carbon (DOC) as glucose, with and without inorganic nutrients (nitrogen and phosphorus), was tested in the upper to mid Hunter Estuary, Australia. In situ microcosms (1.25 L) were performed at two sites with varying salinities over three seasons. Analysis of variance showed a significant difference among control and treatments for all seasons for the bacterial, dissolved oxygen and chlorophyll a responses (P < 0.05). A significant interaction between treatment and site was found in autumn for dissolved oxygen, autumn and spring for bacterial and spring for chlorophyll a responses. At both sites for each season, and on nearly all occasions, bacterial surface area was enhanced by DOC addition as indicated by both increased bacterial abundance and dissolved oxygen utilisation. DOC in combination with inorganic nutrients sometimes further enhanced the bacterial response compared to DOC alone. Inorganic nutrients alone did not enhance growth of the heterotrophic bacterioplankton. Addition of DOC alone led to decreased chlorophyll a relative to the control, probably due to competition for limited inorganic nutrients with the bacterioplankton DOC non-limiting conditions. Results suggest that the heterotrophic community was limited by DOC at both sites and across seasons. An experiment with a larger volume (70 L), performed over a longer time, compared a control with DOC addition. Increased bacterial biomass as a result of DOC addition occurred at day 2. Chlorophyll a did not significantly differ between treatments. An increase in zooplankton density was recorded in the DOC treatment relative to the control at day 10. This study supports the contention that increased DOC delivery with river inflows through environmental flow allocations will stimulate heterotrophic bacterioplankton production in the upper Hunter Estuary.  相似文献   

9.
Rainfall events cause episodic discharges of groundwaters contaminated with septic tank effluent into nearshore waters of the Florida keys, enhancing eutrophication in sensitive coral reef communities. Our study characterized the effects of stormwater discharges by continuously (30-min intervals) measuring salinity, temperature, tidal stage, and dissolved oxygen (DO) along an offshore eutrophication gradient prior to and following heavy rainfall at the beginning of the 1992 rainy season. The gradient included stations at a developed canal system (PP) on Big Pine Key, a seagrass meadow in a tidal channel (PC), a nearshore patch reef (PR), a bank reef at Looe Key National Marine Sanctuary (LK), and a blue water station (BW) approximately 9 km off of Big PIne Key. Water samples were collected at weekly intervals during this period to determine concentrations of total nitrogen (TN), ammonium (NH4 +), nitrate plus nitrite NO3 ? plus NO2 ?), total phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP), and chlorophyll a (chl a). Decreased salinity immediately followed the first major rainfall at Big Pine Key, which was followed by anoxia (DO <0.1 mg I?1), high concentrations of NH4 + (≈24 μM), TDP (≈1.5 μM), and chl a (≈20 μg I?1). Maximum concentration of TDP (≈0.30 μM) also followed the initial rainfall at the PC, PR, and LK stations. In contrast, NH4 + (≈4.0 μM) and chl a (0.45 μg I?1) lagged the rain event by 1–3 wk, depending on distance from shore. The highest and most variable concentrations of NH4 +, TDP, and chl a occurred at PP, and all nutrient parameters correlated positively with rainfall. DO at all stations was positively correlated with tide and salinity and the lowest values occurred during low tide and low salinity (high rainfall) periods. Hypoxia (DO <2.5 mg I?1) was observed at all stations follwing the stormwater discharges, including the offshore bank reef station LK. Our study demonstrated that high frequency (daily) sampling is necessary to track the effects of episodic rainfall events on water quality and that such effects can be detected at considerable distances (12 km) from shore. The low levels of DO and high levels of nutrients and chl a in coastal waters of the Florida Keys demand that special precautions be exercised in the treatment and discharge of wastewaters and land-based runoff in order to preserve sensitive coral reef communities.  相似文献   

10.
Some chemical and biological parameters were analysed at sixteen stations in the mangrove ecosystem, of the neighbouring Gautami-Godavari (GG) river estuary and Kakinada (KKD) bay to understand the present status of water quality and the impact of external terrigenous inputs during southwest (SW) monsoon in the study areas. High concentrations of nutrients in the mangrove ecosystem compared to the bay and estuarine ecosystems reveal the importance of this zone as a source of nutrients to the adjacent coastal ecosystems. Low Si:N:P (29:4:1) ratios in these ecosystems are due to the enrichment of these nutrients through external anthropogenic inputs even after the utilization by phytoplankton in the biological cycle. The mean Chl b/Chla and Chl c/Chla ratios and high phaeopigments (Pp) concentrations compared to Chlb and high ratios of Chl a/Pp suggests the possibility of the potential growth of phytoplankton populations in lower light intensity and low turbulent areas of these mangrove ecosystems.  相似文献   

11.
An 11-month observation of dissolved and particulate organic matter, chlorophyll a(Chl a), C18 Sep-Pak extractable hydrophobic dissolved organic matter (hDOM) fraction and associated dissolved trace metals (Cd, Cu, V, Co, Ni, Mo, U) was performed in the Lot–Garonne River system. This system includes the Riou Mort, the Lot River and the downstream reaches of the Garonne River and represents the fluvial transport path of trace metals between the major point source of polymetallic pollution, located in the Riou Mort watershed and the Gironde estuary. Spatial and temporal variations of dissolved and particulate organic carbon and Chl areflect the presence of different types of organic matter and their relation with the hDOM fraction. Maximum Chl a/POC ratios (up to 0.03), indicate intense phytoplankton production from March to May. In the Lot River (Temple), DOC and POC concentrations were clearly higher and mean Chl a concentration (2.8 mg g−1) was about three times higher than those of the other sites. High Chl a/POC ratios suggest high phytoplankton activity with maxima in spring and late summer. In the Riou Mort River, very high POC concentrations of up to 40 (mean: 20) occurred, whereas Chl a concentrations were relatively low indicating low phytoplankton activity. High, strongly variable DOC and POC concentrations suggest important natural (Carboniferous soils, forests) or anthropogenic (e.g., former coal mines, waste areas, agriculture, sewage) carbon sources within the small Riou Mort watershed. Despite high DOC concentrations in the Riou Mort River, hDOM metal fractions were generally lower than those at the other sites. The general order of decreasing binding strength between metals and the organic hydrophobic phase (Cu, U > Co, Ni > V, Mo > Cd) at all four sites was in good agreement with the Irving–William series of transition element affinity towards organic ligands. Accordingly, the role of the hydrophobic phase in dissolved Cd transport appeared to be negligible, whereas the hDOM–Cu fraction strongly contributed to dissolved Cu transport.  相似文献   

12.
Groundwater discharge is increasingly recognized as a significant source of nutrient input to coastal waters, relative to surface water inputs. There remains limited information, however, on the extent to which nutrients and organic matter from each of these two flowpaths influence the functional responses of coastal microbial communities. As such, this study determined dissolved organic carbon (DOC) and nutrient concentrations of surface water runoff and groundwater from both an urbanized and a relatively pristine forested drainage basin near Myrtle Beach, South Carolina, and quantified the changes in production rates and biomass of phytoplankton and bacterioplankton in response to these inputs during two microcosm incubation experiments (August and October, 2011). Rainwater in the urbanized basin that would otherwise enter the groundwater appeared to be largely rerouted into the surface flowpath by impervious surfaces, bypassing ecosystem buffers and filtration mechanisms. Surface runoff from the developed basin was most enriched in nutrients and DOC and yielded the highest production rates of the various source waters upon addition to coastal waters. The metabolic responses of phytoplankton and bacterioplankton were generally well predicted as a function of initial chemical composition of the various source waters, though more so with bacterial production. Primary and bacterial productivities often correlated at reciprocal time points (24-h measurement of one with the 72-h measurement of the other). These results suggest human modification of coastal watersheds enhances the magnitude of dissolved constituents delivered to coastal waters as well as alters their distributions between surface and groundwater flowpaths, with significant implications for microbial community structure and function in coastal receiving waters.  相似文献   

13.
In May of 2007, a study was initiated by the National Institute of Oceanography (NIO), Goa, India, to investigate the influence of monsoonal rainfall on hydrographic conditions in the Mandovi River of India. The study was undertaken at a location ∼2 km upstream of the mouth of this estuary. During the premonsoon (PreM) in May, when circulation in the estuary was dominated by tidal activity, phytoplankton communities in the high saline (35–37 psu) waters at the study site were largely made up of the coastal neritic species Fragilaria oceanica, Ditylum brightwellii and Trichodesmium erythraeum. During the later part of the intermonsoon (InterM) phase, an abrupt decline in salinity led to a surge in phytoplankton biomass (Chlorophyll a ∼14 mg m − 3), of a population that was dominated by Thalassiosira eccentricus. As the southwest monsoon (SWM) progressed and the estuary freshened salinity and Chlorophyll a (Chl a) concentrations decreased during the MoN, Skeletonema costatum established itself as the dominant form. Despite the low biomass (Chl a <2 mg m − 3), the phytoplankton community of the MoN was the most diverse of the entire study. During the postmonsoon (PostM), the increase in salinity was marked by a surge in dinoflagellate populations comprising of Ceratium furca, Akashiwo sanguinea, and Pyrophacus horologium.  相似文献   

14.
Estimates of water quality variables such as chlorophylla concentration (Chl), colored dissolved organic matter (CDOM), or salinity from satellite sensors are of great interest to resource managers monitoring coastal regions such as the Florida Bay and the Florida Shelf. However, accurate estimates of these variables using standard ocean color algorithms have been difficult due to the complex nature of the light field in these environments. In this study, we process SeaWiFS satellite data using two recently developed algorithms; one for atmospheric correction and the other a semianalytic bio-optical algorithm and compare the results with standard SeaWiFS algorithms. Overall, the two algorithms produced more realistic estimates of Chl and CDOM distributions in Florida Shelf and Bay waters. Estimates of surface salinity were obtained from the CDOM absorption field assuming a conservative mixing behavior of these waters. A comparison of SeaWiFS-derived Chl and CDOM absorption with field measurements in the Florida Bay indicated that although well correlated, CDOM was underestimated, while Chl was overestimated. Bottom reflectance appeared to affect these estimates at the shallow central Bay stations during the winter. These results demonstrate the need for new bio-optical algorithms or tuning of the parameters used in the bio-optical algorithm for local conditions encountered in the Bay.  相似文献   

15.
The results of a study of the contribution of microbial metabolic products to total dissolved organic carbon (DOC) levels in coastal sediments are presented. The data indicate that acidic volatile compounds make up a substantial fraction of pore water DOC's in both oxic and anoxic pore waters of coastal marine sediments. Formic, acetic and butyric acids are the principal volatile species identified at levels exceeding 10 μM. Acid concentrations are up to five times higher in anoxic pore waters than in oxic waters. Volatile organic acids show promise as indicators of diagenetic processes in marine sediments and of the ecological succession of microorganisms, in particular.  相似文献   

16.
The composition and metabolic capability of bacterioplankton communities were examined over seasonal and spatial gradients and related to the source, composition, and quantity of dissolved organic matter (DOM) in the blackwater estuary Winyah Bay, Georgetown County, SC, USA and its tributary rivers. Bacterial community composition (BCC) was measured by terminal restriction fragment length polymorphism, and bacterial metabolic capability (BMC) was measured by defined substrate utilization patterns (Biolog GN2 plates). Spatial patterns were not important, despite the anticipated watershed effects and the well-documented influence of salinity gradients on estuarine bacterioplankton, but DOM, BCC, and BMC all showed varying degrees of temporal patterns; DOM-based groupings differentiated BCC samples better than spatiotemporal categories, but not BMC. BCC was closely related to properties describing DOM composition, particularly those related to DOM source (i.e., cypress swamps vs. in situ phytoplankton production, indicated by chlorophyll a, colored DOM spectral slope, α355/dissolved organic carbon (DOC), and DOC concentration), and to associated physicochemical variables, such as temperature, pH, and salinity. BMC was more strongly related to abiotic factors, such as temperature and dissolved nutrients, as well as to chlorophyll a and percent bioavailable DOC. In contrast with previous studies, BCC and BMC were significantly correlated in this highly heterotrophic estuary, suggesting that DOM source variability may select for specialist phylotypes above a background of generalists. This study, therefore, supports a causative pathway from DOM to BMC to BCC while suggesting that BCC and BMC may be simultaneously influenced by different suites of DOM characteristics and physicochemical parameters.  相似文献   

17.
The residence times of orthophosphate measured in midsummer in estuarine and coastal shelf waters near Sapelo Island, Georgia, ranged from 1.6 to 105 h. Rates of orthophosphate uptake by microplankton varied from 1.4 to 62.2 μg P per 1 per h. Generally, when isotopic equilibrium was reached after the addition of32P-orthophosphate, significant amounts of32P-remained in solution, suggesting that the supply of phosphorus to microplankton was not limiting in these waters. In coastal shelf waters, the majority of phosphorus uptake (>60%) was associated with small microorganisms (<1μm); whereas, in estuarine waters or in a Gulf Stream intrusion usually a proportionately greater amount of phosphorus was incorporated into larger algae, or clumped or attached bacteria (>1μm). The time course of32P-orthophosphate incorporation into a cold, 10% TCA insoluble, cellular fraction was more consistently linear than into whole cells. This criterion may be useful for comparative studies of phosphorus utilization by microplankton.  相似文献   

18.
We present a comparative analysis of 1400 data series of water chemistry (particularly nitrogen and phosphorus concentrations), phytoplankton biomass as chlorophylla (chla) concentrations, concentrations of suspended matter and Secchi depth transparency collected from the mid-1980s to the mid-1990s from 162 stations in 27 Danish fjords and coastal waters. The results demonstrate that Danish coastal waters were heavily eutrophied and had high particle concentrations and turbid waters. Median values were 5.1 μg chla 1−1, 10.0 mg DW 1−1 of suspended particles, and Secchi depth of 3.6 m. Chlorophyll concentration was strongly linked to the total-nitrogen concentration. The strength of this relationship increased from spring to summer as the concentration of total nitrogen declined. During summer, total nitrogen concentrations accounted for about 60% of the variability in chlorophyll concentrations among the different coastal systems. The relationship between chlorophyll and total phosphorus was more consistant over the year and correlations were much weaker than encountered for total nitrogen. Secchi depth could be predicted with good precision from measurements of chlorophyll and suspended matter. In a multiple stepwise regression model with In-transformed values the two variables accounted for most of the variability in water transparency for the different seasons and the period March–October as a whole (c. 80%). We were able to demonstrate a significant relationship between total nitrogen and Secchi depth, with important implications for management purposes.  相似文献   

19.
Fisheries catch statistics for temperate Western Australia are considered in conjunction with life cycle data to elucidate the importance of estuaries to the commercial and recreational fisheries in this region. The data are used to discuss whether the term estuarine-dependent is strictly applicable to all species of finfish found in abundance in estuaries. Between 1976 and 1984, 96 species of finfish, 7 species of crustaceans and 12 species of mollusks contributed to the large commercial fishery in estuaries, protected coastal areas and open marine waters of temperate Western Australia. The mean annual weight and monetary value (in 1984 terms) of this fishery was 21,355 t and $A151.3×106. The contribution of the weight (4,340 t) and value ($A3.7×106) of the estuarine-dependent species to the total fishery was 20.3 and 2.4%, respectively. Estuarine-dependent marine species frequently use protected inshore waters in temperate Western Australia, and have to do so when they occur in subtropical regions in Western Australia where there are no permanent estuaries. Even the semi-anadromous Perth herring and some species which are estuarinesensu stricto in south-western Australia complete their life cycle within the marine waters of this latter more northern region. Since virtually none of the commercially important marine species in temperate Western Australia can be considered to be entirely dependent on estuaries, and a similar conclusion is valid for many species of marine teleosts found in abundance in estuaries in temperate waters elsewhere in the world, these marine species would be best regarded as estuarine opportunists rather than estuarine dependents.  相似文献   

20.
Five stations on the lower Saint John River, a complex multibasin estuary, were sampled semiquantitatively for zooplankton at biweekly intervals for one year, and qualitatively over a 4-year period. Planktonic Crustacea were dominated by the true estuarine copepods,Acartia tonsa andEurytemora affinis and the euryhaline marine copepodsOithona similis andPseudocalanus minutus. Atypical estuarine forms, confined to a lower fiord-like basin with salinity of 20‰, were the amphipod,Parathemisto abyssorum and the mysidErythrops erythrophthalma. River flows were highly variable from year to year. Certain basins function as lakes in some years and estuaries in other years, causing extreme zooplankton community fluctuations, and succession patterns dependent on salinity rather than season. On occasion freshwater zooplankters maintained viable populations at unusually high salinities (ca. 5‰). Vertical and horizontal distributions of zooplankters indicate that the estuary in fact comprises two systems: a true estuary in the upper reaches and the surface waters at the lower end, and a fiord in a subsidiary basin in the lower end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号